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ABSTRACT

Machine Learning (ML), in particular classification with deep
neural nets, can be applied to a variety of industrial tasks.
It can augment established methods for controlling manufac-
turing processes such as statistical process control (SPC) to
detect non-obvious patterns in high-dimensional input data.
However, due to the widespread issue of model miscalibra-
tion in neural networks, there is a need for estimating the
predictive uncertainty of these models. Many established ap-
proaches for uncertainty estimation output scores that are dif-
ficult to put into actionable insight. We therefore introduce
the concept of certainty groups which distinguish the predic-
tions of a neural network into the normal group and the cer-
tainty group. The certainty group contains only predictions
with a very high accuracy that can be set up to 100%. We
present an approach to compute these certainty groups and
demonstrate our approach on two datasets from a PHM set-
ting.

1. INTRODUCTION

Modern production is a complex interaction of different parts
and optimal usage of available production resources is hard
to accomplish. Data analytics is used for decades to support
decision making and gained additional attention in the last
years through machine learning with deep neural networks
(DNN). The potential of DNN-based classification is increas-
ingly being explored in the context of prognostics and health
management (PHM). There exists a wide variety of promis-
ing applications, including the ideal timing of maintenance
intervals (predictive maintenance) or the prediction of health
indices of the production line itself or of the products. De-
spite the availability of the technology, these tools are still
not commonly used in the manufacturing industry. Besides
the slow adoption of digitization in the manufacturing indus-
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try in general, there are further reservations about machine
learning systems in critical applications like quality inspec-
tion. One problem are difficulties in understanding and judg-
ing the model’s outputs, in particular, if they represent a prob-
ability distribution over a finite number of classes, as returned
by a softmax or sigmoid activation. For neural networks, the
widespread issue of model miscalibration (Guo, Pleiss, Sun,
& Weinberger, 2017) leads to predictions in which the model
assigns a high probability score to a wrong class. This makes
it hard to trust the predictions of such a model. Even if a
predictive ML model errs on some cases, it should provide
a reliable estimate of its uncertainty in order to mitigate po-
tential negative impact of false predictions. In a production
system, this property could be used for Hybrid Quality In-
spection (Ismail, Mostafa, & El-assal, 2021), in which auto-
mated quality inspection of the products is done only for a
subset of all product instances — those considered difficult to
judge would still undergo manual, i.e., human-operated tests.
As stated, the ability of a neural network to express its pre-
dictive uncertainty is crucial for real world application. In the
last few years, increasing attention has been paid to the field
of uncertainty estimation in neural networks (an overview is
given in Section 1.1). There exist several different approaches
to uncertainty estimation in neural networks, and many of
them share a common principle. The predictive uncertainty
is often expressed by several metrics (usually mean and stan-
dard deviation) that are calculated on a sample of predictions
done by slightly different estimators. These metrics however
are hard to put into actionable insight as they are still rela-
tively abstract. From the point of view of user-friendliness,
a clear and concise classification of whether a prediction is
based on a high or low uncertainty would be highly desirable.
This is especially important in situations in which the esti-
mated uncertainty of a prediction has to be converted into a
binary decision, e.g., by a human worker in a production line.
Additionally, many methods for estimating the predictive un-
certainty in neural networks tend to involve a very large theo-
retical background (e.g., fully Bayesian methods involving a
meticulous choice of priors) that further complicates the ap-
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plication of these methods in applied machine learning appli-
cations such as predicting the health status of equipment or
the quality of products. Thus, ease of use and manageability
were further criteria in the development of our approach.

We therefore propose the concept of certainty groups which
divides the predictions of a neural network into the normal
group and the certainty group. The certainty group contains
only predictions (and, consequently, instances) with a very
high accuracy that can be set up to 100%. We assume that
these instances are handled by an autonomous ML-system
sufficiently well and don’t require further action (e.g., estab-
lished quality assurance methods). However, the other cases
are potentially unsafe to be fully processed by an ML system
and need to be more thoroughly examined. These instances
represent the normal group, in which the predictions behave
like usual, with them being correct with a certain accuracy.
This leads to a division of the data set in different levels of
model confidence. In the underlying paper, we present an ap-
proach based on ensembles to compute these certainty groups
by measuring the disagreement between the ensemble mem-
bers and sorting it based on a threshold value. We validate our
approach using two datasets from a PHM setting, in which the
method generates groups of samples that contain 26-51% of
all instances with very few mispredictions compared to base-
line models and approaches. We further show that our ap-
proach is highly flexible as it allows to configure the quality
of the predictions contained in the certainty group.

1.1. Related Work

Due to the renewed interest in deep learning after break-
throughs in image classification or reinforcement learning,
neural networks have received a lot of attention in the last
5 to 10 years. Therefore it’s not surprising that there exist
many recent studies that cover the application of neural net-
works in PHM related tasks like remaining useful life (RUL)
prediction or predictive maintenance in general. Comprehen-
sive surveys and reviews are provided in the works of (Zhao
et al., 2016) and (Zhang et al., 2019). (Harshavardhanan &
Nene, 2020) outlines why the consideration of uncertainty is
beneficial when making predictions in a PHM related setting
by explaining common sources of uncertainty and giving an
overview on how to incorporate uncertainty into PHM sys-
tems. The area of uncertainty estimation in neural networks
has been actively researched in the last couple of years. The
first branch of works (see, e.g., (Guo et al., 2017; Tomani &
Buettner, 2021; Naeini, Cooper, & Hauskrecht, 2015)) tries
to directly solve the issue of miscalibration, either by post-
processing a trained model or already during training (e.g.
through additional loss functions). The second branch is based
on the idea of ensembles, which are an established approach
for estimating uncertainty in general and for obtaining more
robust predictions (Lee, Purushwalkam, Cogswell, Crandall,
& Batra, 2015; Wen, Tran, & Ba, 2020; Havasi et al., 2020).

