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ABSTRACT

Civil nuclear generation plant must maximise it’s operational
uptime in order to maintain it’s viability. With aging plant and
heavily regulated operating constraints, monitoring is com-
monplace, but identifying health indicators to pre-empt dis-
ruptive faults is challenging owing to the volumes of data
involved. Machine learning (ML) models are increasingly
deployed in prognostics and health management (PHM) sys-
tems in various industrial applications, however, many of
these are black box models that provide good performance
but little or no insight into how predictions are reached. In nu-
clear generation, there is significant regulatory oversight and
therefore a necessity to explain decisions based on outputs
from predictive models. These explanations can then enable
stakeholders to trust these outputs, satisfy regulatory bodies
and subsequently make more effective operational decisions.
How ML model outputs convey explanations to stakehold-
ers is important, so these explanations must be in human
(and technical domain related) understandable terms. Con-
sequently, stakeholders can rapidly interpret, then trust pre-
dictions better, and will be able to act on them more effec-
tively. The main contributions of this paper are: 1. introduce
XAI into the PHM of industrial assets and provide a novel
set of algorithms that translate the explanations produced by
SHAP to text-based human-interpretable explanations; and,
2. consider the context of these explanations as intended for
application to prognostics of critical assets in industrial appli-
cations. The use of XAI will not only help in understanding
how these ML models work, but also describe the most im-
portant features contributing to predicted degradation of the
nuclear generation asset.

Omnia Amin et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

Although there are many different approaches in PHM, AI
and ML powered techniques have recently seen a surge across
applications in different industries. These Industries are con-
tinuously exploring AI and ML methods to ensure reliable
and sustainable operations for their industrial assets. The
goal of using these techniques is to carefully maintain indus-
trial assets, to ensure that they fulfil their dedicated functions
and also to avoid any unnecessary asset downtime. However,
in industries where safety and reliability are crucial, the use
of AI techniques impose a challenge of non-transparency to
stakeholders. Stakeholders need to understand how ML tech-
niques work and how they produce their outputs in order to
build trust in decisions based upon these outputs and realise
AI/ML deployments within their industries. Explainable AI
(XAI) helps in explaining these techniques and make it more
transparent to stakeholders. XAI has a vital role in PHM
systems as it helps nurture confidence in AI techniques used
while the function and performance of the underpinning AI
systems and the associated asset remain intact. This paper
illustrates the need for XAI in PHM and how XAI can help
non-ML experts adopt ML models through demonstration on
diagnostic and anomaly detection case studies. This paper
proposes novel algorithms that will help non-ML experts to
understand the explanation produced by XAI tools. The goal
is to give the reader an insight into the importance of com-
bining XAI and PHM. This paper is organized as follows:
Section 2 states the problem and proposes a solution, Section
3 describes the different approaches that can achieve explain-
ability, Section 4 demonstrates the proposed approach used
for this paper, Section 5 explains the algorithms developed,
Section 6 introduces three different case studies in which the
proposed approach has been applied, Section 7 discusses the
solution proposed and finally section 8 summarises conclu-
sions and draws directions for future work.
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2. PROBLEM STATEMENT

Many AI and ML diagnostic and predictive applications use
black-box type models because their outputs provide better
performance than simpler, and therefore more transparent,
white-box approaches. However, stakeholders in regulated
industries such as Nuclear, base their operational decisions on
understanding how models generate their predictions (Preece,
Harborne, Braines, Tomsett, & Chakraborty, 2018). In the
case of civil nuclear generation, a fault prognostic model may
invoke a decision to take the station offline while the fault is
investigated, which in turn will incur maintenance costs and
lost generation revenues. XAI helps users understand the un-
derlying structure of black-box machine learning models and
how they produce their outputs; hence, boosting user’s con-
fidence in these models and encouraging them to use them.
Unfortunately, most XAI that are in use produce explanations
in a technical format that is not easily understandable to a
non-ML expert (Bove, Aigrain, Lesot, Tijus, & Detyniecki,
2022), which in the case of power generation, most opera-
tional staff will be. Research shows that experts in the ap-
plication domain tend to trust machine learning models when
they are provided with human-friendly explanations that will
enable them to understand the rationale of ML models (Bove
et al., 2022). Also, there is a requirement for distinctly dif-
ferent explanations for stakeholders in different application
domains (Mohseni, Zarei, & Ragan, 2018). To pursue this
challenge, this paper proposes a novel application of a set of
algorithms that translates explanations generated from XAI
tools into human understandable text-based explanations.

