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ABSTRACT

Well-established metrics such as the Root Mean Square Error
or the Mean Absolute Error are not suitable to evaluate esti-
mated distributions of the Remaining Useful Life (i.e., prob-
abilistic prognostics). We therefore propose novel metrics to
evaluate the quality of probabilistic Remaining Useful Life
prognostics. We estimate the distribution of the Remaining
Useful Life of turbofan engines using a Convolutional Neural
Network with Monte Carlo dropout. The accuracy and sharp-
ness of the obtained probabilistic prognostics are evaluated
using the Continuous Ranked Probability Score (CRPS) and
weighted CRPS. The reliability of the obtained probabilistic
prognostics is evaluated using the a-Coverage and the Relia-
bility Score. The results show that the estimated distributions
of the Remaining Useful Life of turbofan engines are accu-
rate, reliable and sharp when using a Convolutional Neural
Network with Monte Carlo dropout. In general, the proposed
metrics are suitable to evaluate the accuracy, sharpness and
reliability of probabilistic Remaining Useful Life prognos-
tics.

1. INTRODUCTION

Maintenance is undergoing a paradigm shift from time-based
maintenance, where tasks are scheduled at fixed time inter-
vals, to predictive maintenance. Under predictive mainte-
nance, sensors continuously measure the condition of compo-
nents. These measurements are used to predict the Remaining
Useful Life (RUL) of components. In turn, RUL prognostics
are integrated into maintenance planning. Predictive mainte-
nance has the potential to reduce the maintenance costs, while
maintaining the reliability of assets (Lee & Mitici, 2020).

Most studies focus on developing point RUL prognostics, i.e.,
one value for the RUL prediction. For example, a prognostic
may indicates that the RUL equals 30 flight cycles for an air-
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Figure 1. A) Point RUL prognostics, B) Probabilistic RUL
prognostics.

craft component (see Figure 1-A). Point RUL prognostics for
turbofan engines are developed in (de Pater, Reijns, & Mitici,
2022; Li, Ding, & Sun, 2018) using a Convolutional Neural
Network (CNN) and in (Xia, Feng, Lu, Fei, & Xue, 2021)
using a Long Short-Term Memory neural network. In (Mitici
& de Pater, 2021), point RUL prognostics for aircraft Cooling
Units are developed using particle filtering. In (Lee & Mitici,
2022), point RUL prognostics are obtained for aircraft land-
ing gear brakes using linear regression.

For reliability purposes, however, it is key that the uncertainty
associated with the estimated RUL is also determined. In
this line, several studies estimate the distribution of RUL, i.e.,
probabilistic RUL prognostics (see Figure 1-B). In (Nguyen
& Medjaher, 2019) and (Biggio, Wieland, Chao, Kastanis, &
Fink, 2021) the RUL distribution of turbofan engines is ob-
tained using a Long Short-Term Memory neural network and
Deep Gaussian processes, respectively. In (de Pater & Mitici,
2021) the RUL distribution of aircraft Cooling Units is esti-
mated using particle filtering. Probabilistic RUL prognostics
for nuclear components are developed in (Baraldi, Mangili,
& Zio, 2015) using Gaussian Process regression. Last, in
(Le Son, Fouladirad, & Barros, 2016) the RUL distribution
is estimated using a noisy Gamma deterioration process.

To evaluate probabilistic RUL prognostics, well-established
metrics such as the Root Mean Square Error (RMSE) or the
Absolute Mean Error (MAE) are not directly applicable. In
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Figure 2. Schematic overview of the CNN architecture for dataset FDOOI1.

principle, RMSE and MAE could be computed relative to the
mean of the estimated RUL distribution. However, this would
disregard the variance and sharpness of the estimates, and
give little indication of the actual trustworthiness of the RUL
prognostics. In (Saxena et al., 2008; Saxena, Celaya, Saha,
Saha, & Goebel, 2009), a few metrics are proposed to evalu-
ate probabilistic RUL prognostics such as prognostic horizon,
probabilistic & — A, (cumulative) relative accuracy and con-
vergence. These metrics evaluate the accuracy of the RUL
prognostics, and specifically on how this accuracy changes
over the lifetime of components. For an example of their
usage, see (Lall, Lowe, & Goebel, 2011). However, these
metrics all require a sequence of RUL prognostics over the
lifetime of each component. Yet, for many publicly avail-
able degradation test sets, such as the C-MAPSS data set on
turbofan engines (Saxena & Goebel, 2008), only one RUL
prognostic per test instance can be determined. As such, the
prognostic horizon, probabilistic o — ), relative accuracy and
convergence cannot be used to evaluate these single proba-
bilistic RUL prognostics. Most importantly, these metrics do
not explicitly quantify the reliability of the probabilistic RUL
prognostics.

