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ABSTRACT

There has been an increasing demand on marine transporta-
tion and traveling, since the voyage of the ships are more
economical and efficient than air or land based alternatives.
The propulsion of a ship is provided by a main engine sys-
tem which includes the shaft, the propellers, and other auxil-
iary equipment. Marine diesel engine is a complex structure
that the faults within these machines can cause malfunction
of the whole system, which in turn inhibits the ship’s mis-
sion. It is crucial to monitor the engine and other auxiliary
systems during the operation and infer their condition from
their diagnostic data. In this study, we analyze monitoring
data of a crude oil tanker for different ship loads and condi-
tions. Our primary analysis include main engine fault detec-
tion and classification for which we propose an end-to-end
joint autoencoder-classifier model that contains a convolu-
tional autoencoder, and a long-short term memory regressor
connected to the the latent space. Genetic algorithms opti-
mized models gave us 93.61% accuracy for fault classifica-
tion task. Further investigation on feature’s contributions to
the model, we increased the accuracy upto 96%. One con-
cern about marine transportation is the pollution of the air
with green house effect gases. In this study, we have devel-
oped NOx and SOx emission estimators for different faults
and working conditions. Leveraging ship load, working con-
ditions and engine faults in the models helped us to achieve
50% better estimation performance. Although there are other
studies regarding gases emissions in the literature, this is the
first study that took engine faults into account. We believe
that the joint autoencoder-classifier model will be useful for
other time series estimation task on other domains, especially
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where the operating condition plays a role in the process.

1. INTRODUCTION

The propulsion of a ship is provided by a main engine sys-
tem which includes the shaft, the propellers, and other auxil-
iary equipment. Almost all the merchant ships utilize marine
diesel engines with cylinders, pistons, valves, nozzles, and a
turbo charger system, which provides power for the naviga-
tion of the ship. The diesel engine is a very complex system
that the faults within these machines can cause malfunction of
the whole system, which in turn inhibits the ship’s mission.
So, it is crucial to monitor the engine and other auxiliary sys-
tems during the operation and infer their condition from this
diagnostic data. The main objective of fault diagnostics are
fault detection, fault identification, and fault analysis, which
is an essential part of modern industries to ensure safety and
product quality. Fault diagnosis has been been active area of
research for the last few decades (Heo & Lee, 2018).

In this study, we analyze monitoring data of a crude oil tanker
at the full ahead loaded and full ahead unloaded situations
for main engine fault detection and identification. The data
is obtained from a realistic full-mission engine room simu-
lator from Kongsberg. More than 60 sensor data have been
recorded for three cases: normal working conditions plus two
cases for malfunction scenarios on diesel engine, namely in-
jection valve nozzle wear and injection valve nozzle clogged.
Each run of the failure scenarios ends with one of the mal-
functions, if any. As part of our initial research on this dataset,
we define a classification problem in which we detect exis-
tence of any defined malfunctions and identify what the mal-
function could be. We have built a joint autoencoder-classifier
model, which contains a convolutional autoencoder, and a
long-short term memory regressor connected to the the la-
tent space. The joint architecture helps us to train end-to-end
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multi-target deep neural network from the multivariate time
series data as in the dataset, and to integrate operating condi-
tion of the process into the model added to the latent parame-
ters. Using the best performing models, we have investigated
the sensors which might alleviate the performance of the clas-
sification. The amounts of released NOx and SOx emissions
were also recorded during data collection process. In this ini-
tial study, we also built several gradient boosting based re-
gressors to estimate NOx and SOx emissions for different
ship loads and for different fault types. Our study shows
that a) end-to-end joint autoencoder-classifier model provides
up to 95.94% accuracy for classification problems, b) as it is
in emission estimation, operating conditions are valuable re-
source of information for processes, c) leveraging operating
conditions and faults in the model helps us to achieve 50%
better estimations.

This analysis paper is organized as follows: Section 2 gives
information about simulation dataset, which we named MC90-
V as the simulator. Section 3 summarizes fault classification
problem and gas emissions of the engine. Section 4 describes
the workflow and methods we used for analysis. Section 5
describes our implementation details and results.

