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ABSTRACT 

Fluid leakage due to piston rod seal failure in hydraulic 

cylinders results in unscheduled maintenance, machine 

downtime and loss of productivity.  Therefore, it is vital to 

understand the piston rod seal failure at initial stages. In 

literature, very few attempts have been made to implement 

forecasting techniques for piston rod seal failure in hydraulic 

cylinders using acoustic emission (AE) features. Therefore, 

in this study, we aim to forecast piston rod seal failure using 

AE features in the auto regressive integrated moving average 

(ARIMA) model. AE features like root mean square (RMS) 

and mean absolute percentage error (MAPE) were collected 

from run-to-failure (RTF) tests that were conducted on a 

hydraulic test rig. The hydraulic test rig replicates the piston 

rod movement and fluid leakage conditions similar to what is 

normally observed in hydraulic cylinders. To assess 

reliability of our study, two RTF tests were conducted at 15 

mm/s and 25 mm/s rod speed each. The process of seal wear 

from unworn to worn state in the hydraulic test rig was 

accelerated by creating longitudinal scratches on the piston 

rod. An ARIMA model was developed based on the RMS 

features that were calculated from four RTF tests. The 

ARIMA model can forecast the RMS values ahead in time as 

long as the original series does not experience any large shifts 

in variance or deviates heavily from the normal increasing 

trend. The ARIMA model provided good accuracy in 

forecasting the seal failure in at least two of four RTF tests 

that were conducted. The ARIMA model that was fitted with 

15 pre-samples was used to forecast 10 out of sequence 

samples, and it showed a maximum moving absolute 

percentage error (MAPE value) of 28.99 % and a minimum 

of 4.950 %. The forecasting technique based on ARIMA 

model and AE features proposed in this study lays a strong 

basis to be used in industries to schedule the seal change in 

hydraulic cylinders.  
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1. INTRODUCTION 

A hydraulic cylinder is a linear actuator which is widely used 

in material handling applications in oil and gas (O&G), 

maritime, mining and construction industries. Based on the 

material handling requirements: load handling and speed 

condition of hydraulic cylinders frequently change. In most 

applications, customized large hydraulic cylinders are used 

by the industries where all the internal components are also 

custom-made  (See ref. (“Large Hydraulic Cylinder”)). Any 

abrupt failure of a hydraulic cylinder component can cause 

machine downtime, affect productivity, and increase 

maintenance cost as most of the components in large 

hydraulic cylinders are custom made and require several 

weeks time of planning, manufacturing, and assembling the 

part back into the hydraulic cylinder. Seal wear in hydraulic 

cylinders can be because of particle contaminants present in 

fluid or seal ageing and can cause instability during operation 

(X. Zhao et al. 2015; Shanbhag et al. 2021b). Therefore, it is 

important to continuously monitor and forecast the health of 

crucial components such as the piston rod seals in the 

hydraulic cylinders. 

In recent years, acoustic emission sensors have been widely 

used to monitor fluid leakage due to seal wear in hydraulic 

cylinders. Acoustic emission (AE) sensors are preferred by 

researchers because of their high frequency range (0.5-2.5 

MHz) which make them suitable to use in noisy or harsh 

environments, and they be used to simultaneously monitor 

the health of multiple components in hydraulic cylinders. For 

example, (Chen et al. 2007), monitored the health of seals in 

water hydraulic cylinders using time domain (root mean 

square (RMS) and count) and frequency domain (power 

spectral density (PSD)) features. Fluid leakage (< 1.0 L/min) 

due to seal wear could be monitored using energy-based 
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features (e.g., RMS). A correlation could be observed 

between fluid leakage rate and RMS. In the PSD plot, the 

fluid leakage was dominant in the frequency range of 50-300 

kHz with a peak at 120 kHz. In the other work of (Petersen et 

al. 2005), monitored the health of the piston in a water 

hydraulic system using AE and wavelet analysis. RMS, PSD, 

and RMS of wavelet co-efficient were used to detect cracks 

in the piston rod. Using time domain feature RMS, it was 

possible to identify crack conditions in the piston rod. 