These works aim to further develop classical ensembling by
increasing the accuracy of the ensemble prediction or improv-
ing the computational performance, which they achieve by
different types and degrees of parameter sharing between the
ensemble members. The works of (Daxberger et al., 2021)
and (Liu et al., 2020) are examples for the integration of
Bayesian methods in neural networks. (Daxberger et al., 2021)
suggests an easy to use approach for converting conventional
neural networks to bayesian neural networks by adding laplace
approximation to the final layer, while (Liu et al., 2020) a-
chieves distance aware outputs by adding a gaussian process
to the network. Additionally, in the last years a variety of
frameworks for uncertainty estimation were published. These
frameworks cover a wide scope, ranging from implementa-
tions of neural network based approaches like Deep Ensem-
bles (e.g. in (Weiss & Tonella, 2021)) to fully fledged prob-
abilistic programming languages (Tehrani et al., 2020; Sal-
vatier, Wiecki, & Fonnesbeck, 2016; Bingham et al., 2018;
Phan, Pradhan, & Jankowiak, 2019) The mentioned works
provide approaches for uncertainty estimation well-founded
in probability theory — which also requires the selection of
proper priors and sampling or variational inference for ap-
proximation. Our approach draws upon these methods and
adds an additional layer of abstraction in order to improve the
usability of uncertainty estimates.

2. APPROACH

As mentioned in the introduction, our approach is mainly mo-
tivated by creating an easy-to-use method with understand-
able outputs for practitioners in manufacturing. The targeted
application area of our approach are production lines in which
workers will have to work with the recommendations of a ML
system. In the scope of this paper, we focus on binary classi-
fication problems — “OK” vs. “NOK” for a product, or “Ma-
chine defect” vs. “Machine intact” for health state estima-
tion. We feel that for this use case the output of a ML system
should be as easy as possible to understand to create trans-
parent decision criteria and to make the workers more com-
fortable working with such a system. That’s why we decided
to provide again a binary decision whether a prediction is af-
flicted with uncertainty or whether the system is very certain
about it. For a given instance x, we then have to first decide
whether it falls into the certainty group or not and, second, if
it belongs to class 0 or 1. The latter prediction is trusted more
if  belongs to the certainty group.

2.1. Foundations

In the following, we consider a neural network model m hav-
ing the form f,,(x;6) where 6 refers to the parameters that
are optimized with respect to data set D = (x;,y;)N; to
obtain a point estimate (i.e., empirical risk minimization or
maximum likelihood estimation). The output is assumed to
be normalized, i.e., it is a real number that represents the
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probability that = belongs to class 1:

ply =1]x) = fm(z;0) €]

In the case of neural networks, this is the direct output e.g.
of a sigmoid or softmax layer. For example, f,,(x;6) = 0.8
represents estimating a probability of 80 % for class 1 and
20 % for class 0. In accordance with the literature (Guo
et al., 2017), we refer to these normalized raw score out-
puts as confidences. The rounded confidences, i.e., y = 0
if fn(z;0) < 0.5 and y = 1 otherwise, are called the predic-
tions. A mismatch between a model’s output confidence and
the true correctness likelihood is called miscalibration (Guo
et al., 2017). For example, miscalibration occurs if a model
only reaches 60% accuracy on all test samples that it pre-
dicted to be 90% sure. The evaluation of a neural network
m, i.e., calculating f,,(x; @) for a particular input x and fixed
parameters 0, is called inference (or, often, simply a forward
pass) to distinguish the training from the productive stage.

In addition, we assume a strategy for uncertainty estimation
Cm > 0 where ¢, (x | fm,6) = 0 means absolute certainty
that p(y = 1 | «) is indeed f,,(x;8) and larger values in-
dicate higher uncertainty. For example, given an ensemble
of models fy,, that are derived from m, (., could refer to
the sample standard deviation of the confidences f,,(x;0)
or other dispersion metrics. Other measures (,,, could be re-
trieved from a Bayesian approach (i.e., having estimated a
posterior over the parameter space p(f | D)) as the variance
of the posterior predictive distribution

p<y=1|D,x>=/p<y=1\&Dw)p(ew,x)de @
©

which might not be tractable but only approximated via sam-
pling or variational methods. In principle, our approach tar-
gets both point estimates with sample statistics as well as
Bayesian techniques — although the high computational costs
of Bayesian inference leads us to turn to practically applica-
ble sample-based methods.