3. DIFFERENT APPROACHES TO XAI

Explainability (Interpretability) (Carvalho, Pereira, & Car-
doso, 2019) can be achieved through different approaches and
they can be classified according to different criteria. In this
section, we will explore some of the well-known classifica-
tions (Barredo Arrieta et al., 2020):

3.1. Pre-model, During Model and Post-Model

Explainability can be achieved through different complemen-
tary approaches. One of these approaches depends on when
XAI techniques are applied. They can be applied as: ’Pre-
Model’, ’During model’ and ’Post-model methods’ (Stiglic et
al., 2020) (Carvalho et al., 2019). ’Pre-model’ is done in the
first stage of model development after obtaining the related
data and before selecting the desired ML model appropriate
for the problem statement. The primary goal of using pre-
model methods is to understand and describe the data used in
ML model and how the data health and structure influence the
model. ’During Model’ is an approach to ensure explainabil-
ity through the use of transparent models, which are mod-
els that are inherently understandable for humans.(Doran,
Schulz, & Besold, 2017) Using transparent models is one ap-

proach to achieve interpretability. In these models, humans
can easily understand how inputs are mathematically mapped
to outputs by having technical knowledge of the model itself
and the algorithms used in the models (Molnar, 2020). One
drawback of this approach that it is model-specific, and the
model design process is limited by the number of represen-
tative models available to choose from. Interpretable mod-
els include linear regression, logistic regression, generalized
linear models, and decision trees (Molnar, 2020). Finally,
’Post model’ or ’Post-hoc Methods’ is an approach applied
after choosing the ML model and after obtaining predictions
from these models. Currently, most black-box models are
explained using a post-hoc approach. This approach is used
for complex models in which humans cannot understand the
underlying decision-making mechanism. The advantage of
post-hoc approaches is that they do not affect the performance
of a complex model as it treats the model as a black-box
(Dosilovic, Bri, & Hlupic, 2018). Post-hoc approaches can
be primarily classified into three groups:

1. Gradient based attribution methods such as saliency
maps (Simonyan, Vedaldi, & Zisserman, 2014) which
assign importance scores to each input feature and show
which parts of the input are most important.

2. Surrogate Models such as MUSE (Model Understand-
ing through Subspace Explanations) (Lakkaraju, Kamar,
Caruana, & Leskovec, 2019). In this approach, black-
box models’ behavior is explained in sub-spaces defined
by specific features that are of user interest.

3. Post-hoc approaches via perturbation: This approach
uses perturbations of the input data to generate pairs of
inputs and outputs, then uses simple models e.g., linear
models to explain the prediction obtained. Examples of
techniques that use this approach are LIME and SHAP
tools. Shapley Additive exPlanations (SHAP) tool com-
putes feature importance by computing the contribution
of each feature to the output obtained. These contribu-
tions are calculated using coalitional game theory, where
features represent players in a coalition (Molnar, 2020).
SHAP tool increases transparency by producing SHAP
values for each instance in the data set (Molnar, 2020).
SHAP values can be aggregated to provide global inter-
pretability for machine learning models. It is considered
an optimal approach for providing interpretability since
it is built on a solid theory (Lundberg & Lee, 2017).
Some advantages of SHAP is that it is based on a solid
theoretical theory and it can provide local and global ex-
plainability by providing SHAP force plot for local ex-
plainability and SHAP summary plot for global explain-
ability as shown in figure (1) (Lundberg & Lee, 2017).
Due to the benefits and wider adoption of SHAP by the
AI community, application and development of SHAP
values will be a focus of this paper.
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3.2. Global and Local explainability

A second approach to classifying interpretability methods is
according to the scope of how they assess the underlying
model, i.e., from a global or local perspective (hui Li et al.,
2022) (Bhatt et al., 2020) (Angelov, Soares, Jiang, Arnold,
& Atkinson, 2021). Global interpretability: Global methods
help users to logically understand the relationship between all
input variables and the predicted output. They help in form-
ing an overall understanding of the behavior of the modal
(Doran et al., 2017). Users are able to understand all the
different possible outcomes. In contrast, local interpretability
provides an explanation for one instance or region of the mod-
eled space, and the associated contribution of that instance or
space to the overall output (Bhatt et al., 2020).