Compared to PSD, RMS calculated from wavelet co-efficient 

showed better separability between no-cracks and cracks in 

the piston rod. (Shanbhag et al. 2020), monitored the health 

of piston rod seals (unworn, semi-worn and worn conditions) 

on a customized hydraulic test rig using AE time-domain and 

frequency-domain features at different pressure conditions. It 

was observed that, the mean-frequency feature showed a 

good repeatability with sensitivity in identifying different 

seal wear conditions in the hydraulic test rig. In another work, 

(Shanbhag et al. 2021a) monitored the health of multiple 

components (piston rod seals and bearing strips) in the 

hydraulic test rig using AE time-domain and frequency-

domain features to the bandpass filtered AE signal. Here, the 

unworn and worn bearing strips were monitored when 

unworn, semi-worn and worn seals were used in the test rig. 

The median-frequency features showed good repeatability in 

identifying piston rod seal wear and bearing wear conditions 

at different pressure and fluid leakage conditions. Also, 

mean-frequency and median-frequency showed good 

sensitivity in identifying fluid leakage due to piston rod seal 

wear during RTF tests (17 hours). (Zhang et al. 2021) 

monitored no leakage and different severities of fluid leakage 

(small, medium, and severe) in a hydraulic cylinder using an 

AE sensor. To classify the severity of fluid leakage, an 

optimization deep belief network (DBN) combined with the 

Complete Ensemble Empirical Model Decomposition with 

Adaptive Noise (CEEMDAN) was used and classification 

accuracy up to 93 % was achieved. (Pedersen et al. 2021), 

performed run-to-failure tests at different pressure and speed 

conditions on a hydraulic test rig to understand the AE 

features that can be evaluated to determine fluid leakage 

initiation. RMS features were proposed as potential condition 

monitoring indicators to understand fluid leakage initiation. 

The scaling factors based on sensor location and speed were 

applied to the sampled RMS features to estimate the fluid 

leakage threshold. From the literature, in the work performed 

using AE to monitor seal wear, most of the work is focused 

on condition monitoring (diagnostics) and very limited 

attempts in forecasting the deterioration and seal failure 

(prognostics).  

The auto-regressive integrated moving average (ARIMA) 

model is a time series forecasting technique that is widely 

used in different applications such as disaster management, 

business forecasting, and machine prognostics. The ARIMA 

model can be used to understand the change in signal features 

with spatial heterogeneity over time (Li et al. 2021).  In 

literature, the ARIMA technique has been applied using AE 

features to predict a) energy change in gas-liquid two-phase 

flow (N. Zhao et al. 2021), b) coal and gas outburst (Li et al. 

2021). As the ARIMA technique has successfully been used 

with the AE features for forecasting the process change or 

failure of components, the ARIMA technique in this research 

is used with AE features for forecasting the seal degradation. 

In this paper, the AE data from our previous experimental 

study conducted by (Pedersen et al. 2021) is used for 

forecasting analysis.  

2. METHODOLOGY 

2.1. Hydraulic test rig and process parameters 

In this study, experiments were conducted on a test rig 

installed in an upright position (Figure 1) and was designed 

to replicate the fluid leakage conditions of a hydraulic 

cylinder. The test rig consists of three major items: a) test 

arrangement (electromechanical cylinder with pressure 

chamber), b) hydraulic system providing hydraulic power, c) 

control box which controls and monitors the test rig. The 

control box is connected to a laptop using an Ethernet cable 

and the test rig is controlled using the Bosch Rexroth 

software “IndraworksDs- 14.24.6”. A hydraulic power unit 

(HPU) supplies pressure to the pressure chamber in the test 

rig, which can be controlled using a pressure valve. The 

pressure chamber is connected to an electromechanical 

cylinder. The electromechanical cylinder consists of 

servomotor, spindle, and piston rod. The electromechanical 

cylinder uses a spindle and nut to convert rotational motion 

to translational motion. The servomotor drives the spindle, 

and the driven nut is connected to the piston rod. The piston 

rod in the test rig reciprocates through the pressure chamber 

that is made pressure tight using a typical rod-sealing 

concept. During the experiments, the chamber is pressurized 

while circulating medium (fluid) through the chamber to 

absorb heat and any debris caused by the seal wear. 