2.2. Certainty Groups: A general definition

Our goal is to define certainty groups that isolate the instances
for which the model’s predictions are very reliable from the
rest. In a manufacturing setting, these would be the parts that
are definitely detected as scrap or good. Informally speaking,
the certainty group of a model is created by an uncertainty
estimator and a predicate that decides whether the estimated
uncertainty of an instance’s prediction is low enough. The in-
stances whose estimated uncertainty is too high to be in the
Certainty Group are contained in the normal group. They are
usually significantly harder to classify and, thus, the model’s
predictions become less accurate. Returning to the above ex-
ample, these would be the parts that have to undergo further
testing and human intervention — as the model is not capable

of determining their state. This leads to a binary distinction of
the confidence levels in the underlying neural network. Fig-
ure 1 illustrates this concept.

In order to allow for a wide variety of uncertainty metrics
Cm and to allow future extensions, we decided to define the
Certainty Group of a model in a very open manner.

The certainty group C'G of a model m with respect to data set
D is then defined as follows:

CG(m, D) = {(z,y) € D | ¢ accepts (m(z | fm,0)} (3)

where ¢ is a boolean predicate (called the certainty crite-
rion) that can consist of the operators A (AND), V (OR), =
(NOT), <, <, > and > . The specific predicate depends on
the chosen approach to estimate the model’s uncertainty and
is further described later in this section.

2.3. Possible uncertainty measures for certainty groups

We tested two principles for computing certainty groups from
model confidences and predictions. The first, main, approach
uses (;, along with some thresholding for some model m to
partition the instances into normal and certainty group. Along
the way, some methods require to (temporarily) generate a
finite number of models m; derived from m (e.g., via dif-
ferent dropout masks) to calculate (,, based on the confi-
dences and predictions retained from the individual m;. We
call these methods sample-based. The second, baseline, ap-
proach simply sets (,,, = fmn, i.€., it uses the raw confidences
as an indicator for certainty —e.g., interpreting a model output
fm(x;0) = 0.99 to truly be 99% sure.

An uncertainty estimator can obtain the prediction y and stan-
dard deviation o for an instance x as follows (note that this
requires a model that implements a strategy for estimating un-
certainty through multiple model outputs): First, it obtains n
samples of the model’s prediction for the instance, that can be
formally described as py(§ | x).

A sample-based uncertainty estimator first generates n sam-
ples, i.e., model confidences ( fp, (2;0));c(1,...,n} for a given
instance z, e.g., [0.85,0.9,0.92, .. ].

Then it calculates the sample mean f and sample standard
deviation s on these n sampled confidences and calculates
the final class prediction y based on the sampled confidences
by rounding f. Finally, the decision whether this instance
and prediction is contained in the certainty group is made
by comparing s to an empirically determined threshold hy-
perparameter 7. Referring to equation 3, this amounts to a
straightforward predicate . In this case, the prediction is part
of CG if

s < T “4)

It is possible to calculate f and s based on the individual mod-
els’ predictions (rounded confidence values) as well, but the
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Figure 1. The predictions of a neural network m are evaluated in their uncertainty by an uncertainty measure (,,. If a prediction
has a low enough uncertainty, it is assigned to the so called Certainty Group. The less-certain predictions of m are contained in
the Normal Group. This usually leads to a significantly higher accuracy in the Certainty Group than in the Normal Group.

usage of raw confidence values allows for a much finer res-
olution w.r.t. ¢, which we found to lead to larger certainty
group sizes in our experiments, i.e., it was a more distinctive
certainty criterion.

The introduction of the additional hyperparameter T allows
for flexibility in terms of predictive accuracy in the certainty
group. While we were initially aiming towards an accuracy
of 100% in the certainty group, it’s easily possible to lower
the requirements for accuracy if the application allows it to
get larger certainty group sizes.

The open definition of certainty groups in equation 3 allows
us to define the baseline that only relies on the raw confi-
dences. The most naive approach for computing certainty
groups is to accept the confidence margins around O and 1
as safe instances and therefore include instances with model
confidences in these margins in the certainty group. Formally
speaking, an instance x is in CG for model m if

fm(l‘; 9) < Thower V fm(m; 0) > Tupper (5)

where T}, and T}, are two thresholds that define the bor-
der of the lower and upper decision margin.

2.4. Specific approaches to obtain ensembles from models

As stated in section 1.1, there is a wide variety of approaches
that can be used either on top of existing neural networks or
directly included in the architecture. From these approaches
we chose a Dropout approach according to (Gal & Ghahra-
mani, 2016) and multi-input multi-output configurations (MI-
MO) by (Havasi et al., 2020) as they fit our requirement for
ease of use and manageability very well. In the following, we

describe both approaches and discuss them to further justify
our decision for these two approaches.

Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhut-

dinov, 2014) is a widely used regularizer in neural networks
and is used to make a neural network more robust against
overfitting the training data set. The idea of this approach is to
randomly drop connections in a neural network with a certain
probability, which leads to a slightly different network config-
uration in each inference step (i.e., forward pass or evaluation
of the network). Gal et al. describe this mathematically by
sampling binary variables (i.e., from a Bernoulli distribution)
for every unit in the neural network with probability p; for
value 1 in each layer L; except for the output layer. If the
corresponding binary variable takes value 0, that particular
unit is dropped by setting it to zero. Usually, dropout is only
activated during training and deactivated in the test or deploy-
ment stage (once training finished). Gal et al. however sug-
gested the activation of dropout during the test or deployment
stages to enable a Bayesian approximation without the need
for computationally expensive implementations of Bayesian
neural networks. With activated dropout during model in-
ference, the model’s uncertainty can be estimated by doing
n distinct inference passes — each corresponding to a differ-
ent network configuration of deactivated connections. That
way, we can obtain a sample-based uncertainty estimator ¢, .
Mathematically speaking, the goal is to calculate the predic-
tive distribution p(y | , D) for a new input point 2* given the
data set D. As this predictive distribution cannot be obtained
analytically, it is approximated by the approximate predictive
distribution ¢(y | «, D). The authors show that the expected
value of this distribution (serving as the model’s confidence)
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Figure 2. Visualization of MC Dropout with T' = 3 infer-
ence passes in a network with 2 layers where U,* describes
the ¢-th unit in layer n. (b), (c) and (d) show three different
realizations of the base architecture shown in (a).

can be estimated by

Q

1 ¢ : :
Bo(fm) % — > fi (2 Wi, . W) (©)
i=1

where m is a neural network with L layers and {W7, .. W¢ 7 .
are the random variables representing the trainable parame-
ters 6 of a neural network with dropout. These random vari-
ables contain the actual dropout mask on the neural network’s
parameters. The authors refer to this Monte Carlo estimate as
MC Dropout. As the activation of dropout during inference
results in slightly different model architectures at each infer-
ence pass, it can be interpreted as an ensemble with 7 mem-
bers (fm, ), when calculating n inference passes. This pro-
cess is illustrated in Figure 2. We chose this approach because
dropout is already widely used and it is convenient to obtain
an uncertainty estimate from this approach. Frameworks like
PyTorch or Tensorflow allow an activation of dropout during
the inference phase, which greatly reduces the required im-
plementation effort. The most significant downside of this
approach is the slow inference speed. As we need to com-
pute n inference passes to create an ensemble with size n
(and generally require large enough n to acquire reliable esti-
mates), the approach is approximately n times slower than ap-
proaches that require only one inference pass. Our approach
builds upon this method by implementing an actual decision
rule for when to accept a prediction as “certain” and when as
“uncertain”. Gal et al. roughly propose the need for such a

Ty pyr = 1) = fm([21, 72, 25]; 0)[1]
T2 Network —— p(y2 = 1) = f:n([xl,xzw?)]; 0)[2]
z3 plys = 1) = fn([1, 72, 25]; 0)[3]

(a) In the train phase the network input consists of a concatenation
of n instances. The network outputs n concatenated confidences
corresponding to the different input instances.

' fn([&, 2, 2); 0)[1]

! —| Network —— fm([$/736'733/]§ 9)[2]

$/ fm([‘rlvmlvwl];e)[g]

(b) In the test phase the network input consists of n copies of an un-
seen input instance x. The network outputs n different confidences
for the input instance.

Figure 3. [lustration of the MIMO configuration proposed by
Havasi et al.

decision rule in the context of classification.

Similar to MC dropout, the usage of MIMO configurations
from Havasi et al. aims towards the implicit creation of an
ensemble. The foundation of this approach is given by the
results of works covering sparsity in modern neural networks
(Frankle & Carbin, 2018; Molchanov, Tyree, Karras, Aila, &
Kautz, 2016; Zhu & Gupta, 2017). These works show that
modern neural networks often are overparametrized for their
tasks, i.e. they often could solve the task multiple times in
terms of capacity. Havasi et al. use this assumption to con-
currently train multiple independent subnetworks within one
single larger network using the proposed multi-input, multi-
output (MIMO) configuration. For this approach to work,
only two small changes have to be made to an existing model
architecture. In contrast to the normally used model inputs
that consist of a single instance, n input instances are con-
catenated into one single instance. In this case, n represents
the number of ensemble members contained inside the net-
work. This can be formally described in the following way.
Given a data set D = (z;,y;), with size N where z; is an
instance with corresponding label y;. Usually, the model out-
put is given by f,,,(z;;6). In the MIMO configuration how-
ever, the model input is given by a concatenation of n inputs
{z1,..., 2, }. The model output does not consist of only one
so called head, but of n heads that output n confidences as a
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vector fm:

—

fm:
= (fm, (21, 20]30)5 oy fon, ([0, 20 )5 0))

In the training phase, the concatenated input instance consists
of different instances, which leads to the creation of indepen-
dent subnetworks that are contained inside the large network.
During test time or inference in the deployment stage, the
concatenated input instance is created by duplicating one un-
seen test input instance z’ n times, so x; = ... =z, = .
This leads to n output confidences for the same instance.
This way, one can obtain an ensemble with n members in
only one inference pass, assuming that the overall model has
enough capacity (i.e., parameters 6) to solve the given task
n times. With respect to our sample-based uncertainty met-
rics, we consider the components of the output vector as indi-
vidual derived confidences, i.e., fr, (% 0)[i]= fm, (z;6). The
concept is illustrated in Figure 3. The authors propose to ob-
tain robust predictions by using the mean confidence of the
ensemble members as a combined output. We extend this by
calculating a dispersion metric from the individual outputs
and using it as a measurement of uncertainty and including it
into decision making. The biggest advantage of this method
is the fast inference speed as it is n times faster than an im-
plicitly computed ensemble of the same size using dropout
as the necessary modifications to the model architecture do
not affect the overall number of computations in a meaning-
ful way. However, in contrast to dropout, we cannot increase
the ensemble to any desired size as the maximum possible
ensemble size is bound by the model capacity and has to be
determined empirically.