In this paper we propose novel metrics to evaluate the accu-
racy and sharpness of probabilistic RUL prognostics (CRPS
and weighted CRPS), and metrics to explicitly evaluate the
reliability (a-Coverage and Reliability Score). Compared with
existing metrics, the weighted CRPS uses penalties when the
RUL is overestimated/underestimated. Depending on the type
of component, these penalties can be adjusted. For example,
for safety critical components it is important that the RUL is
not overestimated. Otherwise, an overestimated RUL could
lead to a missed failure. In such cases, the weighted CRPS
applies a larger penalty for a RUL overestimation than for a
RUL underestimation. The Reliability Diagram and Reliabil-
ity Score provide a means to graphically visualize the per-
formance of the RUL prognostics. Unlike existing numerical
metrics, this metric provides a visual interpretation of the per-
formance of the prognostics as well. We illustrate our metrics
for probabilistic RUL prognostics for the turbofan engines of
the C-MAPSS data set. Here, we estimate a distribution of
the RUL of the turbofan engines using a Convolutional Neu-

ral Network with Monte Carlo dropout.

In Section 2, we introduce the Convolutional Neural Network
with Monte Carlo dropout to estimate a RUL probability dis-
tribution for turbofan engines. We next propose metrics to
evaluate these estimated RUL distributions in Section 3. We
illustrate the proposed metrics in a case study in Section 4.

2. PROBABILISTIC RUL PROGNOSTICS FOR TURBOFAN
ENGINES USING A CONVOLUTIONAL NEURAL NET-
WORK WITH MONTE CARLO DROPOUT

In this section, we generate probabilistic RUL prognostics for
aircraft turbofan engines using a Convolutional Neural Net-
work (CNN) and Monte Carlo dropout. Specifically, we es-
timate the probability density function (pdf) of the RUL of
an engine, and not just one point value for the RUL. We
apply our methodology to the turbofan engine degradation
simulation C-MAPSS dataset, which is generated using the
NASA Commercial Modular Aero-Propulsion System Simu-
lation (C-MAPSS) program (Saxena & Goebel, 2008). The
dataset contains measurements of 21 sensors that monitor the
degradation of the turbofan engines. The C-MAPSS dataset
consists of four data subsets, each with a different number
of operational and fault conditions (see Table 1). Each sub-
set contains a training set, with run-to-failure instances, and
a test set. For each failure instance in the test set, the data is
terminated somewhere before failure with the aim to predict
the RUL. More information on this publicly available data set
can be found in (Ramasso & Saxena, 2014).

Table 1. C-MAPSS datasets for turbofan engines.

| FDO0O1 FD002 FDO003 FD004
Training instances 100 260 100 249
Testing instances 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

We select 14 out of the 21 sensors available from C-MAPSS
that have non-constant measurements. The remaining 7 sen-
sors exhibit constant measurements and are thus not consid-
ered for RUL prediction. The selected sensor measurements
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are normalized using min-max normalization (Li et al., 2018)
with respect to the operating condition (Babu, Zhao, & Li,
2016). We also include the history of the operating condi-
tions in the input of the CNN, i.e., the number of flights spent
in each operating condition, as in (Babu et al., 2016).

The architecture and hyperparameters of the CNN are similar
to the CNN proposed in (Li et al., 2018). Specifically, the
CNN consists of 5 convolutional layers, where the first four
convolutional layers each have 10 kernels of size 10 x 1 (i.e.,
one-dimensional kernels). The last convolutional layer has
one kernel of size 3 x 1, combining all 10 feature maps into
one feature map. This last feature map is flattened in a flatten
layer, and connected to a fully connected layer. All these lay-
ers use the tangent (tanh) activation function. Last, one single
neuron is attached to the fully connected layer to predict the
RUL using the Rectified Linear Unit (ReLU) activation func-
tion. A schematic overview of this CNN is in Figure 2. The
weights of the CNN are optimized using the Adam optimizer
(Kingma & Ba, 2014) with a batch size of 512 samples, and a
maximum of 250 training epochs. The learning rate is 0.001
for the first 200 epochs, and 0.0001 for the last 50 epochs. A
cut-off value Ry of 125 flights is applied. We use a win-
dow size of 30 flights for FD0OO1 and FD0O03, of 20 flights for
FDO002 and of 15 flights for FD004.

(a) First pass

(b) Second pass

Figure 3. Monte Carlo dropout during two different passes
through the network, in a neural network with two fully con-
nected layers.

To obtain a probability distribution of the RUL using CNN,
we additionally apply Monte Carlo dropout (Biggio et al.,
2021; Gal & Ghahramani, 2016). During the training phase,
we apply a dropout rate of p = 0.5 in each layer, with the
exception of the last convolutional layer before the flatten
layer, and the first convolutional layer (Gal, Hron, & Kendall,
2017). During the testing phase, we also use dropout and pre-
dict the RUL of each test instance ¢ for M; > 1 times, each
time randomly selecting neurons to be dropped. This is illus-
trated in Figure 3. The pdf of the RUL for a test instance 1 is
now created with the M; RUL predictions.