In the test rig, five types of seals were used: a) wiper seal, b) 

excluder seal, c) secondary rod seal, d) primary rod low 

friction seal, and e) rod bearing ring.  In this study, only the 

secondary rod seal and primary rod low friction seal were 

replaced with new seals during every test as the wear of these 

seals results in fluid leakage. Replacement took place during 

every test as the wear of these seals used to results in fluid 

leakage. Seal failure was defined when fluid leakage was 

observed from the leakage port in test rig. Typically, the seal 

life used in hydraulic cylinders in industry is for several 

years. However, in this study, the seal wear was accelerated 

by inducing scratches on the piston rod using a hard metal tip 

scribing tool. The process parameters used for the 

experiments are listed in Table 1. 

Fluid in test rig Water glycol 

Rod material Chromium-molybdenum steel 

(+QT) with 20µm HCr coating 
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Primary and secondary 

seal material 

Polytetrafluoroethylene 

(PTFE) 

Pressure 15 bar 

Piston rod speed 15 mm/s (Test 2 & 3) and 25 

mm/s (Test 1 & 4) 

Number of tests 4 

Test run time Until fluid leakage observed 

Stroke length 75 mm (Test 1 & 4); 150 mm 

(Test 2 & 3) 

Table 1. Experimental details. 

 
Figure 1. Schematic view of test rig. 

2.2. Acoustic emission and signal processing  

The AE sensor was mounted at two locations on the test rig: 

a) directly on the piston rod and, b) on the section of the 

cylinder below the seal head (see red squares indicating the 

positions in Figure 1). These two locations were selected as 

the measured AE signal energy was higher compared to other 

locations on the test rig. A mid-frequency range AE sensor 

with a frequency operating range of 50-400 kHz and resonant 

frequency of 150 kHz was used in the study. The AE sensor 

was securely clamped on the test rig using an adhesive bond 

together with adhesive tape. The AE sensor was connected to 

a pre-amplifier and the pre-amplifier was further connected 

to an AE data acquisition system. The data acquisition system 

was connected to a laptop through a USB port. The AE data 

acquisition was performed using the Vallen AE suite 

software.  

For all the experiments, the AE data acquisition was 

performed in continuous mode at a sampling rate of 1 MS/s 

and pre-amplifier gain of 40 dB. Due to the high sampling 

rate and the large size of the AE files, the AE data acquisition 

was limited to 90 seconds (five piston rod strokes) and data 

acquisition was performed at 15 minutes interval until the 

fluid leakage was observed. The AE signal was further 

analyzed using the MATLAB software. The AE signal of the 

extension and retraction strokes was observed to be similar 

(Figure 2). Therefore, only the AE signal from the extension 

stroke was used for forecasting analysis.  

 
Figure 2. Raw AE signal recorded from test rig (Pedersen et 

al. 2021) 

For every RTF test, a new piston rod seal was used in the seal 

head. Therefore, every test required the removal of the AE 

sensor from the test rig. To ensure, that the AE sensor 

clamping is consistent for every test, the Hsu-Nielsen pencil 

lead break test (See ref (“Acoustic Emission (AE): Hsu-

Nielsen Source”)) was performed before the start of each test. 

The pencil lead break test was performed by breaking a 0.5 

mm diameter pencil lead on the test rig surface near the 

mounted sensor. The amplitude of the AE burst response and 

magnitude of AE frequency response was calculated and 

compared during every test to ensure consistency of the AE 

sensor clamping on the test rig. 

