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ABSTRACT

The increasing application of power converter systems based
on semiconductor devices such as Insulated-Gate Bipolar Tran-
sistors (IGBTs) has motivated the investigation of strategies
for their prognostics and health management. However, physics-
based degradation modelling for semiconductors is usually
complex and depends on uncertain parameters, which moti-
vates the use of data-driven approaches. This paper addresses
the problem of data-driven prognostics of IGBTs based on
evolving fuzzy models learned from degradation data streams.
The model depends on two classes of degradation features:
one group of features that are very sensitive to the degradation
stages is used as a premise variable of the fuzzy model, and
another group that provides good trendability and monotonic-
ity is used for the auto-regressive consequent of the fuzzy
model for degradation prediction. This strategy allows ob-
taining interpretable degradation models, which are improved
when more degradation data is obtained from the Unit Under
Test (UUT) in real time. Furthermore, the fuzzy-based Re-
maining Useful Life (RUL) prediction is equipped with an
uncertainty quantification mechanism to better aid decision-
makers. The proposed approach is then used for the RUL pre-
diction considering an accelerated aging IGBT dataset from
the NASA Ames Research Center.

ACRONYMS

RUL Remaining Useful Life

EOL End of Life

PHM Prognostics and Health Management

CM Condition-based Monitoring
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TS Takagi-Sugeno
UUT Unit Under Test
RLS Recursive Least Squares
SFWRLS Sliding-windowed Fuzzily Weighted Recursive

Least Squares
MAPE Mean Absolute Percentage Error
RA Relative Accuracy
IGBT Insulated-Gate Bipolar Transistor
C-trig Cummulative trignometric function
VCEon On-state Collector-Emitter Voltage

1. INTRODUCTION

The IGBT has long established itself as a competent succes-
sor to prior power semiconductors such as the power bipolar
junction transistor (BJT), Darlington transistor, and metal ox-
ide semiconductor field-effect transistor (MOSFET). It func-
tions by combining the desirable properties of a high input
impedance and high switching speeds of the MOSFET with
the low saturation voltage of the BJT, enabling a voltage-
controlled transistor that is capable of containing large collector-
emitter currents with a virtually zero-gate current drive. The
product is a transistor variant that offers medium to high power
application abilities, low ON-resistance, and fast switching
compared to its predecessors.

As any component in a system, IGBTs are prone to failure
under certain operating conditions, primarily from electrical
and thermal stress caused by conditions such as high temper-
ature and cycling effects (Lu & Sharma, 2009). However,
the critical nature of power semiconductors in the chain of
operation of most systems may cause a total shutdown em-
anating from an otherwise inexpensive source. From an in-
dustrial survey by (Yang et al., 2011), the majority of respon-
dents indeed assert that power electronic devices are one of
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the most fragile components in most industries and the need
for increased research interest in reliability monitoring and
improvement. This monitoring is essential, especially in crit-
ical systems such as aviation, where the neglecting cost may
be more than just monetary. In lieu of this, there is a need for
reliable and robust diagnostic and prognostics techniques that
seek to avert to a low degree any spontaneous call for main-
tenance that introduces unplanned expenditures and manages
faults or deterioration during inception before they escalate
to disruptive levels. Using a model-based method, a failure
precursor’s features or both, a fault source can be detected,
isolated, and the RUL of an IGBT predicted for maintenance
responses such as planned replacements undertaken at an op-
timal time before its End of Life (EOL).