Figure 4 shows the obtained pdf of the RUL for engines 7 €
{53,4,86,67} of test set FDOO1. The pdf of the RUL of en-
gine 53 is well centered around the actual RUL, and the vari-
ance is relatively low. The pdf of the RUL of engine 4 is well
centered around the actual RUL as well, but the variance is
larger, suggesting a larger uncertainty about the prediction.
In contrast, the pdf’s of the RUL of engines 86 and 67 are not

well centered around the actual RUL. Moreover, the actual
RUL of engine 67 falls outside the estimated RUL probabil-
ity distribution.
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(b) PDF of RUL for engine 4, FDOO1.
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(c) PDF of RUL for engine 86, FD0O1.
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(d) PDF of RUL for engine 67, FDOOI.

Figure 4. The estimated pfd of the RUL of four individual
engines in the test set of FDOOI.

2.1. Metrics often used to evaluate RUL prognostics

The metrics often used to assess the performance of point
RUL prognostics are the Mean Absolute Error (MAE), the
Root Mean Square Error (RMSE) and the Mean Score. These
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metrics are computed based on the actual RUL vs. the pre-
dicted point RUL. When the pdf of the RUL is estimated in-
stead, the MAE, RMSE and the Mean Score can be computed
based on the actual RUL vs. the mean of the predicted RUL.

Formally, let N be the number of test instances in one C-
MAPSS test set, and let y; be the actual RUL for test instance
i. Let §;;, j € {1,2,..., M;}, be the j*" RUL prediction for
engine 7. Let ¢; be the mean predicted RUL of test instance 7:

| M
Yi = 7, - Uij- (1)
j=1
Then, when considering probabilistic RUL prognostics,
1N
MAEP = — Ui — Yil- 2
N ; 19: — vil @)
1 N
p_ | = S )2
RMSE? = N Z(yz yi)?. (3)
i=1
1
Mean Score? = i z_; Siy “

with

Ui —y: <0
b
Yi—yi >0

_¥izyi

e 7 -1,
S; = Ui —Yq

e s —1,

with v and § user-defined metrics. For the C-MAPSS data
set, ¥ = 13 and 6 = 10 are usually applied (Li et al., 2018).

Table 2. RMSEP, MAEP, and Mean Score? with respect to
the mean RUL prediction - C-MAPSS dataset.

Test set | RMSE?  MAEP Mean Score”
FDO0O1 12.76 9.22 2.78
FD002 14.74 11.14 3.55
FDO003 11.89 9.07 243
FD004 18.03 13.44 8.03

Table 2 shows the RMSE?, MAEP and Mean Score? obtained
for our probabilistic RUL prognostics when using the C-MAPSS
dataset and a CNN with Monte Carlo dropout. Training the
neural networ took between 12.1 (FD001) to 27.3 (FD002)
seconds per epoch on a computer with an Intel Core i7 pro-
cessor at 2.11 GHz and 8Gb RAM. Our results are compara-
ble with state-of-the-art RUL prognostic results in (Xia et al.,
2021).

However, these metrics do not fully capture the quality of the
probabilistic RUL prognostics. The reliability and sharpness
of the RUL prognostics is not evaluated, e.g, the variance of
the generated pdf of the RUL. For example, for engine 4 (see
Figure 4b) the absolute error with the mean predicted RUL is
only 3.2 flights, and the Score with the mean predicted RUL

is only 0.28. The mean predicted RUL is thus very close to
the actual RUL. However, the standard deviation of the pdf
of the RUL is large (o = 13.6), suggesting a large uncer-
tainty in the prediction. This large variance is not reflected
in the mean predicted RUL, and thus neither in the RMSE?,
MAEP and Mean Score? metrics. Similarly, for engine 86
(see Figure 4c), the absolute error with the mean predicted
RUL is 24.6 flights, and the score value with the mean pre-
dicted RUL is 10.67, which shows that the mean predicted
RUL is far off the actual RUL. However, the actual RUL still
falls within the pdf of the RUL. This is again not reflected in
the mean RUL prediction and thus in the three metrics above.
To analyze the full predicted pdf of the RUL with the corre-
sponding uncertainty estimates, we introduce four additional
metrics that characterize the reliability, the sharpness and the
accuracy associated with the pdf’s of the RUL.

3. NOVEL METRICS TO EVALUATE PROBABILISTIC RUL
PROGNOSTICS

In this section, we introduce the following novel metrics to
characterize the reliability, the sharpness and the accuracy of
probabilistic RUL prognostics (i.e, when estimating the pdf of
the RUL): the Continuous Ranked Probability Score (CRPS),
the weighted CRPS (CRPSW), the a-Coverage, and the Re-
liability Score (RS). In the appendix, we provide the Python
code to calculate the proposed metrics.

3.1. Continuous Ranked Probability Score (CRPS)
1-
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Figure 5. Illustration of the CRPS; metric for a single com-
ponent ¢.