(N

3. EXPERIMENTS

In this section, we evaluate the capabilities of our concept us-
ing the three methods presented in section 2.3. We performed
experiments to answer the following questions:

1. Which method produces large and reliable certainty
groups?

2. How does the target accuracy for Certainty Groups affect
their size?

3. Do different methods detect the same instances in Cer-
tainty Groups?

3.1. Experimental Setup

Our approach is evaluated using two data sets originating
from PHM settings: the FordA data set obtained from (Bagnall,
2022) and the AI4I predictive maintenance dataset (Matzka,
2020) obtained from (Dua & Graff, 2017) . The FordA dataset
consists of 3601 train and 1320 test instances, each consist-
ing of 500 sensor features. The goal is to classify whether
the sensor measurement indicates a problem in an automo-

tive subsystem or not. The AI4I Dataset is from synthetic
origin an aims to reflect real predictive maintenance data. It
consists of 10 000 data points with 6 Features (5 numeric, 1
categorical) and a label. Failures can result from five inde-
pendent failure modes. As this dataset has a very imbalanced
class distribution, we used SMOTE (Chawla, Bowyer, Hall,
& Kegelmeyer, 2002) to overcome this issue during training.
The experiments were performed on a system with a 8-Core
CPU, a NVIDIA RTX 2080 Super GPU and 32GB RAM.
For all experiments the same fixed random seed was chosen
to ensure reproducibility. The code for these experiments is
provided in (CertaintyGroups, 2022).

For each data set, we first developed two architectures, one
for estimating uncertainty using MC dropout and one with
a MIMO configuration. The dropout model was addition-
ally used for the baseline approach in which the raw con-
fidences are used as a certainty criterion. For these exper-
iments, dropout was not active during inference. We then
trained and evaluated both model architectures while perform-
ing hyperparameter optimization with respect to the model
parameters (hidden dimensions, configurations of the convo-
lutional layers) and training parameters (number of epochs,
batch size, learning rate). Note that at this stage, the addi-
tional hyperparameter T is not yet optimized because it is
not yet used. After having found a set of well-performing
model hyperparameters, we started to optimize T by repeat-
edly computing certainty groups until we were satisfied with
the predictive accuracy in the certainty groups. We then eval-
uated both the predictive performance and the certainty group
behavior on a held-out test set.

The model architectures for each data set are based on sim-
ilar principles. For both approaches, we tested fully con-
nected and convolutional architectures. The networks are 4
to 7 layers deep. The CNN approach is built like a LeNet-
Style CNN (LeCun, Bottou, Bengio, & Haffner, 1998) with
a feature extraction module built from convolutional layers at
the beginning of the network and a final classification stage
at the end of the network. In contrast to image classifica-
tion, we use 1D-Convolutions as our problems only consist
of 1D Data (e.g. sensor readings). Depending on the data set,
minor changes to the internal dimensions of the layers were
necessary. The main differences between the architectures
for the dropout and the MIMO approach are dropout layers
and reshape/concatenation operations before the first layer.
These differences can be easily built into the base architec-
tures. During the development of the model architectures,
we followed the principles and goals stated in section 1. We
therefore aimed to use architectures that are well manageable,
which is the reason why we have refrained from using larger
architectures. Figures 4 and 5 illustrate implementations for
both approaches. Table 1 lists the architecture type per data
set we chose for the evaluation. It can be seen that the fully
connected architectures were used for the problem with fewer
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Table 1. Used architecture types per dataset and approach for uncertainty estimation.

Dataset | Dropout Model | MIMO Model
Al4l Fully Connected | Fully Connected

FordA Convolutional Convolutional

input features. Havasi et al. suggested 2 or 4 as an optimal
number of subnetworks in a MIMO configuration. In our ex-
periments with less complex datasets, we found that 16 (AI41)
and 32 (FordA) subnetworks lead to optimal results.

3.2. Results

As a first step and to be able to judge the baseline model per-
formance, we evaluated the predictive accuracy of the differ-
ent models over the whole test set without partitioning them
into normal and certainty group. As the AI4l dataset is not
perfectly balanced, we additionally used balanced accuracy
(BA) as a metric. Balanced accuracy is especially useful with
imbalanced datasets in which a zero-rule classifier can lead to
very high accuracy scores. In case of binary classification, it
is defined as following:

_ Sensitivity + Specificity

BA 5

®)

The accuracy and balanced accuracy scores for each dataset
and architecture are shown in Table 2.  For the FordA
datasets we were able to achieve good accuracies well above
90%. On the AI4I dataset we achieved 84.0% and 80.74% ac-
curacy. It was the hardest to train and showed fragile training
behaviour, which may be caused by its low number of fea-
tures. Note that we did not use the ensembling capabilities of
the dropout and MIMO models during the evaluation of the
predictive performance as this was not our main goal.