Some common failure modes in IGBTs are the gate diode
degradation, body diode degradation, the bond wire and sol-
der layer fatigues (Nguyen & Kwak, 2020). For appropriate
health management algorithms, it is desirable to study a com-
ponent’s observable parameters that conspicuously show de-
viation from their normal behaviour reflecting an associated
anomaly, i.e., a failure mode when in operation. For instance,
during failure modes such as the bond wire and solder layer
fatigues, there is an associated increase in measured On-state
Collector-Emitter Voltage (VCEon ), which results from an in-
creased bond wire resistance for bond wire fatigues and ther-
mal resistance associated with the latter due to the lack of
effective heat dissipation between adjacent layers. The tran-
sistor turn off time have also been identified as a parameter
of interest for latch-up faults in (Brown et al., 2010). These
parameter-failure mode pairing are acquired through a proce-
dure termed FMMEA (Failure Modes, Mechanisms and Ef-
fects Analysis) under accelerated aging procedures. The cri-
teria of choosing a specific prognostics parameter depends
on its sensitivity to the failure mode and also the ease of at-
taining accurate measurements from sensors. For example,
the junction temperature as a precursor is indicative of most
thermal failure modes, but the difficulty in sensor integration
during predesigns as well as inaccurate measurements limits
its applicability. Therefore, works such as (Eleffendi & John-
son, 2016) considers the junction temperature as a failure pre-
cursor, but obtained through a lookup table considering mea-
sured VCEon

. With appropriately measured precursors from
IGBTs, different prognostics procedures have been studied in
literature.

In (Saha, Celaya, Wysocki, & Goebel, 2009), a model-based
prognostics procedure using a particle filter is used based on a
fitted model on the collector-emitter leakage current obtained
from an accelerated aging procedure. However, in (Haque,
Choi, & Baek, 2018) an auxillary particle filter proved to have
a better variance and robustness of RUL predictions com-
pared to particle filters using the VCEon

as a failure precur-
sor, a predominant choice in most papers. Data-based algo-
rithms have also been extensively studied, both statistically

and in the area of artificial intelligence. Statistically, for a
data-based prognostics of IGBTs, (Ismail, Saidi, Sayadi, &
Benbouzid, 2019) employed the Gaussian process regression,
whilst later in (Ismail, Saidi, Sayadi, & Benbouzid, 2020)
the authors used a modified maximum likelihood method to
predict the RUL. The results show that the Gaussian pro-
cess regression has better prognostics metrics than the modi-
fied maximum likelihood method. With the VCEon

as a cho-
sen precursor in (Ahsan, Stoyanov, & Bailey, 2016), Neural
Network (NN) and Adaptive Neuro Fuzzy Inference System
(ANFIS) models are used to predict the RUL, the NN showed
better performance compared to the ANFIS. In (Alghassi,
Perinpanayagam, & Samie, 2016), the authors proposed a
time delay neural network algorithm in tandem with a proba-
bilistic function with VCEon

as the precursor parameter, which
proved to be more efficient than a stand alone NN model.
Comprehensive reviews exists in literature on the broad sub-
ject, encompassing the type of failures (Nguyen & Kwak,
2020; Hanif, Yu, DeVoto, & Khan, 2019), precursor param-
eter attainment (Zhang, Liu, Li, & Li, 2020) and prognostics
methods (Degrenne, Kawahara, & Mollov, 2019; Kabir, Bai-
ley, Lu, & Stoyanov, 2012) employed on power semiconduc-
tors in general.

Although adaptive prognostics methods are able to modify
their parameters according to the data stream behavior to re-
duce the modeling error, their structure are fixed and there is
no clear relationship between their evolving degradation stage
and their parameters (Angelov, 2012). Otherwise, evolving
systems are known by their ability of modifying both param-
eters and structure to provide explainable representations for
data-streams. While their parameters are adapted to mini-
mize the modeling error, the structure becomes more com-
plex to represent novel dynamics which can be related to the
achievement of novel degradation stages in prognostics prob-
lems. Recently, evolving fuzzy degradation models are pro-
posed for aiding data-stream-driven Prognostics and Health
Management (PHM) systems (Camargos, Bessa, D’Angelo,
Cosme, & Palhares, 2020; Camargos et al., 2021; Ahwiadi &
Wang, 2022). In particular, those models are used to capture
the degradation dynamics and predict the equipment RUL. In
this regard, evolving prognostic approaches have been suc-
cessfully applied to ball bearings (Camargos et al., 2020) and
lithium-ion batteries providing (Camargos et al., 2021; Ah-
wiadi & Wang, 2022) competitive results with some inter-
pretability features. This motivates the application of those
methods for the challenging IGBT prognostic problem.