The Continuous Ranked Probability Score (CRPS) evaluates
i) if the estimated RUL distribution is centered around the
actual RUL of a component ¢, i.e., the accuracy of the RUL
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prognostic, and ii) if the variance of the RUL distribution is
low, i.e., the sharpness of the RUL prognostic. In other words,
a probabilistic RUL prognostic for a component ¢ is best when
all RUL predictions g;; j € {1,2,...,M;} are close to the
actual RUL y;.

CRPS has been used to evaluate probabilistic predictions for
applications such as flight delays (Zoutendijk & Mitici, 2021),
sea level pressure and surface temperature (Gneiting, Raftery,
Westveld 111, & Goldman, 2005) and electricity prices (Nowo-
tarski & Weron, 2018). However, to the best of our knowl-
edge, this metric has not yet been used to evaluate probabilis-
tic RUL prognostics.

Let Fjj; (x) denote the estimated, empirical CDF of the RUL
of a component . Then CRPS is as follows:

N
1
CRPS — ~ Zl CRPS;, %)
CRPS; :/ (Fgi(z) — T{y; < x})’da,
1 i <
with I{yigx}{  Yise
0, y; >

Intuitively, CRPS for a component ¢ can be seen as a proba-
bilistic generalization of the absolute error |y; — ¢;|. Specifi-
cally, when calculating the CRPS of a point RUL prediction,
we obtain the absolute error of this point RUL prediction. The
smaller the CRPS metric is, the closer the RUL prediction is
to the actual RUL. In an ideal case when a perfect RUL pre-
diction without uncertainty (i.e., a point RUL prediction) is
obtained, CRPS equals zero. A comprehensive explanation
of this metric can be found in (Gneiting & Katzfuss, 2014).

Figure 5 shows a graphical representation of CRPS for a sin-
gle, generic component . The blue, solid line represents the
empirical CDF of the RUL prognostic of this component ;.
The light-green area is the CRPS for this component ¢. This
area (i.e., the CRPS value) is small if the accuracy and sharp-
ness of the probabilistic RUL prognostic are high. In general,
if the prognostics are accurate, then most RUL estimates are
located close to the true RUL y;. This is equivalent to a low
CRPS value. If the prognostics are not only accurate, but also
sharp, then the tails of the distribution are small and low. In
this case, the CRPS value is smaller as well. Conversely, the
CRPS value increases if the true RUL y; falls outside the es-
timated RUL distribution (i.e., inaccurate prognostics).

3.2. Weighted CRPS (CRPS")

For most components and systems, overestimating the RUL
is much more detrimental than underestimating the RUL (Li
et al., 2018). A late prediction of the failure time is less de-
sirable since missing a component failure may have severer
consequences than replacing this component too early. We

thus propose the weighted CRPS, which considers penalties
for the RUL being overestimated/underestimated. Depending
on the type of component, these penalties can be adjusted.
In the case of safety critical component, for example, larger
penalties are applied for RUL being overestimated. This is
because a RUL overestimation may lead to a missed failure.
The weighted CRPS is defined as follows:

1 N
CRPSY = ~ ;CRPSXV, (6)
CRPSY = (2 ) / (Fy.(2) — T{y: < a})?de
8 [ (Fple) - T(w < 2))de,
)
—(2-p) / (Fp(@)de+ 8 | (Fp(2) - 1)%de,
—o0 i

with 0 < 8 < 2 an user-specific parameter. The magnitude of
the penalty is specified through the weight 5. The weight (3 is
specified by the user, and depends on the domain application.

3.3. a-Coverage

CRPS evaluates the accuracy and sharpness of the probabilis-
tic RUL prognostics. It is, however, also important to verify
the reliability of the RUL predictions. To address this, we in-
troduce the coverage of a RUL prediction, similar to (Baraldi
et al., 2015). In this paper, however, we construct the cov-
erage of a probabilistic RUL prognostic without assuming
that this prognostic follows a specific distribution, such as the
Gaussian distribution.

Estimated CDF F-,,
Q
Il
(e}
=~

0307070
Y; i
RUL z (flights)

Figure 6. Illustration of the percentiles with the estimated
CDF of the RUL of a test instance ¢

To calculate the coverage, we first construct a credible inter-
val around the median of the estimated RUL distribution with
width a.. For example, let us assume that we have M; = 1000
RUL predictions for a test instance ¢, i.e., §;;,7 € {1,2,...,
M;}. Let us consider the credible interval around the median
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with width o« = 0.4 = 40%. Then, this credible interval is
[§9-30, 49701 with 99-39 the RUL prediction belonging to the
50% — 0.5ac = 30" percentile. In our example, when we
sort all M; = 1000 predictions from small to large, this is the
j = 300" RUL prediction §; 300 Also, 997 is the RUL pre-
diction belonging to the 50% + 0.5 = 0.70" percentile. In
our example, when we sort all M; = 1000 predictions from
small to large, this is the j = 700" RUL prediction 94,700+
The predicted probability that the actual RUL y; of compo-
nent 7 is within the credible interval [§9-3°, 99-70] is v = 40%.
This example is illustrated in Figure 6.