3.2.1. The 100% accuracy requirement for CGs

This section is dedicated to answer the first research question:
Which method produces large and reliable certainty groups?
For these experiments, we optimized the hyperparameter 7
for the dropout and the MIMO architectures w.r.t. maximum
predictive accuracy in the certainty group. To accomplish
this goal, we chose values for T so that the certainty group
accuracy on a validation set was 100%. The chosen values
for T, were then evaluated on a dedicated test set. The re-
sults of these experiments can be found in tables 3 and 4. A
certainty group size of X% means that X% of all instances-
prediction pairs fulfill the certainty criterion and thus can be
seen as “safe”. We do not give the balanced accuracy scores
in this case, as this metric looses its expresiveness when very
few mispredictions (1-2 wrong predictions versus hundreds
of correct) occur. Our concept was able to extract 26.30%
to 50.61% of all predictions, with them having an accuracy

Page 300

Conv 1D 1 + MaxPool
Channels in/out: 1/32

Dropout

i

Conv 1D 2 + MaxPool
Channels in/out: 32/64

Dropout

I%

Conv 1D 3 + MaxPool
Channels in/out: 64/128

Dropout

I%

Conv 1D 4 + MaxPool

Channels in/out: 128/256

Conv 1D 1 + MaxPool
Channels in/out: 1/32

I

Conv 1D 2 + MaxPool
Channels in/out: 32/64

|

Dropout

i

Fully Connected 1
Flat features x256

Dropout

i

Fully Connected 2
256128

Dropout

I%

Fully Connected 3
128x1

(a) Dropout

Conv 1D 3 + MaxPool
Channels in/out: 64/128

I

Conv 1D 4 + MaxPool
Channels in/out: 128/256

Fully Connected 1
Flat Features x 1024

I

Fully Connected 2
1024 %256

I

Fully Connected 3
256 x M

(b) MIMO

Figure 4. CNN based architectures for both approaches.




Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN — 978-1-936263-36-3

Table 2. Accuracies of the models used for the Certainty Group Computation

Dataset Dropout Model
Al4l Acc.: 84.0%; BA 87.06%
FordA | Acc.: 91.66%; BA: 91.73%

MIMO Model
Acc.: 80.74%; BA: 79.13%
Acc.: 93.06%; BA: 93.02%

Table 3. Certainty group sizes on the test set when tuned to 100% accuracy on the validation set. If no accuracy score is
presented there were no mispredictions

Dataset Dropout Model MIMO Model Confidence
AT41 26.3% 47.1% with Acc. 99.78% 42.2 %
FordA | 45.30% with Acc. 99.66% | 50.61% with Acc. 99.25% | 54.69% with Acc. 98.61%
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Figure 5. Fully connected architectures for both approaches.

score of 99.25% to 100.0%. It can be seen that the targeted ac-
curacy of 100% in the certainty group is not always achieved.
Especially the MIMO models were not able to translate this
accuracy from the validation set to the test set. If perfect
predictions in the certainty group are a strict requirement, a
more conservatively chosen value for 75 may be necessary.
On all data sets it can be seen that the corresponding normal
groups have a clearly worse predictive accuracy. For com-
parison with the dropout and MIMO approaches, we used the
raw confidences of the dropout architecture to compute cer-
tainty groups by only accepting predictions with a confidence
> 0.99 or < 0.01 into the certainty group. We chose these
values for T}, and T,,,., because we saw them as a natu-
ral choice for viewing predictions as “safe” if no uncertainty
estimation strategy is implemented. Using this method, our
concept extracted 42.2% and 54.69% of all predictions, with
them having an accuracy score of 98.61% and 100.0%. It
outperformed the dropout approach on both datasets and was
able to outperform the MIMO approach on the FordA dataset,
however with a slightly lower accuracy. In section 4.1 we take
a closer look at this result.

3.2.2. The 98% accuracy requirement for CGs

To demonstrate the flexibility of our approach, we performed
additional experiments in which we tuned 7 on an already
trained model for ca. 98.0%-98.5% accuracy in the certainty
group. For the confidence approach, we tuned the margin
thresholds T}, and T,,,.. until the desired accuracy was
reached. This was done to answer the question of how does
the target accuracy for Certainty Groups affect their size.
It is especially interesting for use cases that don’t require
a maximum amount of certainty. The results of these ex-
periments can be found in Table 5. It can be seen that the
certainty groups contain 50.6% to 83.40% of all instances.
These predictions have accuracy scores ranging from 96.7%
up to 98.33%. With more instances and false predictions in
the certainty group, we added balanced accuracy scores for
these experiments to put the accuracy scores into perspective.
This is important to interpret the MIMO model’s performance
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Table 4. Corresponding Sizes and test set accuracies of the normal groups to the certainty groups from Table 3.

Dataset Dropout Model
Al41 73.7%, Acc.: 76.11%
FordA | 54.70%, Acc. 87.81%

MIMO Model
52.8%, Acc. 70.88%
49.39%, Acc. 88.19%

Confidence
57.8%, Acc.: 72.31%
45.3%, Acc.: 83.27%

Table 5. Certainty Group Sizes on the test set when tuned to ca. 98% Accuracy on the validation set.