3.3. Model-Agnostic and Model-Specific explainability:

In model-agnostic techniques, there is the flexibility to choose
any machine learning approach. The machine learning model
in a model agnostic approach is treated as a black-box by
separating the explanations from the model, thus giving the
flexibility to choose any ML model, alongside any represen-
tation and explanation (Molnar, 2020) (Angelov et al., 2021).
One disadvantage of using model-agnostic techniques is the
possibility of having inconsistent local explanations (Ribeiro,
Singh, & Guestrin, 2016) (Ribeiro et al., 2016). In model
specific techniques, choice is limited to specific models be-
cause methods are based on the internal workings of specific
models, and it is hence difficult to change to another model
(Molnar, 2020).

4. NEW PROPOSED APPROACH TO XAI

The goal is to develop various options for extracting explain-
ability (interpretability) from predictive or diagnostic analytic
tools. These extracted explanations being required to be pre-
sented to decision-making stakeholders who are non-ML ex-
perts in human-friendly context. To achieve this goal, four
complementary explanatory stages have been identified (see
figure (2)). Each stage is presented next with more details:

1. Data pre-processing: The first stage eases the under-
standing of the data set used and recognizes the features
contained therein. The quality of data is assessed and
transformed into an understandable format that can be
used later in ML/analytic models.

2. Prediction Models: The second stage is to choose ap-
propriate machine learning prediction model(s). Most
ML models are considered black-box models, in which
we cannot understand how these models work and how
inputs are mapped into outputs. Therefore, there is a
need to develop and deploy XAI techniques that gener-
ate explanations on predictions made, enabling industry
stakeholders to understand the machine learning models
adopted.

3. Applying XAI tools: Applying XAI tools to provide un-
derstandability of how ML models work and why they
produce these predictions. For this paper, a widely
adopted post-hoc XAI tool is used. SHAP is applied to
provide local and global explanations. SHAP generates
more reliable explanations than other XAI tools, and it
can provide local explanations for a single predication
(e.g. why a specific prediction has been made , what
are the most important features contributing to this pre-
diction, and the impact of each feature on the prediction)
and a global explanation to provide a holistic understand-
ing of how the ML model works. However, SHAP pro-
duces these explanations in the form of complex plots
which are not easy to understand, especially for a non-
ML expert. This is the rationale for introducing a final
stage to translate these explanations into a more under-
standable format.

4. Generating human understandable explanations: How to
communicate explanations to non-ML-experts in the ap-
plication domain is important. SHAP plots are not al-
ways easy to understand, even for a data scientist. This
fact leads to the need to translate these plots into a
human-understandable context that will result in bridg-
ing the gap between ML experts and stakeholders. In this
stage, a set of novel algorithms have been developed to
translate SHAP local and global explanations to generate
human understandable text-based explanations.

5. AUTOMATED HUMAN-UNDERSTANDABLE-TEXT
GENERATION ALGORITHMS

In this section, the algorithms used to translate complex
SHAP plots to human-understandable text based explanations
are described.

5.1. Translating SHAP local explanation plots

After applying the SHAP tool in order to provide inter-
pretability, the resulting explanations are produced in the
form of complex plots. This paper demonstrates a novel ap-
proach, where these plots are translated into text-based expla-
nations.

For SHAP local interpretability, a SHAP force plot is pro-
duced for a single prediction, providing the most important
features, and the impact of each feature on the output at a lo-
cal level. If a feature has a positive SHAP value, this indicates
that the feature value has a positive impact on the prediction.
However, if it has a negative value, this indicates that the fea-
ture has a negative impact on the prediction and finally, if the
SHAP value equals zero, then this feature has no impact on
the output.

How this information is translated into human-
understandable text is demonstrated in Figure (3), where a
flow chart explains how the logic behind the code that has
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Figure 1. SHAP local and global explanations.

been developed for the automated text-generating process.