We construct a credible interval with width = 0.4 forall 7 €
{1,2,---, N} test instances. It is expected that for & = 40%
of the test instances, the actual RUL y; is within the cred-
ible interval [79-30, §9-70]. If the actual RUL of more than
40% of the test instances falls within the credible interval
[§9-39 §9-79], then the uncertainty for « = 0.4 is overesti-
mated. Otherwise, the uncertainty for a« = 0.4 is underesti-
mated.

With the concept of a credible interval, the coverage of prob-
abilistic RUL prognostics is defined as follows:

N
1
a-Coverage = N i_ZII(a)i, ™

~0.5—0.5a ~0.54+0.5c¢

with Z(a); = 4 ¥ €10 Y
0, Otherwise,

where o € [0, 1] is an user-defined parameter and 7 is the
RUL prediction of the k'" percentile of the estimated RUL
distribution of component i. The closer the coverage is to
«, the more reliable the estimated RUL distribution is. The
uncertainty is overestimated if the coverage is larger than a.
Conversely, the uncertainty is underestimated if the coverage
is smaller than a.. For example, in Figure 4c, the true RUL
does not fall within the 90% credible interval of the RUL dis-
tribution. If we predict a RUL distribution for ten individual
components, we expect that for only one out of these ten com-
ponents, the true RUL lies outside the 90% credible interval,
as is the case in Figure 4c.

Last, if two RUL prediction methods have the same cover-
age for a width «, the method that provides tighter credible
intervals is preferred. In other words, a higher sharpness of
the RUL distributions is preferred. In this way, the predicted
RUL distributions give a more precise picture of the actual
RUL. A higher sharpness also leads to a lower CRPS. The
tightness of the credible intervals, or the mean width of the
credible intervals, is defined as (Baraldi et al., 2015):

N
i £0.540.5x
a-Mean width = — E (y;

i
i=1

_ y?.5*0.50¢). (8)

3.4. Reliability Score (RS)

Though the Coverage metric indicates the reliability of the
estimated RUL distribution, this reliability is evaluated only
relative to a specific a. To conduct a generic, parameter-free
reliability analysis of the estimated RUL distribution, we next
introduce the Reliability Score (RS). We first introduce the
concept of the reliability diagram.

1
08 «+ v i,
o 0.7 v v
&0
S 0.6 rernrnns
(5]
4
S
L 04
0 0 0.4 0.8 1
Width of credible interval a
i _ Tdeal curve: =y Reliability score-= .
C(a) overestimation of uncertainty

Reliability :
curve: C(a) underestimation of uncertainty:

Reliability score -

Figure 7. Illustration of the reliability diagram and the Relia-
bility Scores.

For classification problems, a reliability diagram is used as a
visual representation of the reliability of the uncertainty as-
sociated with the predictions. A reliability diagram is also
referred to as a calibration curve. In (Saxena et al., 2008), the
reliability diagram is proposed as a RUL prognostic metric.
Here, the problem of RUL prognostics is posed as a classifi-
cation problem with multiple classes. In contrast, in (Vandal,
Livingston, Piho, & Zimmerman, 2018), the reliability dia-
gram is defined based on the concept of coverage (see Sec-
tion 3.3). In doing so, a regression problem does not have
to be posed as a multi-class classification problem to con-
struct a reliability diagram. The authors of (Vandal et al.,
2018) determine a reliability diagram for flight delay estima-
tions. Similarly, we define a reliability curve C'(«) based on
a—Coverage (see Eq. (7)) for probabilistic RUL prognostics,
i.e., C(a) = {a-Coverage, o € {0.00,0.01,0.02,...,1.00}}.
The reliability diagram is then a visual representation of this
reliability curve. Figure 7 gives an illustration of a reliability
curve.

The reliability diagram is used to visually inspect whether
the uncertainty associated with the RUL predictions is over-
or underestimated. For example, when = 0.4, the ideal
coverage would be 0.4 as well. In this case, the actual RUL of
40% of the test instances would fall inside a credible interval
with width o« = 0.4. However, in the example in Figure 7,
the 0.4-Coverage is 0.6, i.e., the actual RUL of 60% of the
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test instances falls inside the credible interval, instead of 40%
of the test instances. The uncertainty of the RUL prognostics
is thus overestimated.

In contrast, the uncertainty of the RUL prognostics is under-
estimated at &« = 0.8 in Figure 7. Here, the actual RUL of
only 70% of the test instances falls inside the credible inter-
val with a width of o = 0.8.