Dataset Dropout Model
AT41 50.60%, Acc. 98.22%, BA 99.09%
FordA | 75.60%, Acc. 97.99%, BA 97.99%

MIMO Model
56.49%, Acc. 98.93%, BA 74.73%
83.40%, Acc. 96.73%, BA 96.73%

Confidence
78.0%, Acc. 98.33%, BA 95.37%
68.78%, Acc. 97.57%, BA 97.44%

Al4I data set In this case, the approach was able to extract
large portions of the predictions into the certainty group, but
showed flawed predictive performance w.r.t one data set class.
In these experiments the naive confidence approach behaved
slightly different compared to the experiments in which we
aimed towards 100.0% accuracy in the certainty group. While
it previously performed best on the FordA data set, it now
performs worst. On the AI4I data set however the confidence
approach was able to outperform the other approaches by a
significant margin. The dropout approach was always able to
keep both the balanced and the standard accuracy score on a
similar level and performed as desired or even better.

3.2.3. Evaluation of intersection

We performed the following experiments because we were
interested in the agreement of the different approaches, i.e.
do different methods detect the same instances in Certainty
Groups? That would be an indication that some instances
are inherently harder or easier to predict, perhaps due to the
available measurements, quality of data, and non-ambiguity.
A real-world example would be the difference in “hardness”
between a very sharp, high-resolution image and a blurry,
very low-resolution image. We assumed that if an instance
is placed into the certainty groups by each approach, it re-
ally must be a certain prediction and an easy-to-classify in-
stance. Another perspective on this assumption is the dif-
ference between aleatoric and epistemic uncertainty. While
epistemic uncertainty is a result of insufficient model capa-
bility, aleatoric uncertainty arises directly from randomness
and/or variablities of the underlying data source (Murphy,
2022). If instances are accepted to the certainty group by mul-
tiple approaches, they have a low aleatoric uncertainty. For
quantifying the agreement between the different approaches,
we developed a metric that measures how many of the in-
stances in the smallest certainty group are contained in the
common certainty group consisting of instances that have been
accepted by every approach. The metric measures the ratio of
the overlap of all certainty groups and the size of the smallest
certainty group. We assumed that it’s the best case if all ac-
cepted instances of a weaker approach (w.r.t. the maximum

possible certainty group size) are part of the overlap of all
certainty groups. We call this metric intersection and it is
defined as following:

Overlap

‘ min(CGDmpouh CGMIM07 CGCUnﬁdence” (9)
The described best case scenario leads to an intersection score
of 100%. The intersection results for all two datasets are
shown in Table 6. The results were calculated using the re-
sults of the 100% target experiments. It can be seen that in
all two datasets the smallest certainty group is contained to
at least 75% in the overlap group. This suggests that the
combination of established approaches for uncertainty esti-
mation and the concept of certainty groups is able to extract
instances from an underlying dataset that are inherently easier
and clearer to predict than other instances.

4. DISCUSSION
4.1. Analysis

A conclusive assessment of all the approaches evaluated is
difficult to make as the approaches show different strengths
and weaknesses. If we only consider the sizes of the cer-
tainty groups, the MIMO approach was the best performing
although it is outperformed by the confidence approach on
one data set both in the 100% and 98% target experiments.
Despite showing the greatest potential in our initial experi-
ments, the MIMO approach had some problems when taking
all results into account. It was the only approach that was not
able to produce certainty groups with no mispredictions on a
held-out test set when tuned on a validation set. Additionally,
in the 98% target certainty group the balanced accuracy was
not good in one of the two datasets. Its greatest asset in our
experiment was the extremely fast execution speed as it only
requires one inference pass and its good performance in the
100% target certainty group.

The fact that the confidence approach worked so well was sur-
prising for us. We have therefore carried out further analysis
with the framework introduced in (Kiippers, Kronenberger,
Shantia, & Haselhoff, 2020) to get a clearer picture of the
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Table 6. Certainty Group sizes for each approach and dataset and the resulting intersection scores. The Certainty Group sizes
are the same as in Table 3 since the same models and certainty criteria were used.

Dataset | Dropout CG | MIMO CG
Al41 26.30% 47.10%
FordA 45.30% 50.61%

Confidence CG | Intersection
42.20% 76.42%
54.69% 75.91%

actual model calibrations. All models we used for the confi-
dence approach were significantly miscalibrated. This finding
collided with our hypothesis that a model has to be well cal-
ibrated in order to work well with this approach. It even ap-
pears that miscalibration in the margins used for the certainty
criteria is beneficial for this approach as it helps to avoid mis-
predictions when the used margins are large (e.g. confidence
>0.7 or <0.3). If a model is perfectly calibrated, predictions
at confidence 0.75 should be 75% accurate. If the model is
massively miscalibrated in this region (e.g. confidence 0.75
yields 100% accuracy), this helps in the setting of certainty
groups. Overall, this approach seems to be very dependent
on the model calibration, which poses risks for real-world ap-
plications.

The MC-dropout approach was the most consistent perform-
ing. Although it was not able to consistently outperform the
other two approaches w.r.t. certainty group sizes, it always
worked as expected across all datasets and experiments. This
is underlined in the 98% target scenario, in which the dropout
approach outperformed both other methods w.r.t. accuracy
and/or balanced accuracy. On the AI4I dataset, its balanced
accuracy score was clearly better, while on the FordA dataset
it outperformed the accuracy score of the other two meth-
ods. However, a major disadvantage of this approach is the
slow execution speed that was clearly noticeable in the exper-
iments.

