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ABSTRACT

Selecting the physical property capable of representing the
health state of a machine is an important step in designing
fault detection systems. In addition, variation of the loading
condition is a challenge in deploying an industrial predictive
maintenance solution. The robustness of the physical prop-
erties to variations in loading conditions is, therefore, an im-
portant consideration. In this paper, we focus specifically on
squirrel cage induction motors and analyze the capabilities of
three-phase current and five vibration signals acquired from
different locations of the motor for the detection of Broken
Rotor Bar generated in different loads. In particular, we ex-
amine the mentioned signals in relation to the performance
of classifiers trained with them. Regarding the classifiers, we
employ deep conventional classifiers and also propose a hy-
brid classifier that utilizes contrastive loss in order to mitigate
the effect of different variations. The analysis shows that vi-
bration signals are more robust under varying load conditions.
Furthermore, the proposed hybrid classifier outperforms con-
ventional classifiers and is able to achieve an accuracy of
90.96% when using current signals and 97.69% when using
vibration signals.

1. INTRODUCTION

Being the origin of motion, electric motors play a vital role
in rotary systems. Due to the ease of operation, affordabil-
ity, and structural simplicity of induction motors, they are the
most commonly used type of electric motor in the industry
(Tsypkin, 2017; Kanović et al., 2013). Rotors in induction
motors are manufactured to be quite robust nowadays, but
there are still various faults expected, including Broken Ro-
tor Bar (BRB) (Kanović et al., 2013). BRB faults share same
starting stage, where there is simple crack in the rotor bar
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(Ferrucho-Alvarez et al., 2021). In case this fault is not diag-
nosed and the essential corrective actions are not taken, BRB
with serious severity and probably other faults are unavoid-
able (Wang et al., 2019).

In addition, the essentially of simultaneously low cost and
reliable production has resulted in a paradigm shift in rotat-
ing machinery maintenance strategy, from corrective to pre-
ventive maintenance(Yan, Gao, & Chen, 2014). One of the
preventative maintenance methods that has gained increasing
attention in recent years is data-driven methods. In order to
provide data for such methods, different physical properties
may be utilized. As current and vibration signals are two of
the most commonly used properties for BRB detection (Gritli
et al., 2012), it is crucial to understand how these two signals
can be used to detect the BRB from a data-driven perspective.

Furthermore, the induction motors, in general, have the ad-
vantage of being able to operate under variable loads(Sonowal,
Gogoi, Boruah, & Barman, 2019); however, this feature poses
a challenge to data-driven methods. This challenge originates
in the fact that every variation of loading condition would also
vary the dynamics of the machine; resulting in different sam-
ple distributions, which adversely affect the performance of
a data-driven model (Sonowal et al., 2019). Therefore, when
constructing a data-driven model, it is important to take into
account load variations. This subject comes to higher level
of importance regarding the BRB diagnosis, where most ap-
proaches require the operation of the motor on heavy load
(Ferrucho-Alvarez et al., 2021).

In this paper, we analyze the current and vibration signals to
detect BRBs. To accomplish this, we compare the accuracy
of fault prediction models trained on current and vibration
signals. By taking into account the various load variations, we
develop a classifier to mitigate these changes; subsequently,
we evaluate the performance of the classifiers trained on the
current and vibration signals. This evaluation enables us to
compare the effectiveness of current and vibration signals to
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detect BRBs.

2. BACKGROUND

2.1. Contrastive learning and Siamese Neural networks

Contrastive Learning focuses on set of learning strategies and
techniques involving learning by the comparing available sam-
ples and through their similarities and differences (Le-Khac,
Healy, & Smeaton, 2020). These methods are great approaches
to take, specifically in problems that construction of a fea-
ture space with noticeable separation of classes over the fea-
ture space. Siamese Neural Networks can be used to employ
Contrastive Learning to extract such a feature set. A Siamese
network consists of a pair of absolutely identical feature ex-
tractors that are supposed to derive embedding correspond-
ing to an arbitrary pair of inputs. The network is trained in
a manner which pairs with samples from dissimilar classes
(negative pairs) orient far apart from each other, while pairs
with samples belonging to similar classes (positive pairs) are
mapped most closely to each other. Referenced training pro-
cess would result in a fairly separable feature space in the
embedding provided by the feature extractor.