In general, for classification problems, the Brier Score (Brier,
1950) is used to quantify the reliability of predictions. How-
ever, in our adaption of the reliability diagram, each test in-
stance may fall into multiple credible intervals. The calcu-
lation of the Brier Score is thus not directly applicable. To
address this, we define the following Reliability scores (RS)
to quantify the reliability of the RUL prognostics:

1
RSunder _ / I{C(O&) < a}(a — C(a))da, C))
0
1
RSOVer — / (1-— I{C’(a) < a})(C(a) —a)da, (10)
0
Rstotal _ RSunder + RSOVCT7 (1 1)

1, Cla)<a

with Z{C(a) < a} = {0 Otherwise

The RS quantifies the overestimation and RS"™" the un-
derestimation of the uncertainty associated with the proba-

bilistic RUL prognostics. Let C(a) = {a, € {0.00,0.01,. ..

1.00} be the ideal curve, i.e., the curve where the Coverage
is exactly the width of the credible interval o. To quantify
the extent to which the uncertainty associated with the prob-
abilistic RUL prognostics is underestimated, we calculate the
area RS""" between the ideal curve and the reliability curve
C'(«) when the reliability curve is below the ideal curve (i.e.,
C(a) < a, yellow area in Figure 7). To quantify the extent to
which the uncertainty associated with the probabilistic RUL
prognostics is overestimated, we calculate the area RS®**" be-
tween the ideal curve and the reliability curve C'(«) when the
reliability diagram is above the ideal curve (i.e., C(a) > a,
blue area in Figure 7). The total RS (RS"®) is then the sum
of RS™*" and RS"™,

4. RESULTS

In this section, we evaluate our metrics for the obtained prob-
abilistic RUL prognostics for the turbofan engines in the C-
MAPSS dataset. These probabilistic RUL prognostics are ob-
tained with a CNN with Monte Carlo Dropout (see Section
2). Figure 9 shows the obtained probabilistic RUL prognos-
tics, and Table 3 shows the corresponding values of the four
proposed metrics. The CRPS is lowest for data subset FD003
(6.56), and highest for data subset FD004 (10.09). This is
in line with the obtained MAE, which is also lowest for data
subset FDOO3 and highest for data subset FD004. CRPS thus
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Figure 8. Reliability diagrams - C-MAPSS data subsets.

gives a good overview of the general performance of proba-
bilistic RUL prognostics. Moreover, in contrast with MAE,
the sharpness and accuracy of the estimated RUL distribu-
tions are also reflected by the CRPS values.

For data subset FD002, the CRPS" is lower than the CRPS.
This indicates that for this dataset, the RUL is relatively of-
ten underestimated. In contrast, for data subset FD003, the
CRPS"Y is higher than the CRPS. This indicates that for FD003,
the RUL is relatively often overestimated. The weighted CRPS,
compared to the standard CRPS, thus gives a good indication
on whether the RUL is usually over- or underestimated.

The reliability diagram of the four data subsets is shown in
Figure 8. For data subsets FDOO1 and FDOO3, the uncer-
tainty of the RUL prognostics is slightly overestimated. In
other words, the prognostics indicate that the RUL lies in an
interval with a certain probability. However, these probabil-
ities are too small, relative to the actual number of times the
RUL falls within these intervals. For example, let us consider
the 0.5-Coverage of data subset FDOO1. Here, the estimated
probability that a test instance falls inside its credible inter-
val with width 0.5 equals 0.5. We thus expect that 50% of
the test instances fall inside their credible interval with width
0.5, and 50% fall outside their credible interval. However,
60% of the test instances fall inside their credible interval
with width 0.5, i.e., the observed probability is 0.6 instead
of 0.5. This shows that the uncertainty associated with the
RUL estimates is overestimated. In contrast, for data subsets
FDO002 and FD004, the uncertainty is underestimated, i.e., the
prognostics indicate that the RUL lies in an interval with a
certain probability. These probabilities are too high relative
to the actual number of times the RUL falls within these in-
tervals. Table 3 shows that the over- and underestimation of
the uncertainty associated with the RUL prognostics is well
quantified by the reliability scores.

Table 3 also shows the 0.5-Coverage and the 0.95-Coverage.
Also this metric indicates that the RUL prognostics for data
subsets FDOO1 and FDOO3 overestimate the uncertainty as-
sociated with the prognostics, while for data subsets FD002
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Figure 9. Mean predicted RUL and associated RUL distribution - FD001, FD002, FD003, FD004 of the C-MAPSS test sets.

Table 3. Results for the four C-MAPSS data sets with respect to the uncertainty estimation.