Properties such as monotonicity and trendability of a chosen
extracted feature or dimensionally reduced subspace of se-
lected features is a strong prerequisite for attaining a good
RUL prediction, employed in prognostics algorithms. How-
ever, the downside of this procedure is that the granularity
of the degradation data is diminished or lost when smooth-
ing tools are applied to attenuate these properties. This result
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in algorithms that sacrifice interpretability for improved RUL
predictions. Even though it is agreed that the primary end
goal of prognostics algorithms is to improve the RUL pre-
diction, there must be a motivation to consider characteristics
of the degradation trend, which may be used for secondary
purposes or aid in a better RUL prediction. This especially
comes in handy when considering degradation data as used
in this paper, a stage-based degradation process, where clas-
sification of the stages may prove to be important for better
estimating the RUL.

The approach in this paper considers a data-based evolving
fuzzy model that uses two classes of input features: an inter-
pretable feature as a premise variable and a RUL prediction-
friendly counterpart in the autoregressive consequent of the
fuzzy model. In particular, the degradation representation is
based on the Evolving Ellipsoidal Fuzzy Information Gran-
ules (EEFIG), whose has already been applied for cluster-
ing (Cordovil, Coutinho, Bessa, D’Angelo, & Palhares, 2020),
fault diagnosis (Cordovil et al., 2020), and leaning-based con-
trol (Cordovil, Coutinho, Bessa, Peixoto, & Palhares, 2022)
approaches. The merit of this methodology over others is that
it provides a platform with a dual function mode: (1) Provid-
ing a good RUL prediction in conjunction with (2) classifying
the different stages of degradation, as shown in Figure 1, en-
abling interpretability.

2. IGBT AGING AND DEGRADATION

As stated in the prequel, for prognostics, it is imperative to
acquire parameters that explicitly represent the failures, such
that a study of their behaviour can inherently constitute a
knowledge of the failure mechanism. To measure all useful
related precursor parameters, the IGBTs are subject to aggres-
sive thermal or electrical cycles of stress in an experimental
environment until a failure happens. In this work, a run-to-
failure experiment on 4 IGBTs undertaken by (Sonnenfeld,
Goebel, & Celaya, 2008) is considered. The experiment in-
volves subjecting power transistor devices to DC square wave
signals at the gate, placing the devices under thermal stress.
This aging process is undertaken until a latch-up or thermal
runway (EOL) when signals are switched steadily between
0V and 4V , with temperature controlled between 329◦C and
330◦C outside the rated temperature of the test transistors.
The transient data collected when the devices switch are the
(i) Collector-emitter turn on Voltage; (ii) Gate Voltage; and
(iii) Collector current.

3. DATA-DRIVEN PROGNOSTICS BASED ON EVOLVING
FUZZY DEGRADATION MODEL

3.1. Degradation features extraction and selection

From the literature, the VCEon
is the predominantly chosen

precursor, which has proven its efficacy as well as practicabil-
ity compared to other parameters, with various pre-evaluated
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Figure 1. Measured collector-emitter voltage from aging test
of IGBT1 showing stages of degradation.