5.2. Translating SHAP global explainability plot

For Global explainability, each feature has its SHAP values.
The SHAP values for each feature are aggregated and then
compared. After that, all the features are ordered according
to their aggregated SHAP values. Features with higher ag-
gregated SHAP values have greater impact on the output and
vice versa. How this information is translated into human un-
derstandable text is demonstrated in Figure (4), where a flow
chart explains how the logic behind the code that has been
produced for the automated text-generating process.

6. CASE STUDIES

The novel approach to human-understandable XAI, described
in Sections 4 and 5, has been applied to three different case
studies, as follows.

6.1. Case study 1 : Combined Cycle Gas Turbine (CCGT)

In the first case study, a publicly available data set consist-
ing of operational measurements from a Combined Cycle Gas
Turbine (CCGT) generator has been used. An open-source
data set has been chosen as the first case study to facilitate
easy application of XAI tools and also to make the work re-
producible. The CCGT data set was curated over 6 years
(2006-2011) and has been previously used to show machine
learning models for predicting power output based on envi-
ronmental conditions (Wood, 2020) (Tüfekci, 2014)

6.1.1. Data pre-processing

The data set composes the following operational measure-
ments from the turbine, generator, and control valves:

1. Ambient pressure (AP).

2. Exhaust Vacuum (V).
3. Ambient temperature (AT).
4. Relative humidity (RH).

These parameters are used to predict the net hourly electri-
cal energy output (PE) of the plant. In this case study, it
was shown that the relationship between environmental con-
ditions and power output could be clearly identified and ex-
plained. In figure (5), some statistical properties about CCGT
data set are provided.

6.1.2. Modelling

Three different candidate models have been implemented for
the explainability case-study: linear regression, random for-
est and XGboost. These ML models were used to predict
the output power and their performances were compared us-
ing three performance metrics that are usually used to com-
pare performance between different regression models: Root
mean squared error (RMSE) metric, which measures the av-
erage error performed by the model, R2 score which speci-
fies how close the calculated values are plotted to the actual
data values and Mean squared error (MSE). The metrics for
Gradient Boosting Regressor showed improvements over the
Linear Regression Model and the random regression model.
There are 3 key performance metrics (See table 1) used to
assess how well each model is performing. After evaluating
all the models, XGBoost Regression Algorithm was found to
give the best performance with R-squared = 0.97 and RMSE
= 3.069.

6.1.3. XAI Application

In this stage, SHAP has been adopted to provide explanations
to the ML predictions. It generates explanations in a form of
visualizations that are quite complex and are not always intu-
itive. In figure (6), SHAP summary plot produced using the
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Figure 2. Proposed approach.

Table 1. Comparison of ML models performances.

ML models R2 Score MSE RMSE
Linear regression 0.92 20.637 4.543
Random forest 0.94 15.278 3.909
XGBoost 0.97 9.419 3.069

XGBOOST model. According to SHAP summary plot shown
in figure (6), the most important features in descending order
are : Temp, Vacuum, Pressure and finally Humidity. The im-
pact of each feature is also shown (e.g. high values (shown
in red color) of Temp has a negative impact on the output
power causing the output power to decrease while low val-
ues(shown in blue) of Temp has positive impact on the output
power causing the output power to increase). In the SHAP
force plot (SHAP local explainability plot), shown in figure
(7), features like Temp, vacuum and pressure (shown in red)
causing an increase in the predicted output power. The visual
size for each feature in SHAP force plot (size of the arrow)
shows the magnitude of each feature’s impact. According to
this local explanation the most important features in descend-
ing order are Temp, Vacuum, Pressure and finally Humidity.

6.1.4. Generation of human-understandable explana-
tions

As described in Section 5, a set of algorithms have been de-
veloped to achieve the task of translating SHAP plots into
text-based explanations for ease of comprehension. In fig-
ure (8), an example of the text-based explanations gener-
ated by translating the SHAP local explainability plot (SHAP
force plot) is shown in figure (7). The text-based explana-

tion clearly describes the most important features of the plot
and the associated impact from each feature value contribut-
ing towards the predicted output power (e.g. Temp =11.37 is
considered a low value after comparing it to the mean value
of Temperature in the data set and has a positive impact on
the output power pushing the output power value higher).
Figure(9) shows the automated text-based explanations for
the SHAP summary plot shown in figure(6). While Figure
(10) shows summary statistics for each feature, including:
the number of values for each feature that have no impact on
the output power; the number of values that are considered
high and have high/low positive impact on the output push-
ing the output power to increase; and the number of values
for each feature that are considered low and have a high/low
negative impact on the output power, causing the prediction
to decrease.