Test CRPS" Coverage- Mean width- Coverage- Mean width-
set | MAEP CRPS (8=15 «a=05 a=05 a=095 «a=095 RS RS Rgrow
FDOOT | 9.22 6.97 7.03 0.60 16.9 0.95 48.0 0.073  0.001 0.074
FD002 | 11.14  8.44 7.80 0.40 13.2 0.83 38.0 0.001  0.077  0.078
FDO003 | 9.07 6.56 7.27 0.53 15.4 0.93 44.7 0.034  0.001 0.035
FD004 | 13.44 10.09 10.38 0.44 15.5 0.81 43.8 0.001  0.065 0.065
Table 4. Performance metrics for engines 53, 4, 86 and 67 in the test set of FD0O1.
Mean
Actual  predicted  Error:
Engine | RULy; RUL®;  w — 3 CRPSY  Z(a); T(a);
number i | (flights) (flights) (flights) Score? s; | CRPS; B=15 a=0.5 §%® -9 «=095 297 70025
53 26 29.0 -3.0 0.35 2.96 3.72 1 15 1 45
4 82 78.8 3.2 0.28 3.49 2.68 1 19 1 54
86 89 113.6 -24.6 10.67 17.98 26.96 0 16 1 48
67 77 114.5 -37.5 41.61 30.74 46.11 0 16 0 46

and FDO0O04 the uncertainty associated with the prognostics is
underestimated. Moreover, the mean width of the 0.95 cred-
ible interval is large, ranging from 38.0 flights (data subset
FDO002) to 48.0 flights (data subset FD0O1), i.e., the sharp-
ness of the RUL distributions is low.

4.1. RUL prognostics for individual engines

In this section, we analyze our proposed metrics for proba-
bilistic RUL prognostics for four specific engines 53, 4, 86
and 67 of data subset FDOO1, see Table 4. The probabilistic
RUL prognostics of these four engines is already shown in
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Figure 4.

For engine 53, the actual RUL is very close to the mean pre-
dicted RUL. The error is thus only -3.0 flights. Also CRPS33,
which is the generalization of the absolute error, is only 2.96.
However, most of the mass of the predicted distribution of the
RUL is on the right of the actual RUL, i.e., the RUL is over-
estimated (see Figure 4a). This is reflected in the relatively
high CRPSY; of 3.72. The actual RUL falls both within the
a = 0.5 and o = 0.95 credible interval, and the widths of
these intervals (15 and 45 flights respectively) are relatively
small compared to engines 4, 86 and 67.

For engine 4, the mean predicted RUL is close to the actual
RUL, with an error of 3.2 flights. Thus CRPS, is only 3.49.
Also, CRPSY = 2.68, which is less than CRPS,. This is
because most of the mass of the predicted pdf of the RUL is
on the left of the actual RUL, i.e., the RUL is underestimated
(see Figure 4b). The o = 0.5 and o« = 0.95 credible interval
both contain the actual RUL, but the width of these intervals
(19 and 54 flights respectively) is relatively large compared
to the other 3 engines. The low sharpness of this RUL dis-
tribution is thus reflected in the large widths of the credible
intervals.

For engines 86 and 67, the mean predicted RUL is far off
the actual RUL. This is reflected in the high CRPS values of
17.98 and 30.74, respectively. Moreover, nearly all the mass
of the predicted pdf of the RUL of both engines is on the right
of the actual RUL, i.e., the RUL is overestimated (see Figures
4c and 4d). The weighted CRPS metric is thus 26.96 and
46.11, respectively. This is higher than the standard CRPS
metric for these two engines. The actual RUL of engine 86
falls within the o = 0.95 credible interval, but the actual RUL
of engine 67 does not.

5. CONCLUSIONS

In this paper, we have introduced novel metrics to evaluate the
predicted probability distribution (pdf) of the RUL of compo-
nents. The CRPS and CRPS" metrics evaluate the accuracy
and sharpness of the estimated RUL distributions. The a-
Coverage and Reliability Scores evaluate the reliability of the
RUL prognostics.

We illustrate the four metrics for probabilistic RUL prognos-
tics of the turbofan engines in the C-MAPSS dataset. We
obtain these probabilistic RUL prognostics using a CNN with
Monte Carlo dropout. The results show the distribution of
the RUL of the turbofan engines is well estimated using this
method. Moreover, the accuracy, sharpness and reliability of
the obtained probabilistic RUL prognostics are shown to be
well evaluated by our proposed metrics. Future studies that
determine probabilistic RUL prognostics could therefore ben-
efit from evaluating their results using these proposed metrics.
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APPENDIX: PYTHON CODE FOR THE NOVEL METRICS

import numpy as np
import matplotlib.pyplot as plt
import sys

def CRPS (true_RULs, RUL_distributions, beta = 1.5):
wnn
This function calculates the CRPS and the weighted CRPS.
Parameters
true_RULs: Dictionary
A dictionary with for each test instance (key, integer), the true RUL (value).
RUL_distributions : Dictionary
A dictionary with for each test instance (key, integer), a list (value) with all RUL predictions
of this test instance. true_RULs and RUL distributions should have the same set of keys.
beta : Float between 1 (included) and 2 (included)
Penalty for overestimating the RUL relative to underestimating the RUL.
The default is 1.5.
Returns
crps : Float
The CRPS metric.
weighted crps : Float
The weighted CRPS metric,
mmrn
crps_sum = 0 #The value of the sum of the CRPS metric
weighted_crps_sum = 0 #The value of the sum of the weighted CRPS metric