2. KONGSBERG M(C90-V ENGINE ROOM SIMULATOR
DATASET

Kongsberg K-Sim is a well-known ship engine room simu-
lator with high fidelity, among maritime departments of the
universities. One configuration of the simulator, ERS MAN
B&W S5L9OMC VLCC L11-V (MC90-V for short), simulates
a very large crude carrier witha MAN B&W slow speed turbo
charged diesel engine as propulsion unit modeled with fixed
and controllable propeller. The model is based on real engine
data that make the dynamic behavior of the simulator close
to real engine response. The simulator includes control room
operator station and panels and bridge and steering panels.
K-Sim provides other applications such as Neptune for class-
room training and TLDS for engine room monitoring.

We have used Neptune for defining exercises that run the core
simulator for several times. We have used TLDS to record
simulator variables as engine room monitoring data. An ex-
ercise in Neptune is defined by an Initial Condition, which is
the initial state of the simulator. For the MC90-V dataset, we
have created 18 different scenario initializations by defining
the conditions on ship’s load and speed, sea water tempera-
ture, and sea conditions as given in Table 1.

The simulator provides about 1500 malfunctions to be in-
jected into the exercises. For our research, we restricted our-
selves to two of the malfunctions on the Ist cylinder of the
engine, namely Cyl 1 injection valve nozzle wear and Cyl 1
injection valve nozzle clogged, which are refered as M2503
and M2508 in this paper. For each initial condition (18 in
total) and for each malfunction state (3 in total) we run the

Table 1. Initial Conditions for MC90-V Dataset

Possible Values
FAL: Full Ahead Loaded
FAU: Full Ahead Unloaded

20°C

25°C

28°C
0
Sea Condition (Beauf) 4
6

Condition
Ship Speed/Load

Sea Water Temperature

exercises for 53 times, 2862 runs in total. For each initial
condition, we separated 35 of the runs for training and the re-
maining 18 runs for testing. Each run contains 1000 to 1400
data samples recorded at 1 Hz until the failure occurs. The
monitoring data contains more than 60 variables, which can
be grouped as real sensors and simulated sensors. For this
initial study we have used real sensors.

We present in the paper is the first of many analysis we plan
on the MC90-V dataset. For this study we restrict ourselves
to ship load Full Ahead Loaded and Full Ahead Unloaded,
sea water temperature 20°C' and Sea Condition 0.

3. PROBLEM DEFINITION

Detection of faults in a monitored system is the first step in
root cause identification, which is crucial before proceeding
to the next stages of the diagnosis process. The main aim
of fault detection and diagnosis are to identify key indicators
which can be used for health prediction of a system and then
to take a proper action against a future failures. This key
indicators can be used to predict the fault class before the
system losses its operation ability.

MC90-V Dataset provides unique challenges, one of which
is fault identification and classification, i.e. identify the state
of the engine, whether it is operating normal, and predicting
the fault type if it is not. Fault-free exercise runs, which we
labeled as M000O, represent the behavior of the engine dur-
ing its normal operating regime. In this case, the engine does
not present any problem and runs smoothly. Faults regard-
ing the Cyl. 1 are injected by the simulator after a random
delay. These faults are labeled as M2503 and M2508. Two
of the objectives of this study are to identify and classify the
faults in test data and to identify the signals having highest
contribution to the prediction.

The main engine of the ships run on diesel fuel that produce
several gases while burning. As more and more ships travel
in each day, their emissions becomes a global concern. The
two main pollutants from the ship’s emission are Nitrogen ox-
ides (NOx) and Sulphur oxides (SOx) gases, which effect on
the ozone layer in the troposphere area of the earth’s atmo-
sphere and cause the green house effect and global warming.
One other objective in this study is to estimate NOx and SOx
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emissions from the burning process.

4. METHODS AND TECHNIQUES

In this study, our main motivation was to build a fault classi-
fier, which would differentiate between M0000, M2503 and
M2508. We have used the workflow as given in Figure 1,
which contains data preprocessing, model training, and eval-
uation phases. Data preprocessing step prepares the data for
training and evaluation steps.

Data Preprocessing

Windowing
Data Modeling
Evaluation

=
S
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Data Merging
Imputation

Figure 1. General data processing workflow in this study

Data Preprocessing: The actions we took in this step are
data merging, since the simulation data is distributed among
23000 or so files, missing value imputation, data normaliza-
tion and scaling, feature selection, and windowing. A few
of the featured had missing values, which were imputed with
backfill.