2.3. Auto-regressive moving average model 

The ARIMA model is used in prediction of different types of 

time series data, e.g. financial or disaster prediction, as it can 

make the difference calculation in non-stationary time series 

data to form a stable series (Li et al. 2021). The ARIMA 
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model: a) auto-regressive (AR), b) integrated part (I), c) 

moving average part (MA). The ARIMA model is 

represented as ARIMA (p, d, q). Where, p is the order of the 

regressive model, d is the degree of difference, and q is the 

order of moving average model. The p, d, and q are used to 

make the model data as fit as possible. As per (Lee et al. 

2011), the ARIMA model can be represented as a 

combination of past observations and past errors. The auto-

regressive (AR) model uses past values in the time series to 

predict the future values in a time series. The AR model of 

order p, can be represented as: 

𝒙𝒏 = ∅𝟏𝒙𝒏−𝟏 + ∅𝟐𝒙𝒏−𝟐 + ⋯ +  ∅𝒑𝒙𝒏−𝒑 + 𝝎𝒏      (1) 

where in Eq. (1), 𝑥𝑛  is the stationary time series, 𝜔𝑛  is 

Gaussian white noise series, and ∅1 , ∅2 ,…, ∅𝑝  are the AR 

constants determined by an optimisation algorithm such as 

ordinary least squares (Shumway et al. 2017). 

The moving average (MA) model uses its previous errors to 

make a prediction of future values. Here, the errors are the 

difference between the predicted value and the observed 

value. The MA model of order q, can be represented as: 

𝒙𝒏 = 𝝎𝒏 + 𝜽𝟏𝒘𝒏−𝟏 + 𝜽𝟐𝒘𝒏−𝟐 + ⋯ + 𝜽𝒒𝒘𝒏−𝒒       (2) 

where in Eq. (2), 𝜔𝑛  is white noise, and 𝜃1 , 𝜃2 ,…, 𝜃𝑞  are 

parameters (Shumway et al. 2017).  

The integrated part (I) in the ARIMA model, means that the 

original timeseries are transformed from 𝑥𝑛 to 𝑧𝑛 via Eq. (3), 

𝑧𝑛 = 𝑥𝑛+1 − 𝑥𝑛              (3) 

to make it stationary. The order of the integration parameter 

d is the order of difference performed on the time series. 

2.3.1. Modelling of the condition monitoring data 

In this study, the RTF test data was fitted using the ARIMA 

model. The Box-Jenkins model was used to select ARIMA 

(p, d, q) parameters and to validate the model fit. Each data 

set from the RTF test was used to fit in the ARIMA model to 

the most suitable condition monitoring data. To replicate a 

real-life condition, where the future data is unknown, only a 

portion of the initial samples were applied to fit the ARIMA 

model. The initial samples are labelled as pre-sample data. 

For creating the ARIMA model, fifteen samples from each 

RTF test were used as the pre-sample data. To test the 

accuracy of the developed ARIMA model, the next ten 

samples were used to forecast and to calculate the residual 

error. Based on the residual error, the root mean square error 

(RMSE) and the mean absolute percentage error (MAPE) 

was calculated as shown in Eq. (4). and Eq. (5).     

𝑴𝑨𝑷𝑬 =
𝟏

𝒏
∑ |

𝒙𝒊−�̂�

𝒙𝒊
|𝒏

𝒊=𝟏 × 𝟏𝟎𝟎         (4) 

𝑹𝑴𝑺𝑬 = √
∑ (𝒙𝒊−�̂�)𝟐𝒏

𝒊=𝟏

𝒏
         (5) 

where, 𝑥𝑖 is the true value, �̂� is the forecasted value, and n is 

the number of forecasted samples.  