metrics supporting its selection. Therefore, the VCEon
is se-

lected as the parameter of interest in this paper. With VCEon
as

the selected Condition-based Monitoring (CM) data, features
are extracted serving as a pseudo-representation of the degra-
dation behaviour. The raw data, shown in Figure 2, are almost
always noisy, an undesirable characteristic for a RUL predic-
tion. These features, either frequency or temporal based, must
exhibit desirable characteristics that ensures accurate RUL
extrapolations with less uncertainty (Gouriveau, Medjaher, &
Zerhouni, 2016). Two types of characteristics of input data
into the proposed algorithm are considered. First, a feature
that satisfies the traditional desirable properties of monotonic-
ity, trendability and prognosticability for an accurate and less
uncertain RUL prediction is considered and a feature that rep-
resents the shape of degradation showing the different stages.
Unlike the first case, the accuracy of the RUL is not deemed a
factor. Thus, for the autoregressive consequent feature, a fea-
ture construction from (Javed, Gouriveau, Zerhouni, & Nec-
toux, 2015) is considered. The authors employ the standard
deviation (SD) of Cummulative trignometric function (C-trig)
on the data set. This was proven to possess overall better
prognostics characteristics backed with more accurate RUL
compared to generic features when tested on a case study.
Two C-trigs, as proposed in (Javed et al., 2015), are consid-
ered and the best selected based on the suitability metric (1),
as proposed in (Celaya, Saxena, Saha, & Goebel, 2011).

Suitability =




Monotonicity
Trandability

Prognosticability



⊤ 


1
0.976
1


 (1)

For the premise variable of the fuzzy model, features of the
mean and the root mean square is considered for selection
presented in Table 2. Smoothing is done with the moving
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average and the window length selected equal to the number
of samples in each testsets performed on individual IGBTs.
Considering a data-stream X = [x1, x2, . . . , xn] ∈ Rn the
selected features are presented in Table 1.

Table 1. Trigonometric features for the premise variable.

Feature Formula
SD of asinh(X) σ

(
log
[
xi + (x2i + 1)

1
2

])

SD of atan(X) σ
(

i
2 log

(
i+xi

i−xi

))

Table 2. Features for the autoregressive consequent variable.

Feature Formula
Energy

∑n
i=1E(xi)

Root Mean Square (RMS)
√

1
n

∑n
i=1 x

2
i

The cumulative function as from (Javed et al., 2015), is done
by considering a simultaneous point-wise running total and
scaling of a time series:

CFi(X) =

∑n
i=1X(i)

|∑n
i=1X(i)|

1
2

(2)
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Figure 2. Measured collector-emitter voltage from aging test
of 4 IGBTs.

Feature selection. For the auto-regressive consequent fea-
ture of the fuzzy model, the cummulative SD of (atan) is
selected, with a suitability score of 2.972 compared to 2.957
of (asinh). For the premise variable, the RMS feature was

selected based on the best results from the two features (i.e
Table 2) as inputs.

3.2. Evolving Ellipsoidal Fuzzy Information Granules

In (Cordovil et al., 2020), the Evolving Ellipsoidal Fuzzy In-
formation Granules (EEFIG) model and its evolving granular
learning algorithm are introduced. The learning algorithm is
an online data processing that employs evolving fuzzy infor-
mation granules based on the parametric principle of justifi-
able granularity (Pedrycz & Wang, 2016). In this paper, we
propose employing the EEFIG algorithm to model the degra-
dation of the IGBTs.

An EEFIG is a collection ofN granules Gk =
{
G1
k, . . . ,G

N
k

}
,

where each granule is a fuzzy set Gi
k =

(
Rnz , gik

)
, where gik :

Rnz → [0, 1] is the membership function of the EEFIG Gi
k.

The membership function ωi
k is parameterized by the granular

prototype Pi
k of the i-th granule at the time instant k, which

is also a numerical evidence basis for the granulation process.
The granule prototype is defined as follows:

Pi
k =

(
µi
k
, µi

k, µ
i
k,Σ

i
k

)
, (3)

where µi
k
, µi

k and µi
k are the lower, mean and upper bound

vectors of the i-th EEFIG at time k and Σi
k is the inverse of

its covariance matrix. Given the granule prototype Pi
k, the

membership function of an EEFIG is parameterized as

ωi
k (zk) = exp

{
−
[
(zk − µi

k)
⊤ (∆i

k

)−1
(zk − µi

k)
]1/2}

,

(4)

where, for p ∈ N≤nz
,

∆i
k = diag





(
µi
k,1 − µi

k,1

2

)2

, . . . ,

(
µi
k,p − µi

k,p

2

)2


 ,

being µi
k, and µi

k
the semi-axes of the i-th EEFIG prototype

such that µi
k
< µi

k < µi
k (Wang, Shi, Wang, & Zhang, 2014).