Data Modeling and Optimization: In this study, we propose
a joint autoencoder-classifier (JAEC) architecture, which in-
tegrates a CNN based autoencoder and an LSTM-based clas-
sifier end-to-end for fault classification. The model incorpo-
rates CNN based autoencoder. The general architecture is
given in Figure 2. Input to autoencoder is X (t), the sensor
values at time ¢. The decoder produces X (t), the signals at
time ¢. Encoded sensor values (latent space) for time ¢ is con-
catenated to operational conditions OC(t) at time ¢. This data
takes the classification path, which contains two LSTM layers
and dense layers that generate C’@s(t). In JAEC-CNN, con-
volutional layers in the autoencoder are wrapped in time dis-
tributed layers, which applies convolution operation to every
temporal slice of the input. Number of filters in CNN layers
decreases in the encoder to support latent space generation.
Batch normalization is performed between convolutional lay-
ers.

For NOx and SOx emission estimations, we propose gradient
boosting (GB) based models. GB is one of the powerful tech-
niques for performing classification and regression tasks that
builds the model in a stage-wise fashion. GB is an ensemble
learner: a complex model based on a collection of individual
models. These individual models may have poor predictive
power and are prone to overfitting, but combining many such
weak models in an ensemble will lead to a much better out-
come overall.
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Figure 2. Proposed joint autoencoder classifier architecture

Hyper-parameters for the model architecture are optimized
using genetic algorithms (GA), which is based on the bio-
logical concept of evolution (Back, Fogel, & Michalewicz,
2000). In genetic algorithms hyper-parameters to optimize
are called as genes, and a set of gene sequences that construct
the unique model is called an individual. The genetic algo-
rithms process starts with a set of individuals, ie. population,
which are actually an initial set of models. The initial pop-
ulation is trained and evaluated for their fitness to the prob-
lem solution. Usually, n best fitted individuals are selected to
form the next generation through gene crossover (mating) and
gene mutation. The individuals in the new generation goes
into training and evaluation stages. The process continues
until maximum number of generations is reached or predeter-
mined fitness score is achieved. Finally, best fitted individuals
are selected to create the optimal architectural models.

Evaluation Metrics: Commonly used evaluation metrics for

classification problems are accuracy (ACC), and F1 score (F1),
which are defined by true positives (1'P), true negatives (I'N),
false positives (F'P), false negatives (F'N) as in Equation 1

and Equation 2, respectively.

TP +TN
ACC*TP+TN+FP+FN M

TP

FP+FN
TP+ EELEN

2

Evaluation metrics for regression problems are Mean Abso-
lute Error and Root Mean Square Error are defined as in Equa-
tion 3 and Equation 4, respectively. In these equations y is the
expected result (i.e. ground truth), ¢ is the model estimation,
and ¢ is the sample index.

1 n
MAE(y, ) = (E)ZL%‘—ZM 3)
=1
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5. EXPERIMENTS AND RESULTS

We have used Scikit-Learn (Pedregosa et al., 2011) and Keras
(Chollet et al., 2015) libraries to implement proposed frame-
work for fault classification and emission estimation on MC90-
V dataset. This section gives implementation details for each
task, and the evaluation results. '

5.1. Fault Classification

Data preprocessing step prepared the data for training and
evaluation steps. Initially, the dataset contains individual data
files for each exercises runs. We have merged individual
data files to have two separate subsets, training and test. The
dataset contained missing data for each run. Because missing
data can create problems for analyzing data, interpolation is
used to fill in missing data and avoid pitfalls involving cases
that have missing values. After that, data normalization is
performed using Z-score normalization, with mean zero and
standard deviation one. Initially training data is scaled, and
then the scaling parameters are applied to test data. Our ex-
ploratory data analysis showed that some of the features has
zero variance. We removed these features from the dataset
before training. Finally we have used window sizes of 5 up
to 100 to create a context for the time series data. The rear-
ranged data have passed to model training phase.