The auto-correlation function (ACF) and partial auto-

correlation function (PACF) were used to graphically 

represent the relationship of a data point in a timeseries to 

data points from previous timesteps. These previous 

timesteps are called lags. Thus, a lag of one represents one 

timestep prior to the current timestep. Autocorrelation is then 

the calculated correlation between the current value and the 

values at the lags in a timeseries (Salvi 2019). Table 2 was 

used as a reference to determine preliminary values of the p 

and q parameters. The MATLAB in-built function was used 

to estimate the ARIMA (p, d, q) model from the pre-sample 

data. After estimating the model fitting parameters, the 

goodness of fit was validated by inferring the residuals from 

the fitted model. The selected ARIMA (p, d, q) model was 

then used to forecast the datapoints of the holdout data. The 

residuals were calculated from the known values of the 

holdout data and subtracting it from the forecasted values, 

and then the MAPE and RMSE were calculated. To compare 

the error values, the pre-sample data and holdout data were 

standardized by normalizing the values in the range of zero 

to one. To increase accuracy of the forecasted timeseries, a 

Monte Carlo simulation was applied to the forecasting 

timeseries. The Monte Carlo simulation used one thousand 

forecasting iterations with the pre-sample data as the input 

data. The mean of the forecasted predictor values was then 

used as the forecasted values. 

 AR(p) MA(q) ARMA(p,q) 

ACF Tails off 
Cuts off 

after lag q 
Tails off 

PACF Cuts off after lag p Tails off Tails off 

Table 2. Behavior of ACF and PACF for ARMA models 

(Shumway et al. 2017). 

3. RESULTS AND DISCUSSION 

3.1. Pencil lead break test 

Figure 3 a)-b) represent the AE time domain signal of the 

background noise and from the pencil lead break test 

respectively. The AE signal of background noise was 

recorded while the HPU was circulating hydraulic fluid in the 

pressure chamber. By comparing Figure 3 a)-b), the 

maximum amplitude of the AE signal from the pencil lead 

break test is at least hundred times higher compared to the 

HPU background noise.  Figure 3 c)-d), represent the AE 

frequency response calculated using Welch’s method.  The 

frequency responses show that, the AE frequency peaks are 

dominant in the frequency range of 65-190 kHz. The 

maximum magnitude of the frequency response of the 

background noise is about one thousand times smaller than 

for the pencil break test. As the effect of ground noise on the 

AE signal is minimal, bandpass filtering techniques were not 

applied for the AE signal recorded during the RTF tests. 
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Figure 3. AE signal from a) Background noise, b) Pencil lead break test; Frequency response calculated from AE signal c) 

Background noise, d) Pencil lead break test. 

3.2. ARIMA model using the RMS feature  

From the RTF tests conducted a comparison of the time and 

frequency domain features were conducted, and it was 

observed that the RMS feature was the most suited for use as 

condition monitoring indicators to identify wear of piston rod 

seals (Pedersen et al. 2021). Therefore, in this study, the RMS 

feature was used to develop the ARIMA model. Figure 4-a) 

shows a plot of the RMS response for all four RTF tests. The 

signal was subtracted by the first sample to remove the bias 

and for easier comparison of the results. The increase in trend 

is similar for RTF tests 2 and 3 (tests conducted at 15 mm/s 

speed). For RTF 1 and 4, the trend shows a large difference 

(tests conducted at 25 mm/s speed). The drop in RMS feature 

in RTF 4, is mainly because the test was stopped at evening 

and restarted next day (in most industries hydraulic cylinders 

are used intermittently, not continuously). This has been done 

to observe the changes in signal response when the test rig 

was stopped. Tests 1 and 2 were run continuously, tests 3 and 

4 were stopped in the night. In test 3, the next day system was 

switched on and kept running to allow system to be stabilized. 