The normalized membership functions gik at the k-th time in-
stant for i-th granule is

gik(zk) =
ωi
k(zk)∑N

i=1 ω
i
k(zk)

. (5)

Moreover, the distance of a given data sample zk ∈ Rnz to the
i-th EEFIG is given by the square of Mahalanobis distance:

d(zk, µ
i
k) = (zk − µi

k)
⊤Σi

k(zk − µi
k). (6)

The granulation process is the updating of the EEFIG model-
based on the data stream. The updates are performed aiming
at improve the so-called granular performance index with re-
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Figure 3. Selected auto-regressive consequent feature of the 4 IGBTs. (Left.) SD(atan) (Right.) C-SD(atan).
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Figure 4. Considered premise features of the 4 IGBTs.

spect to a data sample. The performance index of the i-th
granule with respect the sample zk, denoted Q̄i

k, is defined as

Q̄i
k(zk) = d(zk, µ

i
k)|Gi

k| (7)

where | · | is the fuzzy cardinality operator of the i-th EEFIG,
whose update is performed as follows

|Gi
k| = |Gi

k−1|+ gik(zk)−
∂gik(zk)

∂Pi
k

, (8)

where the term ∂gi
k(zk)

∂Pi
k

is computed as described in (Cordovil
et al., 2022). The total EEFIG performance index is the sum
of the data sample contribution index of each granule:

Qi
k =

1

k

k∑

j=1

Q̄i
j(zj). (9)

To decide whether a granule must be updated or not, the con-
cept of data sample admissibility is used. A data sample zk
is said to be admitted by a given granule prototype Pi

k if it
is used to update the granule prototype parameters. In this
sense, two criteria are used to evaluate the data sample ad-
missibility:

d(zk, µ
i
k) < ν, (10)

Qi
k > Qi

k−1, (11)

where ν =
(
χ2
)−1

(γ, n) is a threshold parameterized by the
inverse of chi-squared statistic with n + m degrees of free-
dom, leading EEFIG prototype to cover around 100γ% of
the stream sample. A data sample zk which does not meet
the first condition (10) for some granule is denominated an
anomaly. In parallel, as the data samples are available and
evaluated, a structure named tracker whose objective is to
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follow the data stream dynamics to indicate change points,
is established.

The tracker is parameterized by a mean vector µtr
k and an in-

verse covariance matrix Σtr
k , which are recursively updated

(Moshtaghi, Leckie, & Bezdek, 2016). A new granule is cre-
ated if the following conditions hold:

1. The tracker is c-separated from all the existing granule
prototypes. The c-separation condition is expressed as
follows

∥µtr
k − µi

k∥ ≥ c
√
nz max(ξ̄(Σtr

k ), ξ̄(Σ
i
k)), (12)

for all Gi
k ∈ Gk, where ξ̄ (Σtr

k ) is the largest eigenvalue
of Σk and, c ∈ [0,∞) specifies the separation level.
Here, c is assumed as 2.

2. The number of consecutive anomalies is na > ζ where ζ
is a hyper-parameter defined by the user to control the
minimum amount of anomalies which may enable the
rule creation.