Contrastive Loss can be used to train a siamese network. Its
mathematical definition can be seen in the Equation 1. In this
equation, Y is the label of a given pair (0 for negative pairs and
1 for positive pairs), Dw is a similarity index describing the
similarity between the embeddigs of the samples present in
the pair andm is parameter known as margin. This function is
consisted of two terms; the first term is supposed to represent
observations of similar classes as closely possible, while the
second term is responsible to increase the dissimilarity of the
observations from different classes up to the highest extent
(Jadon, 2020).

ContrastiveLoss = (1−Y )
1

2
D2

w+(Y )
1

2
(max(0,m−Dw))

2

(1)

3. RELATED WORKS

Taking advantage of intelligent methods to analyze the motor
vibrations for BRB detection is a well established approach
and various studies can be found regarding this matter. For
example, in (Su, Chong, & Ravi Kumar, 2011) Artificial Neu-
ral Networks are employed to implement an induction motor
fault detection system, by analyzing vibrations of the ma-
chine. Similarly, in (Khan, Kim, & Choo, 2020) Dialated
Convolutional Neural Networks are used to detect bearing
faults in induction motors. In (Sadoughi, Ebrahimi, Moalem,
& Sadri, 2007), Artificial Neural Networks and set of fea-
tures derived from frequency spectrum of vibrations are used
to detect the BRB problem in induction motors.

Intelligent methods are widely used in the study of induction

motor current signals for fault detection purposes too. For
instance, in (Godoy, da Silva, Goedtel, Palácios, & Lopes,
2016), various intelligent methods including Artificial Neural
Networks and Support Vector Machines are employed to both
detect and classify the broken rotor bars in a three-phase in-
duction motor. In (Bessam, Menacer, Boumehraz, & Cherif,
2016), a BRB diagnosis approach is proposed where Hilbert
transform is used to extract features from stator current enve-
lope; extracted features are then fed to a Multi-layered Per-
ceptron to report the number of broken rotor bars, from zero
to two. In (Valtierra-Rodriguez et al., 2020), short-time Fourier
transform derives a time-frequency representation from mo-
tor current signals through its startup and Convolutional Neu-
ral Networks are employed to detect BRB problem.

4. COMPARISON OF CURRENTS AND VIBRATIONS FOR
BRB DETECTION

In this section, we discuss the method that we use to compare
the three-phase currents and vibrations, as describing modal-
ities of BRB problem in induction motors. We aim to eval-
uate the separability of the different induction motor health
classes from BRB point of view (including no broken rotor
bar to four broken rotor bars), based on current and vibra-
tions. Therefore, we can determine which modality is more
effective for detecting BRB. To this end, we employ conven-
tional deep neural networks initially; We train two multi-layer
perception neural networks for BRB Detection using current
and vibration signals, respectively. The results of the evalu-
ation describes the separability of different health classes in
each modality. The reason is that the classifiers are unable
to detect samples that belong to different classes but overlap
with each other. However, the overlapping of different classes
can be because of the variations in loads. Therefore, we de-
sign a hybrid classification method that is able to compensate
for load variations; Using this method, we are able to compare
vibration and current signals after the effects of variations in
load have been eliminated.

The figure 1 illustrates the proposed hybrid classification method
in order to compensate for load variations. At first, we pair
samples from different loads. Two paired samples taken from
the same classes, regardless of the loads, are considered as
a positive pair and two samples taken from different classes,
regardless of the loads, are considered as a negative pair. Us-
ing the positive and negative pairs called training pairs, we
train a Siamese neural network with Contrastive Loss. As a
result of this training, a function as feature extractor called
FE is generated. The FE maps the samples to a new embed-
ding space. In the embedding space, positive pairs will be
placed close together. It means that the samples with same
classes, regardless of their loads, will be grouped. Addition-
ally, the negative pairs will be distant from each other. As a
result, different loads will be aggregated in this embedding.
We then add a softmax layer to the FE and retrain it using the
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Figure 1. Visual demonstration of the Hybrid Classification Approach

available samples, similar to a conventional classifier. Using
the current and vibration signals we train two classifiers us-
ing hybrid approach and evaluate the results for the purpose
of comparing current and vibration signals.