Whereas in test 4 the next day, the system was switched on 

and data was recorded immediately to see the difference in 

behaviour of AE features with that of AE features from test 

3.  Furthermore, the transient response for the first three hours 

in RTF test 1 does not conform well to forecasting by the 

ARIMA model due to its initial decreasing trend. This is 

mainly because test rig pressure, and temperature require 

some time to stabilize. Therefore, for remaining tests, test rig 

was started only when test rig pressure and temperature were 

stabilized. To be able to do a better prediction on the RTF test 

1 dataset, the transient response was removed. Figure 4-b) 

shows the responses for all RTF tests with the transient 

decreasing trend of RTF test 1 removed. As seen from Figure 

4, the RMS feature trend is not stationary due to the 

increasing trend. To meet the stationary criteria of the 

ARIMA model, the RMS feature was differentiated. For RTF 

tests 1 and 3, a first order differentiation was applied, and for 

RTFs test 2 and 4, a second order differentiation was applied. 

Therefore, the differencing term ‘d’ in the ARIMA (p, d, q) 

was thus set as one for RTF tests 1 and 3, and two for RTF 

tests 2 and 4.   

To identify the preliminary values of the AR (p) order, p, and 

MA (q) order, q, the ACF and PACF were plotted using the 

RMS features that were differentiated. Figure 5 shows the 

ACF and PACF plots for all differentiated data of the RTF 

tests. To find the initial parameters of the p, d, and q 

parameters for the ARIMA model, the guide in Table 2 was 

used to interpret the ACF and PACF plots. In Table 2, by 

“tailing off” it indicates the gradually decreasing correlation 

values, while the “cutting off” indicates the sudden large drop 

in correlation value.  It can be seen in the PACF plot for RTF 

test 1 in Figure 5-e) that the PACF cuts off after the second 

lag. The ACF plot in Figure 5-a) does not show any lag above 

the threshold line, but it can be said to cut off after the first 

lag, even though the first lag is not very significant. An 

ARIMA (2,1,1) was thus suggested for the RMS signal from 

RTF test 1. For RTF test 2, both the ACF and the PACF plots 

in Figure 5-b) and Figure 5-f) show only one significant lag. 

However, the ACF plot can be seen to tail off while the PACF 
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plot cuts off at lag one. An ARIMA (1,2,0) model was thus 

suggested for the RMS signal from RTF test 2. The ACF plot 

for RTF test 3, in Figure 5, show very low correlation 

throughout the series, and only the second lag appears to 

show any correlation before it cuts off. The same can be seen 

for the PACF plot in Figure 5-g). Thus, to best model the 

RMS series for RTF test 3, an ARIMA (2,1,2) was suggested. 

Finally, for RTF test 4, the ACF plot in Figure 5-d) shows 

that it cuts off at the first lag. Similarly, the PACF plot in 

Figure 5-h) shows the same, but here the second lag can be 

seen to be more significant. Even though the second lag does 

not reach above the threshold line, it should still be utilized 

in the model. An ARIMA (2,2,1) was thus suggested for the 

RMS series for RTF test 4. 

The quantile-quantile (QQ) plots for the residuals of the fitted 

model on the pre-sample data is shown in Figure 6. It can be 

seen that all fitted models are reasonably normally 

distributed, except for the possible outliers as seen for the last 

quantile of RTF tests 1 and 4 in Figure 6-a) and Figure 6-d). 

The ACF and PACF plots of the residuals of the fitted models 

are represented in Figure 7. The models fitted to the RMS 

series for all RTF tests show a low correlation of the residuals 

both for the ACF and PACF. This indicates that the selected 

p, d, and q parameters provide good model fits to the data. 

 
Figure 4. a) With transient from RTF test 1, b) Transient removed from RTF test 1. 

 
Figure 5. ACF and PACF for the differentiated RMS series of all RTF datasets, showing first 10 lags. a)-d) ACF, RMS 

signals from RTF 1-4, e)-f) PACF, RMS signals from RTF 1-4.
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Figure 6. QQ plots for fitted ARIMA models to the RMS series of RTF tests 1 to 4: a) for ARIMA (2, 1, 1) model on RTF 

test 1, b) for ARIMA (1, 2, 0) model on RTF test 2, c) for ARIMA (2, 1, 2) model on RTF test 3, d) ARIMA (2, 2, 1) model 

on RTF test 4. 