6.2. Case study 2: Boiler Feed Pump Gearbox Data set

A gearbox is a mechanical device used to increase or de-
crease the speed of another part connected to it along a ro-
tating drive-train. The objective of this case study is to apply
XAI tools to provide explanations to predictive models ap-
plied to a gearbox data set related to a boiler feed pump and
then ease the ability to understand these explanations through
the application of the auto-generated novel text-based algo-
rithms proposed in this paper. The modelling aim was to in-
vestigate how the controlling stop-valve position values af-
fect rms-vibration and the operational consequences associ-
ated with increased stop-valve position. Increased vibration
in boiler feed pump lead to decrease in the performance of
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Figure 3. Flowchart to translate SHAP force plot.

pump and result in damage to some pump parts. In this case
study, it was shown that the relationship between stop-valve
position and rms-vibration could be clearly identified and ex-
plained.

6.2.1. Data pre-processing

The data set used compromises of different valve positions
and rms-vibration to investigate if there is a correlation be-
tween the valve position and rms-Vibration. This data was
collated and provided by a real operational boiler feed pump
in the power generation industry. The following operational
measurements were used to create the predictive model:

1. Stop-valve position.

2. Rms-vibration.

Before machine learning prediction models can be used, the
time-series data set has been re-framed as a supervised learn-
ing problem, resulting in a sequence of input and output pairs.
Reframing the data set removes the complexities around the
prediction problem and can give more reliable forecasts. Af-
ter re-framing the data set to a supervised learning problem,
the following operational measurements used to predict rms-
vibration(t+1) are: stop-valve-position(t-2), rms-vibration(t-
2), stop-valve-position(t-1), rms-vibration(t-1), stop-valve-
position(t), rms-vibration(t) and stop-valve-position(t+1).

Table 2. Comparison of ML models performances.

ML models R2 Score MSE RMSE
Linear regression 0.96 0.001417 0.03766
Random forest 0.96 0.00144 0.0379
XGBoost 0.95 0.00151 0.03889
Ensemble Model 0.96 0.001455 0.03815

6.2.2. Modelling

Similar to the previous case study, the same three differ-
ent ML models were assessed for their effectiveness: Lin-
ear regression, Random Forest, and XGBoost - all being used
to predict rms-vibration(t+1). These ML models were then
combined using an averaging ensemble model to improve the
overall performance. Performances have been compared as
seen in table (2) using three different performance metrics.
As shown in table (2), Ensemble model has not improved the
overall performance and linear regression has the best perfor-
mance of the all models. It is concluded from these results
that a linear regression model should be selected to create the
SHAP values.

6.2.3. XAI application

This case study adopted SHAP to provide explanations for
the ML predictions. Figure (11) is the SHAP summary plot

6

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 14



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

Figure 4. Flowchart to translate SHAP Summary plot.

Figure 5. Statistical details about CCGT data set.

using linear regression. The most important features are
shown, with rms-vibration(t) being the most important fea-
ture and rms-vibration(t-2) the least important. The SHAP
summary plot also shows the correlation between each fea-
ture and the output (e.g. rms-vibration(t) is positively corre-
lated with the output, the higher the rms-vibration(t) is, the
higher the output and similarly for rms-vibration(t-1)). In the
SHAP force plot (local explainability plot), shown in figure
(12), the most important feature for this prediction is shown
in red: rms-vibration(t), having a positive correlation with the
output (causing the output to increase). On the other hand,
rms-vibration(t-1) shown in blue has a negative correlation
with the output, causing the output to decrease.