3.3. EEFIG-based degradation modelling and RUL esti-
mation

Based on the EEFIG model described in the previous section,
the following Takagi-Sugeno fuzzy model is proposed for the
degradation modeling

Rule i : IF zk is Gi
k

THEN yik = θi
k

⊤
[yk−1, yk−2, . . . , yk−L]

⊤
,

(13)

for i ∈ N≤Ck
, where yk ∈ R is the health index, zk ∈ Rnz is

the vector of premise variables, θi
k ∈ RL are the coefficients

of the i-th fuzzy rule at instant k, L ∈ N is the number of
regressors in the autoregressive consequent, and Ck ∈ N is
the number of rules at instant k. Using the center-of-gravity
defuzzification for (13), the health index yk is

yk =

Ck∑

i=1

gik (zk)θ
i
k

⊤
[yk yk−1 . . . yk−L+1]

⊤ (14)

Θkhk (yk) , (15)

where

Θk =
[
θ1
k

⊤
. . . θCk

k

⊤]
,

yj =




yj
...

yj−L+1


 , hk (yl) =



g1k (zk)yj

...
gCk

k (zk)yj


 .

As described in (Cordovil et al., 2020; Cordovil et al., 2022),
the consequent parameters Θk are estimated based on Re-

cursive Least Squares (RLS) methods. In particular, here we
use the Sliding-windowed Fuzzily Weighted Recursive Least
Squares (SFWRLS) where the weights are the membership
degrees and the data window contains the last φ samples:

Hk =
[
hk
(
yk−1

)
. . . hk

(
yk−φ

)]
(16)

Xk = [yk . . . yk−φ+1] (17)

Therefore, the recursive equation for the SFWRLS estimator
are provided as follows

Υk = PkHk

(
ηIφ +H⊤

k PkHk

)−1
(18)

Pk+1 = η−1
(
Pk −ΥkH

⊤
k Pk

)
(19)

Θk+1 = Θk + (Xk −ΘkHk)
⊤
Υ⊤

k (20)

where Pk ∈ RLCk×LCk is an estimate of the inverted regu-
larised data autocorrelation matrix, Υk ∈ Rnx is the SFWRLS
gain vector, and η ∈ (0, 1] is the forgetting factor.

Given the estimate of the parameters of (13), the one-step
ahead prediction of the degradation at instant k is computed
as follows

ŷk+1|k =

Ck∑

i=1

gik (zk)θ
i
k

⊤
[yk yk−1 . . . yk−L+1]

⊤ (21)

For any N ∈ N, define

ŷk+N |k =





[yk, yk−1, . . . , yu]
⊤
, if N = 1,

[ŷw, . . . , ŷk+1, yk, . . . , yu]
⊤
, if 1 < N < L,

[ŷw, . . . , ŷu]
⊤
, if N ≥ L,

(22)
where u = k+N−L and w = k+N−1. TheN -step ahead
health index prediction ŷk+N |k is computed as follows:

ŷk+N |k = Akŷk+N |k, (23)

where Ak =
∑Ck

i=1 ω
i
k (zk)θ

i
k

⊤
.

Based on the long term prediction described in (23), the RUL
can be estimated by predicting the future health state of the
system given the current and past system’s condition, which
are provided by ŷk+N |k and zk. Indeed, the RUL can be
defined as the amount of time until the system’s health index
reaches a predefined threshold, that is:

ˆRULk = inf {N ∈ Z≥0 : ŷk+N |k ≤ η}, (24)

where ˆRULk ∈ Z≥0 denotes the RUL estimate computed at
instant k given the observations of degradation state until k,
and η is the end of life threshold, which must be defined based
on historic data.

6
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3.4. Uncertainty quantification

Consider a state transition function given by a Takagi-Sugeno
(TS) model, with rules as in (13). The degradation propaga-
tion (23) can be rewritten as

ŷk+N |k = Akyk+N |k + ϵk+N , ∀N > 0. (25)

To account for prediction uncertainties, white Gaussian noise
is added to (25) from

ϵk ∼ N
(
0, σ2

ϵ

)
, (26)

where σ2
ϵ is considered constant. The noise variance can be

estimated through Monte Carlo simulations using the conse-
quent parameters’ covariance matrix estimated via RLS un-
til time instant k (Camargos et al., 2020) or by recursively
tracking the covariance of estimation errors through the on-
line learning operation, i.e., for time instances n ∈ N≤k