Model training and optimization of JAEC model is performed
using DEAP Library (Fortin, De Rainville, Gardner, Parizeau,
& Gagné, 2012), a Genetic Algorithms (GA) based optimiza-
tion framework. Hyper-parameters for GA evolutions are given
in Table 2. GA optimization parameters are selected manu-
ally after a few experimental runs. The hyper-parameters for
the best model is retrieved from these optimizations. We have
used different percentages of the training and test data start-
ing from the beginning of each run. This was to divide the
runs into regions, which in turn helped us to understand how
the fault was developing up in each run.

Table 2. Genetic algorithms search parameters for hyper-
parameter optimization

GA Parameter Value
Initial population size 30
Number of generations 7
Population size per generation 10
Mate probability 0.5
Mutation probability 0.5
Number of selected individuals 5
per generation

available  at
after the

IThe source code for this study will be
https://github.com/zakkum42/phme22-public
publication of this paper.

5.2. Emission Estimation

We have used the same steps as the fault classification task
with the exception that we did not perform windowing. Esti-
mation of NOx and SOx emissions were performed with XG-
Boost library (Chen & Guestrin, 2016). Hyper-parameter op-
timization was also performed. For this task, we were able
to use of the fault label for further investigating the gas emis-
sions.

5.3. Results and Discussion

Fault classification results for optimized model are given in
Table 3 for different percentages of the training data and for
full test data. ACC and F1 metrics are about the same, which
is expected as the dataset is well-balanced for each fault. Con-
fusion matrix in Figure 3 shows how ACC is increasing with
the addition of new training data. The drop in ACC from
60% to 80% of training data is negligible, and can be at-
tributed to the random initializations of the models. With
lesser data M00OOO and M2508 were confused the most, but
with increasing percentage of the training data the confusion
dropped from 21.44% to 2.7%. The other confusions have
dropped as well.

Table 3. Classification results for different training percent-
ages

Test (100%)

Train (%) | ACC F1
20 61.78 | 60.56
40 82.34 | 81.32
60 91.78 | 91.78
80 91.14 | 91.12
100 93.61 | 93.63

Experimenting with different percentages of the train and test
data gave us the scores in Table 4. Highest scores for these
experiments are achieved when the same percentage of train
and test data was used, i.e. the diagonal of the table. In the left
of the diagonal when we added new test samples the scores
increased. This was because new samples were coming from
known regions as the training data. On the other hand, in the
right of the diagonal when we added new test samples the
scores decreased. This was because new samples were com-
ing from unknown regions as the training data. One exception
to this observation is when the training data was 20% and we
increased test samples from 20% to 40% — the first row of the
data in Table 4. We suspect that the adjustments to designated
initial conditions in the very beginning of the exercise caused
fluctuations in the sensor data, whose effect has been dropped
with increasing number of samples from a similar region in
which the fault has not been fully developed yet.

Using the best classification model, we have analyzed the ef-
fect of each feature to the accuracy. Initially we used full train
and test data to calculate a base score for the model. Then we
iterated over the features: adding noise to a given feature in-
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Figure 3. Confusion matrices for varying amount of training data and full test data

Table 4. Classification results for varying amount of train and test data

Test (%) 20 a0 60 30 100
Train (%) | ACC (%) | F1 (%) | ACC (%) | F1 (%) | ACC (%) | F1 (%) | ACC (%) | F1(%) | ACC (%) | FI (%)
20 79.77 79.83 85.39 85.39 73.22 72.88 65.35 64.78 61.78 60.56
40 78.87 79.13 90.55 90.65 90.42 90.45 85.67 85.25 82.34 81.32
60 79.15 79.12 90.68 90.68 94.00 94.00 93.70 93.69 91.78 91.78
80 73.98 74.01 88.37 88.58 92.51 92.63 94.48 94.55 91.14 91.12
100 73.17 73.23 88.01 88.25 92.28 92.41 94.31 94.39 93.61 93.63
validated the features one by one, and a new score can be cal- 93.61% to 95.94%, which was 2.5% increase in the overall

culated. The difference between the base score and the new classification performance.
score gave feature’s contribution to the model. Sorted list of
contributions gave us the feature rank. The contribution of
the features are given in Figure 4. As expected, the top fea-
tures were directly related to the combustion in the cylinder
Cyl 1, such as various temperatures and emissions. Remov-
ing features with negative contribution increased ACC from