5. EXPERIMENTS

5.1. Dataset

The experimental dataset for detecting and diagnosing rotor
broken bar in a three-phase induction motor is used to conduct
the comparative study that this paper aims to carry out(Treml,
Flauzino, Suetake, & Maciejewski, 2020). This dataset in-
cludes three-phase voltages, three-phase currents and vibra-
tions signals, collected from various locations of the motor, in
various loading conditions. In addition to healthy operation
of motor cases involving 1 to 4 broken rotor bars are included
in this dataset. Moreover, the dataset contains eight levels
of mechanical torques as loading conditions, from 12.5% to
100% of nominal load (4 N,m), to evaluate the effect of load
variation. In our study, we took advantage of four load levels,
including 12.5%, 50%, 62.5% and 100% of nominal load.

5.2. Data Pre-processing and Preparation Procedure

Original time domain signals in both current and vibration
modalities are split to time domain signals with lengths of
respectively 6667 and 1024 points long signals. Consecu-
tively, Fast Fourier Transform is employed to alter the time
domain observations to frequency domain records, as BRB is
easier to detect in frequency domain. For each loading con-
dition referenced previously, the training and testing splitting

process is done using random selection. Test size of 25%
is employed. Random states are preserved to assist the re-
producibility of results. Moreover, the load-specific train-
ing splits are summed up to make the mixed-load training
split. The mixed-load testing split can also be summed up,
similarly. Feature scaling, as an important step of data pre-
processing is done, using Min/Max scaling.

5.3. BRB Detection using Conventional Deep Classifiers

The first set of experiments conducted on this dataset involves
training deep classifiers on both current and vibration modal-
ities, separably. The classification problem to be solved in-
volves detecting the number of broken rotor bars, from zero
to four, given either three-phase current signals or vibrations
signals. Due to the difference in the size of concatenated
three-phase currents signals and its vibration counterparts,
networks used for each modality is different from the other. In
Table 1, the size of each network is included. Except for the
last layer in each network, which is supposed to be a Softmax
layer in multi-class classification problems, rest of the layers
in both networks employ Hyperbolic Tangent as the activa-
tion function. As a conventional loss function for multi-class
classification problems, Categorical Cross-entropy is used as
the loss function to train classification networks. Moreover,
the Adam optimizer is used to minimize the loss function dur-
ing the training process, where the learning rate is chosen to
be 0.000001 and decay is fixed as the division of learning rate
by number of epochs. For the sake of training both currents
and vibrations, 400 epochs provided well-stabilized training
procedure, therefore same value used for both of them.
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Figure 2. The results of a conventional classifier trained with
the samples from load 0.5

Figure 3. The results of a conventional classifier trained with
the samples from load 2.0

Figure 4. The results of a conventional classifier trained with
the samples from load 2.5

Figure 5. The results of a conventional classifier trained with
the samples from load 4.0

Figure 6. The results of conventional classifiers trained with
the current and vibration samples from all load

Figure 7. The results of hybrid classifier trained with the the
current and vibration samples from all load

Figure 8. The effectiveness of contrastive pre-training in
hybrid-classification approach on the improvement of mean
classification accuracies in mixed-load scenarios

The generalizability of what is learnt by classifiers on each
load over different loads is quantified by evaluating its perfor-
mance over not only the training load, but other three loads
and the mixture of them. Results obtained by three-phase cur-
rents classifiers and vibrations classifiers are gathered in the
Figures 2 to 6. To compensate for the effect of randomness,
experiments in this section are repeated over 5 trials and the
mean classification accuracy is summarized . The figure 2
shows the results of a conventional classifiers that is trained
using the samples from load 0.5. Likewise, figures 3 to 6
show the results of the classifiers that are trained using the
samples from load 2.0, 2.5, 4.0, and mixture of all loads, re-
spectively. Based on the results provided, it is clearly under-
stood that both modalities perform acceptable in solving the
classification problems, when the evaluation load is identical
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Table 1. The Structure of Network for each Modality