6.2.4. Generation of human-understandable explana-
tions

The techniques from Section 5 were then used to gener-
ate automated-text-based explanations that are easy to un-
derstand. In figure (13), an example of the text-based ex-
planation generated corresponding to the SHAP force plot
(local explanations plot) produced in figure (12). In figure
(13), the most important features affecting the output for a
specific instance are listed. Also, the impact of each feature
value and whether this feature value pushes the output value
higher/lower is shown (i.e. rms-vibration(t) has a low value
for this instance that pushes the output higher). In Figure
(14), a text-based explanation corresponding to SHAP sum-
mary plot shown in figure (11) is provided, denoting the most
important features globally for the prediction model. Figure
(15) shows summary statistics for some of the features, in-
cluding: the number of values for each feature that have no
impact on the output, number of values that are considered
high and have high/low positive impact on the output push-
ing the output to increase and the number of values for each
feature that are considered low and have a high/low negative
impact on the output causing the prediction to decrease.

6.3. Case study 3: Thrust bearing wear predictive model

In this case study real condition monitoring data from feed-
water pumps has been used to anticipate thrust bear wear (de-
noted ”median-TB”) given operating parameters such as flow
(”mean-Flow”) and head (”mean-Head”).The data set used
compromises of different values of flow and head. The data
set is used to predict thrust bearing wear.

6.3.1. Data pre-processing

The data set used compromises of different values of flow
and head. This data set is used to predict thrust bear-
ing wear. Similar to the pre-processing stage for case-
study two described in section 6.2 the time series data has
been re-framed to a supervised learning problem from a se-
quence to pairs of input and output sequences. The follow-
ing operational measurements are used to predict median-
TB(t+1): mean-Flow(t-2), mean-Head(t-2), median-TB(t-
2), mean-Flow(t-1), mean-Head(t-1), median-TB(t-1), mean-
Flow(t), mean-Head(t), median-TB(t), mean-Flow(t+1) and
mean-Head(t+1).

6.3.2. Modelling

Similar to the previous case-studies, the same three ML
models are assessed for their predictive accuracy: linear re-
gression, Random Forest, XGBoost have been used to pre-
dict thrust bearing wear (median-TB(t+1)). Then, ML mod-
els have been combined using the same averaging ensemble
model to investigate whether or not the overall performance
will be improved which in this case it didn’t . Performances
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Figure 6. SHAP summary plot for case study 1.

Figure 7. SHAP force plot for case study 1.

Figure 8. Text-based explanations for SHAP force plot in
case-study 1

Figure 9. Text-based explanations for SHAP summary plot in
case-study 1

are compared as shown in table (3). Linear regression model
has the best performance with the least mean squared error
(MSE).

6.3.3. XAI application

Applying SHAP techniques to provide explanations to ma-
chine learning predictions produced the following results.
Figure (16) depicts the SHAP summary plot, showing the

Figure 10. Text-based explanations representing simple
statistics for SHAP summary plot in case-study 1

most important features contributing to model predictions.
The plot shows SHAP values for each feature and the im-
pact these features have on the model predictions. The most
important features for this model from the global explana-
tion perspective in descending order are: mean-Flow(t+1),
median-TB(t), mean-Head(t+1), ..., and lastly mean-Head(t-
1) as depicted in figure (16). From the SHAP summary plot
mean-Flow(t+1) is positively correlated to the output, the
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Figure 11. SHAP summary plot for case study 2

Figure 12. SHAP force plot for case study 2

Table 3. Comparison of ML models performances.

ML models R2 Score MSE RMSE
Linear regression 0.9978 0.0000035 0.002
Random forest 0.997 0.0000042 0.00207
XGBoost 0.997 0.0000045 0.0021
Ensemble model 0.997 0.0000041 0.0021

higher the mean-Flow(t+1), the higher the output. Figure (17)
shows the local explanation generated by SHAP for a single
prediction using the linear regression model. In the SHAP
force plot figure (17), the most important feature for this pre-
diction (shown in red) is mean-Flow(t+1), having a positive
correlation with the output (causing the output to increase).
The second most important feature is median-TB(t) (shown
in red), having a positive correlation with the output (causing
the output to increase for this prediction).

6.3.4. Generation of human-understandable explana-
tions

The techniques from Section 5 were used to generate
automated-text-based explanations that are easy to under-
stand. In figure (18), an example of text-based generated cor-
responding to SHAP local explanations plot produced above
and shown in figure (17). In Figure (19), text-based expla-
nations corresponding to the SHAP summary plot shown in
figure (16), showing the most important features globally for
the prediction model.