In summary, the confidence approach entails risks for real
world operation as the model calibration plays a massive role
in the creation of the certainty groups. The MIMO approach
is able to generate relatively large certainty groups but works
best when >99.5% accuracy is targeted in the certainty group.
The dropout approach is overall very consistent but suffers
from slow execution speed.

4.2. Possible applications

The results have made us optimistic that our approach is suit-
able for several applications in PHM. It can be applied to use
cases in which a clear and concise decision is needed for an
ML-system to add value. The results show that our approach
is able to extract a subset of instances with highly accurate
predictions. This can enable a transition towards increased
automation of data based decisions in industrial applications
since not all decisions are put into the hands of an ML-based
system. It thus represents a compromise between conserva-
tive and progressive data analytics approaches.

The experiments show that our approach is able to extract
subsets of the dataset with a higher predictive accuracy com-
pared to the whole dataset. Depending on the setting, our ap-
proach is also capable of making models with mediocre pre-
dictive quality at least partially useful (e.g. MIMO on AI41
with the 100% target). In situations where, for example, the
data source or the available hardware does not allow a more
powerful model, this could prove useful. This could enable
multi-level architectures in which data points “flow” through
multiple levels of machine learning models. A conceivable
use case is the distributed IT architecture in manufacturing
plants in which very small computational units (the so called
“edge”) represent the lowest level of devices and high perfor-
mance computer systems either in the cloud or in local data
centers represent the highest level of computational capabil-
ity. Our approach could allow very small but not well per-
forming models to be deployed as close to the production line
as possible. In this stage, predictions in the certainty group
are considered “clear” and safe to proceed without further su-
pervision. The instances in the normal group can then flow
towards higher levels of computational capability in which
the same process is repeated with more capable ML methods.
At the end stands either a completely automatic decision or
human supervision for very hard cases. This concept can be
interpreted as an iterative reduction of epistemic uncertainty
as increasingly capable models are applied to the underlying
problem.

4.3. Limitations and future work

Despite showing potential for several use cases (as described
in section 4.2), our approach in its current state suffers from
a couple of limitations, which yield potential for further re-
search of the presented concept.

Currently, our approach does only work with binary classi-
fication. In initial experiments on multiclass problems con-
ducted at an early stage of research, we found that the expres-
siveness of the predictive standard deviation is lower than in
a binary setting. We plan to investigate other dispersion met-
rics, perhaps information-theoretic ones based on entropy or
KL-divergence. Using our collected knowledge, an adoption
of certainty groups for multiclass classification would be the
next logical step. A variation of the problem in the form of
one versus all would be conceivable as in this case a binary
aspect would still be present.

Despite the possibility of tuning 7 such that the accuracy on
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a validation set is 100%, our approach cannot guarantee per-
fect predictions in a real world application. As shown in the
results, it is still possible that all ensemble members perform
wrong predictions with a very similar confidence that leads
to a containment in the certainty group. Additionally, our ap-
proach does not take distribution shifts into account. In a real
world application in which distribution shift naturally occurs
(e.g. through wear and tear of multiple machine components),
some type of out-of-distribution (OOD) detection would be
necessary to prevent false predictions in the certainty group.

So far we have tuned 75 manually to result in a desired val-
idation accuracy for the certainty group. An automatic solu-
tion for this task would be another next logical step, perhaps
using Bayesian optimization (Mockus, 2012) or other opti-
mization techniques. This could also involve requirements
for the certainty group that are more complex than only ac-
curacy requirements. An optimization with regards to very
specific predictive behavior could be implemented by more
complex certainty and optimization criteria. A conceivable
example is the avoidance of false negative predictions in a
predictive quality setting. In this case, a false negative pre-
diction (defect not detected) is much more problematic than a
false positive prediction. An optimizing solution could look
for a certainty criterion on the uncertainty measure (,, that
matches the target metrics for the certainty group.

While we only considered neural networks in this work, our
approach is not limited to them. An in-depth comparison of
the certainty group behavior of the used neural networks to
Bayesian approaches (e.g. Gaussian processes or Laplace ap-
proximations) as hinted in Sect. 2.1 would be very interest-
ing. So far we have evaluated our approach only with rela-
tively small architectures. We have also not investigated the
impact of the actual model architecture (e.g. convolutional,
fully connected, recurrent) onto the quality and size of the
certainty groups. Therefore, a direct comparison between the
smaller architectures and architecture types we used to sig-
nificantly larger architectures and different architecture types
would add to the understanding of the presented concept. As
the confidence approach showed serious potential, the appli-
cation of calibration techniques like in (Guo et al., 2017) or
(Tomani & Buettner, 2021) could result in interesting findings
and are worth investigating.

5. CONCLUSION

In this paper, we introduced the concept of certainty groups
that divides the predictions of neural networks into a normal
group and the certainty group. Through an additional hy-
perparameter, the quality of the predictions in the certainty
group can be controlled, which can enable interesting ap-
plications in manufacturing applications relevant to prognos-
tics and health management. We evaluated three approaches
for computing certainty groups, with an approach based on

MC dropout performing most consistent despite not generat-
ing the largest certainty groups. We further showed that the
three approaches accept very similar instances into the cer-
tainty group. Our approach is characterized by its simplicity
and practical motivation as it combines advanced uncertainty
estimation techniques with a clear certainty criterion.
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