Modality to be used Neurons per Layer
Three-phase Currents 9999-7500-6000-4500-3000-

1500-750-500-250-50-5
Vibrations 2560-1280-640-580-512-256-

128-64-5

to the training load, however, both modalities experience se-
vere decrease in the classification accuracy when classifiers
are evaluated on loads, rather than training load. It is also ob-
vious that in most cases, the farther evaluation load is from
training load, the more drastic would be the referenced de-
crease. In addition to those, vibrations offers higher classi-
fication performance in mixed-load scenario, in comparison
with the currents.

5.4. Hybrid Classification Approach to Overcome Data
Drift due to Load Variation

Based on the results available in the Figures 2 to 5, conven-
tional classifiers fail to perform well in mixed load scenarios,
no matter which modality is used. Therefore, we evaluate
the effectiveness of the proposed hybrid classifier; it means
we evaluate the effectiveness of a Contrastive Representation
Learning pre-training step to make the feature extraction sec-
tion(classification network, excluding the softmax layer at its
end) of the classification networks, to derive a more robust
feature space to load variation. To this end, we use 25% of
the training data available for this step. Networks employed
in this section follow the exact same architecture of the net-
works, discussed in the previous section. Number of positive
and negative pairs used during the pre-training is kept equal
to preserve the pre-training step a balanced training process.
Moreover, the number of pairs per each observation in train-
ing set used during the pre-training are found by increasing
the number of pairs until there is no significant improvement
in validation accuracy by increasing the number of pairs, in
which 10 and 4 were found as optimum number of pairs for
vibrations and currents, respectively. The loss function em-
ployed during the pre-training is Contrastive Loss and Adam
optimizer is used as the optimizer. Learning rate is fixed
at 0.00001 and 100 epochs provided sufficient iterations of
training process. Similar to previous experiments, the divi-
sion of learning rate by number of epochs, is used as the
decay parameter of the optimizer. Afterwards to the Con-
trastive Representation Learning pre-training, a softmax layer
is added to the feature extractor and the whole network (fea-
ture extractor and the softmax layer) is post-trained, using the
remaining 75% of the training data. The post-training proce-
dure of the whole network involving the addition of softmax
layer and retraining of the whole network, employs exactly
the same set of parameters used during the previous experi-
ments. Similar to the results from previous experiments, these
experiments are conducted over 5 trials to exclude the effect

of randomness through training process.

According to the Figure 7, contrastive pre-training improves
the classification performance significantly for all loads. In
addition, the obtained accuracies per load are almost iden-
tical; it means that the hybrid classifier is able to aggregate
the different loads and consequently makes higher levels of
classification accuracy achievable. In addition, similar to the
previous set of experiments, still vibrations outperforms cur-
rents in the classification performance. To be able to compare
the the vibration and current signals using both conventional
and hybrid classifiers, figure 8 summarizes the results. We
can clearly see that vibration signals can be more effective
for detecting the BRBs.

6. CONCLUSION

This paper studies the robustness of currents and vibrations
towards mechanical load variation, for Broken Rotor Bar prob-
lem detection in squirrel cage induction motors. Our exper-
iments proved that vibrations is less sensitive towards me-
chanical load variation. Moreover, we assessed the effec-
tiveness of a contrastive representation learning pre-training
in the reconstruction of a feature set in which data drift due
to load variation is compensated. Contrastive learning-based
pre-training offered significant improvement in the classifica-
tion accuracy in both modalities. The superiority of vibra-
tions over current in BRB detection is still noticeable, even
afterwards of the employment of the pre-training step. Com-
parison of the robustness of current and vibrations towards
mechanical load variation in the detection of other faults of
induction motors can be considered as the subject of future
work.
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