7. DISCUSSION

The aim of this work is to introduce XAI techniques into
PHM systems. In this paper, a new approach has been pro-
posed to produce a human-understandable format of SHAP
produced explanations. Compared to other related literature
which lacks human understandability, this approach makes
it easier for non-ML experts to understand the results from
explainability tools. The authors propose that the text-based
representation of the SHAP process is easier and more intu-
itive to interpret because they allow non-ML experts to un-
derstand and engage with how ML models work. These text-
based explanations will enable stakeholders to understand the
impact of each input and the operational consequences asso-
ciated with different inputs/values. The proposed approach
has been used in three different case studies and demonstrates
the provision of a human-friendly form of explanations to
non-ML experts.

8. CONCLUSIONS AND FUTURE WORK

Exploiting the application of XAI tools in PHM can lead
to increased confidence in PHM systems, encourage their
adoption, and ultimately meet the assurances and quality re-
quired for PHM system deployment in safety-critical indus-
tries such as nuclear. In this paper, through the develop-
ment and demonstration of a novel approach to the interpre-
tation of a well-known post-hoc XAI technique (SHAP), it
has been shown that explanations in a ‘human-friendly’ for-
mat can aid stakeholders (who are not necessarily ML ex-
perts) to rapidly interpret the technical explanations provided
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Figure 13. Text-based explanation for SHAP force plot for case study 2.

Figure 14. Text-based explanations for SHAP summary plot
for case study 2

by black-box ML models that may comprise a PHM method-
ology. This subsequently increases their confidence in adopt-
ing the model that may have produced new prognostic insight
for operational decisions. This new approach is intended
to support end-users (who are not ML experts) interpret the
outputs from SHAP and this benefit is realised through the
creation of new algorithms that auto-generate text-based ex-
planations based on SHAP summary and force plot outputs.
These text-based explanations provide a more intuitive means
of interpreting SHAP outputs, which are more generally in-
tended for data scientists or other practitioners familiar with
the field of study. The approach developed has been applied
to three case-studies – two (2 and 3) of which are based upon
operational data from a nuclear power station. They demon-
strate that it is possible to produce more intuitive explanations
than the standard graphical outputs produced by SHAP tools.
These more intuitive text-based explanations can henceforth
be more easily understood by the end-user of the related PHM
algorithms, who may be unfamiliar with both: the ML predic-
tive algorithm in its own right but also the methodology and
format associated with SHAP. In addition, during the investi-
gation associated with this paper, the authors have identified

Figure 15. Text-based explanations for some of the features
in case study 2 .

some limitations of the proposed approach that can be further
improved to produce more robust and reliable explanations,
and which are the focus on on-going work. One limitation
identified, and associated with using a correlating post-hoc
tool such as SHAP, is the absence of the ability to causally
link the correlations identified by SHAP to related physical
phenomena. Introducing causality into post-hoc XAI tools
will help in providing more reliable explanations, both by re-
lated the correlations to the underpinning physics but also by
potentially providing explanations in specific engineering do-
main contexts. In addition to these causality investigations,
the authors have a further aim to develop additional/improved
means of intuitively representing and subsequently interro-
gating AI explanations. Building on the content of the work
described in this paper, the authors are currently developing
techniques to auto-generate graph-based representations of
the semantic knowledge embedded within AI explanations.
The intended methodology aims to continue improving on
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Figure 16. SHAP summary plot for case study 3.

Figure 17. SHAP force plot for case study 3.

Figure 18. Text-based explanation for shap force plot for case
study 3

how (non-ML expert) end-users can adopt PHM through ex-
planation of the related AI technique but in parallel also facil-
itate machine interactions and interfacing with the software-
based explanation process. It is proposed that providing a
means of machine interface to the explanation process can
lead to the inclusion of techniques such as query language
and more sophisticated graph manipulation; ultimately result-
ing in more insight and knowledge discovery, both for nu-
clear engineers hoping to adopt ML-based PHM techniques

Figure 19. Text-based explanation for shap summary plot for
case study 3

but also more generally in industries with a similar deficit of
ML capability.
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