Emission estimations for NOx and SOx gases are given in
Table 5 and Table 6, respectively. When the ship engine did
not have any fault, i.e. M000O, the emissions were the lowest
as we expected. Smaller FAU and FAL scores suggested that
when we knew the ship load, we could have better estimation
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Figure 4. Contribution of each feature to the classification
accuracy

of the emissions. When we have used different estimators for
ship loads, MAE score decreased upto 50% for full dataset.
On the other hand, MAE and RMSE scores for M2508 gas
emissions were higher than M2503, which might be an indi-
cation of a complications in the burning process that results
higher emission variance during M2508 fault development.
For comparison, NOx and SOx emissions means and standard
deviations of the dataset are given in Table 7 and Table 8, re-
spectively. We observe that our MAE and RMSE scores are
comparable to their respective standard deviations.

All the model development and evaluation is done using the
simulated dataset. Unfortunately, we could not have any real-
world data that we would validate or invalidate our models
up-to now.

6. CONCLUSION

In this paper, we presented our initial analysis on MC90-
V dataset, which was constructed via Kongsberg K-Sim, a
well-known ship engine room simulator. For this study we
aimed for fault identification and classification, namely Cyl
1 injection valve nozzle wear and Cyl 1 injection valve noz-
zle clogged. For classification, we used a joint autoencoder
classifier model trained end-to-end. The optimized models
have reached an accuracy score of 93.61%. With further in-
vestigation on feature contributions to the score, and remov-
ing negative effects, we have reached upto 95.94% model
accuracy. We also investigated for NOx and SOx emission
estimations for different faults and ship loads. Our findings
suggested that if we knew the ship load, working conditions
and engine health state we could have upto 50% better esti-

mations with full dataset. We also validated our assumption
that M0O0OOO produces less emissions. We believe that the joint
autoencoder-classifier model will be useful for other time se-
ries estimation task on other domains, especially where the
operating condition plays a role in the process. The MC90-V
dataset has much more initial conditions than we have used
in this study. We will be inspecting other scenarios in the fu-
ture studies. We also plan developing a remaining useful life
estimator, which will predict when the failure will occur in
the diesel engine. Also we will analyze other types of gas
emissions from the engine.
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APPENDIX

The sensors that we used in the study is given in Table 9.

Table 9. Sensor list

Feature Description I?al::ge Feature Description Ig:llge
E02005 | ME shaft power ( to propeller ) MW P02072 | ME cyl T injection max press (pinjm) bar
E02006 | ME PTO power (to shaftgenerator) kW Q02004 | ME shaft torque kNm
E02056 | ME cyl I indicated power (IKW) kW T00002 | FO temp inlet ME degC
E03760 | Shaft power MW TOTO10 | HTFW temp inlet ME degC
G00027 | FO flow inlet ME ( net flow ) ton/h TOTIOIT | HTFW temp outlet ME degC
GO00108 | FO meter volume flow - FO supply m3/h TOT1350 | ME LO temp inlet ME degC
GO0201T | ME fuel oil consumption ton/h TOT35T | Main LO temp outlet ME degC
NO02015 | ME Speed rpm TO1601 | ME air receiver temp degC
P00023 | FO pressure at ME bar TOT1603 | ME exh receiver temp degC
POT005 | HTFW press inlet ME bar T02014 | ME mean cylinder exhaust temp degC
PO1302 | Main LO press inlet ME bar T02040 | ME cyl T exh outlet temp degC
PO1303 | Main LO press inlet ME bearings bar T02041 | ME cyl 1 exh outlet temp deviation degC
PO1600 | ME air receiver press bar T02042 | ME cyl T air inlet temp degC
P01602 | ME exh receiver press bar T02044 | ME cyl 1 oil outlet temp (piston) degC
P02055 | ME Cyl I mean effective pressure (mip) bar T04600 | TG inlet steam temp (supply line) degC
P02065 | ME cyl I combustion press (pmax) bar 700518 | ME exh SOx content ¢/kWh
P02066 | ME cyl I compression press (pcompr) bar 701970 | ME exh NOx content final ¢/kWh
P02071 | ME cyl I injection open press (pinjo) bar 702013 | ME exhaust gas smoke content %
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