 
Figure 7.  ACF and PACF for the residuals of the fitted ARIMA models on the pre-sample data. ACF for residuals of a) 

ARIMA (2, 1, 1) model on RTF test 1, b) ARIMA (1, 2, 0) model on RTF test 2, c) ARIMA (2, 1, 2) model on RTF test 3, d) 

ARIMA (2, 2, 1) model on RTF test 4. PACF for residuals of e) ARIMA (2, 1, 1) model on RTF test 1, f) ARIMA (1, 2, 0) 

model on RTF test 2, g) ARIMA (2, 1, 2) model on RTF test 3, h) ARIMA (2, 2, 1) model on RTF test 4.
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3.3. Forecasting using the ARIMA model 

Table 3 represents the best fitted ARIMA model parameters 

with the RMSE and MAPE values for the ten samples out of 

sequence forecasts. Figure 8  represents the forecasting of the 

RTF test data using the ARIMA model with the 95th 

percentile of the forecasts from the Monte-Carlo simulation. 

For all RTF tests, the forecasting plot can be seen to follow 

the increasing trend of the true data. Comparing the 

forecasting trend among the data from the RTF tests 1-4, for 

the RTF tests 1 and 2, see Figure 8 a)-b), the accuracy is less 

compared to RTF tests 3 and 4. The low accuracy of the 

forecast trend in RTF test 1 is mainly due to the large variance 

shift in the original dataset seen at around 4 hours, see Figure 

4-a)). For the RTF test 2, the low accuracy for the ARIMA 

model is attributed to the low correlation of sequence that was 

seen in the related ACF and PACF.  For RTF tests 3 and 4, 

the ARIMA models displays good accuracy for the forecasted 

values, see Figure 8 c)-d) despite the low correlation of 

sequence also for these timeseries. The better accuracy of the 

model for RTF 3 and 4, can also be attributed to a favorable 

time of forecasting in the series. 

RTF AR (p) I(d) MA(q) RMSE 

(mV) 

MAPE 

(%) 

1 2 1 1 0.187 20.26 

2 1 2 0 0.326 28.99 

3 2 1 2 0.053 4.95 

4 2 2 1 0.104 8.88 

Table 3. ARIMA (p, d, q) model parameters with the 

respective RMSE and MAPE error.

 
Figure 8.  Forecasted data on 10 sample forecasts for RMS series of all RTF tests. a)  For ARIMA (2,1,1) model on RTF test 

1, b) For ARIMA (1,2,0) model on RTF test 2, c) For ARIMA (2,1,2) model on RTF test 3, d) For ARIMA (2,2,1) model on 

RTF test 4. 

4. SUMMARY 

In this study, the AE-RMS feature from four RTF tests was 

used to forecast the seal degradation process in a hydraulic 

test rig using an ARIMA model. The ARIMA model was able 

to forecast the RMS values ahead in time as long as the 

original RMS trend did not experience any large shifts in 

variance or deviates from the normal increasing trend, as is 

expected from this method. The ARIMA model showed that 

it can perform with good accuracy for forecasting in at least 

two of four RTF tests that were conducted. The ARIMA 

model that was fitted with fifteen pre-samples, was used to 

forecast ten out of sequence samples, and it showed a 

maximum moving absolute percentage error (MAPE) a 

maximum of 28.99 % and a minimum of 4.950 %. 

Based on the work conducted in this study, the authors 

conclude that further work is required with other modelling 

approaches like different variants of neural network for 

forecasting the seal failure, to improve the prediction when 

there are large shifts in variance that was seen in the RMS 

trend. Also, additional RTF tests need to be conducted with 

similar conditions to assess the repeatability of the 

forecasting technique. 
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