(Camargos et al., 2021). In the univariate case, the mean error
is recursively tracked as

∆ϵ,k = ϵk − µ̂ϵ,k−1, (27)

µ̂ϵ,k = µ̂ϵ,k−1 +
1

k
∆ϵ,k. (28)

The initial mean error is µ̂ϵ,0 = 0. Given the estimated mean
error, the sum of squares is obtained recursively from

sϵ,k = sϵ,k−1 + (ϵk − µ̂ϵ,k−1)
2, (29)

being sϵ,0 = 0. The variance σ2
ϵ in (26), used for long-term

prediction, is then approximated by the error covariance ma-
trix at time instant n:

σ2
ϵ =

sϵ,k
k − 1

. (30)

3.5. Uncertainty propagation

After obtaining the initial uncertainty in one step estimates,
its long term propagation considers the input vector (22) to
be a vector composed of estimated random variables. Note
that if N = 1, the previous degradation states are known
and, naturally, are non-random variables. Accordingly, the
output x̂k+N of the state transition relation (25) is also a ran-
dom variable. Computing variances in a multi-step prediction
framework is needed for uncertainty propagation. The first
step gives

Var
(
ŷk+1|k

)
= AkCov(yk+1|k)A

⊤
k + σ2

ϵ

= AkΛ
L
1A

⊤
k + σ2

ϵ

= σ2
ϵ

= λ21, (31)

in which ΛL
N ≜ Cov(yk+N |k), and λ2N ≜ Var(ŷk+N |k).

Note that ΛL
1 = 0, since previous degradation states are known

at N = 1. Then, the N-step variance is computed recur-
sively as

Var(ŷk+N |k) = AkΛ
L
NA⊤

k + σ2
ϵ . (32)

The covariance matrix of the random vector yk+1|k is

ΛL
N =




λ2
N−1 · · · λN−LλN−1ρ̂L,1

...
. . .

...
λN−1λN−Lρ̂1,L · · · λ2

N−L


 . (33)

Moreover, λ2i = 0 when i < 0, meaning that xk+N is known.
The convariance matrix (33) is weighted by Pearson correla-
tion coefficients, ρ̂, estimated through historic data.

Considering the degradation to be a random variable with
Gaussian distribution, whose expected value is propagated
by successive iterations of (25), then RUL lower and upper
bounds at an (α)(100)% significance level are given as

ˆRULlb
k = inf {N ∈ Z≥0 : ŷk+N |k + z1−α

2
λN ≤ η},

(34a)
ˆRULub

k = inf {N ∈ Z≥0 : ŷk+N |k + zα
2
λN ≤ η}. (34b)

4. EXPERIMENTAL SETUP

To evaluate the proposed data-driven prognostics based on
evolving fuzzy degradation model, we use the accelerated ag-
ing IGBT dataset from the NASA Ames Research Center1.
This dataset contains sensor data from four devices. In partic-
ular, there are aging time series for the collector-emitter volt-
age (VCEon ), gate-emitter voltage, collector current, thermal
and electrical resistance, and the times in which the switch is
on and off. The health index yk is selected to be

yk = SD (arctan (VCEon)) , (35)

and the premise variables vector is

zk =
[
Ēk Ēk−1 Ēk−τ+1

]⊤
(36)

where Ēk is the energy of VCEon
described in Table 2.

The proposed evolving fuzzy prognostics require the tuning
of some hyper-parameters, namely: L, the number of lags in
the autoregressive model for the health index yk (cf. (13)); τ ,
the number of lags ofEk used in the premise vector zk; η, the
forgetting factor of SFWRLS (cf. (18), (19) and (20)); φ, the
size of the data windows used in SFWRLS (cf. (16) and (17));
and ζ, the number of necessary consecutive anomalies to en-
able the granule creation.

For choosing the hyper-parameters of the proposed algorithm,
we designate a test dataset regarding one of the four devices

1The dataset is available for download in
ti.arc.nasa.gov/project/prognostics-data-repository
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and perform a grid search to solve the following problem

ℓ(D) = argmax
l

EOLD∑

k=1

kRAk(D, l) s.t. l ∈ L (37)

where l = (L, τ, η, φ, ζ) is the vector of hyper-parameters,
L = [2, 5] × [2, 5] × [0.96, 1] × [2, 6] × [2, 6] is the search
space, EOLD is the end of life of the D-th device, and ℓ(D)
are the optimal parameters within the the search space L, and
the Relative Accuracy (RA) is

RAk = 1−

∣∣∣RULk − ˆRULk

∣∣∣
RULk

, (38)

5. EXPERIMENTAL RESULTS

In this section, the results for the RUL prediction for IGBTs
based on evolving fuzzy models are presented and discussed.
For evaluating the results, the Mean Absolute Percentage Er-
ror (MAPE) is used as figure of merit:

MAPEk =
100

EOL− k + 1

EOL∑

i=k+1

∣∣∣∣∣
RULi − ˆRULi

RULi

∣∣∣∣∣ , (39)

where EOL is the end of number of the UUT; rk and ˆEOLk

are the current and estimated RUL at k, respectively.

Table 3 provides the MAPE results computed from k = 20.
Notice that the EEFIG-based prognostics was able to guaran-
tee MAPE results below of 50% for the IGBT devices 1, 2
and 4. However, the third IGBT presents more challenging
data which results in higher MAPE for any parameter set.

Table 3. MAPE20 results

Parameter tuning dataset

1 2 3 4

U
U

T
da

ta
se

t 1 20.3560 31.5868 59.6492 48.3150

2 23.0306 15.1883 34.4047 15.2904

3 67.4113 76.0535 70.8395 74.9962

4 40.7839 31.4586 37.6570 28.2187

Figures 5-7 depict the RUL prediction results in α-λ plots
with accuracy cones of±30%. In particular, Figure 5 presents
the results for the second IGBT using the parameters ob-
tained by solving (37) for the dataset extracted from the fourth
IGBT. Figure 6 presents the results for the first IGBT using
the parameters obtained by solving (37) for the dataset ex-
tracted from the second IGBT. And, Figure 7 presents the
results for the second IGBT using the parameters obtained by
solving (37) for the dataset extracted from the third IGBT.

20 25 30 35 40 45 50

0

20

40

60

20 25 30 35 40 45 50

1

2

3

4

5

Figure 5. RUL prediction for the 2nd IGBT with parameters
obtained for the test dataset with data from the 4th IGBT.

In Figures 5 and 6, notice that the RUL predictions remain
inside of the accuracy cone in most of the time, and the true
RUL tends to be within the predicted RUL bounds. However,
the results become considerably worse for the Figure 7, as
already indicated in Table 3.

One of the key advantages of applying evolving fuzzy meth-
ods is the interpretability. In this regard, the bottom plots
of Figures 5, 6, and 7 indicate the granule with maximum
membership degree at each sample. It is possible that news
granules are being created and becoming more relevant since
they are capturing novel degradation stages. Indeed, the tran-
sitions between the most relevant granules could be used as
an failure or degradation stage indicator.

6. CONCLUSIONS

This paper presented a novel data-driven prognostics approach
based on the evolving granular fuzzy models denominated
EEFIG for IGBTs. The EEFIG is able to learn degradation
processes from data-stream adapting the parameters of the
degradation process representation and modifying its struc-
ture by means of granule creation for representing novel stages
of the degradation process. The results indicate that the ap-
plication of EEFIG for data-driven prognostics of IGBTs is
promising, mainly due to its interpretability features.
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Figure 6. RUL prediction for the 1st IGBT with parameters
obtained for the test dataset with data from the 2nd IGBT.
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