#Calculate the CRPS and the weighted CRPS for each individual test instance
for i in true_RULs.keys():

#Initiliaze the CRPS and the weighted CRPS for test instance 1

crps_i = 0

weighted_crps_i = 0

#Get the probability distribution of the RUL of test instance i, and the true RUL
distribution = RUL_distributions.get (i)

true_RUL = true_RULs.get (i)

distribution.sort ()

number_ of predictions = len(distribution) #The number of RUL predictions in the distribution

for j in range (0, number_of_predictions -1, 1): #Go over all the predictions
#Calculate the distance between two RUL predictions
RUL_prediction = distribution[j]
next_RUL_prediction = distribution[j+1]
delta_RUL = next_RUL_prediction - RUL_prediction

#Each RUL prediction has a probability of 1 over the number of predictions.
#We use j+1, since j starts at 0, and since we consider the CDF
probability = (j+1) / number_of_ predictions

#Check if the RUL prediction is larger, or smaller than the true RUL,
#and update the CRPS and the weighted CRPS accordingly
if RUL_prediction < true_RUL:
probability_squared = probability x* 2
crps_i = crps_i + (probability_squared * delta_RUL)
weighted_crps_i = weighted_crps_i + (2 - beta) * (probability_squared * delta_RUL)
else:
probability_minus_one = probability - 1
probability_squared = probability_minus_one *x 2
crps_i = crps_i + (probability_squared * delta_RUL)
weighted_crps_i = weighted_crps_i + beta % (probability_squared * delta_RUL)

#Also consider the difference between the true RUL and the last prediction
last_prediction = distribution[-1]
if last_prediction < true_RUL:

crps_1i = crps_i + (1 % (true_RUL - last_prediction))
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weighted_crps_i = weighted_crps_i + (2 -beta) * (1 » (true_RUL - last_prediction))

#Also consider the difference between the true RUL and the first prediction
first_prediction = distribution[0]
if first_prediction > true_RUL:

crps_1i = crps_i + (1 %= (first_prediction-true_RUL))

weighted_crps_i = weighted_crps_i + beta * (1 » (first_prediction-true_RUL))

#Update the sum of the CRPS and the sum of the weighted CRPS
crps_sum = crps_sum + crps_i
weighted_crps_sum = weighted_crps_sum + weighted_crps_i
#Take the average value of the CRPS and the weighted CRPS
crps = crps_sum / len(RUL_distributions.keys())
weighted_crps = weighted_crps_sum / len(RUL_distributions.keys())
return crps, weighted_crps

def coverage (true_RULs, RUL_distributions, alpha):

mwn

This function computes the alpha-coverage and corresponding alpha-mean width.
Parameters
true RULs: Dictionary
A dictionary with for each test instance (key, integer), the true RUL (value).
RUL_distributions : Dictionary
A dictionary with for each test instance (key, integer), a list (value) with all RUL predictions
of this test instance. true_RULs and RUL distributions should have the same set of keys.
alpha : Float between 0 (included) and 1 (included)
The desired width of the credible interval.
Returns
coverage : Float between 0 (included) and 1 (included)
The coverage belonging to alpha.
mean_width : Float
The mean width of the credible interval belonging to alpha.
#Initialize the parameters of the credible interval
total_width = 0 #Total width of all credible intervals
in_ci = 0 #The number of components for which the true RUL falls within the credible interval
percentile_lower = 0.5 - 0.5 % alpha #Lower percentile of the credible interval
percentile_higher = 0.5 + 0.5 * alpha #Upper percentile of the credible interval

#Check for each test instance 1 1if the true RUL falls inside,
#or outside the credible interval of test instance 1
for i in true_RULs.keys () :
#Get the probability dstributions of the RUL test instance i, and the true RUL
distribution = RUL_distributions.get (i)
true_RUL = true_RULs.get (i)
distribution.sort ()
number_of_predictions = len(distribution) #The number of RUL predictions in the distribution

#Get the indeces of the RUL predictions belonging to the considered percenticles.
#We use -1, since a list in python starts at 0 instead of 1

index_lower = max (0, int (percentile_lower »* number_of_predictions) - 1)
index_higher = int (percentile_higher » number_of_predictions) - 1

lower_bound_ci = distribution[index_lower] #Lower bound credible interval
upper_bound_ci = distribution[index_higher] #Upper bound credible interval

#Check if the true RUL is within the credible interval
if true_RUL >= lower_bound_ci and true_RUL <= upper_bound_ci:
in_ci = in_ci + 1

#Update the total width of all credible interval

total_width = total_width + (upper_bound_ci - lower_bound_ci)
#Calculate the coverage and the mean width of the credible interval
coverage = in_ci / len(true_RULs.keys())
mean_width = total_width / len(true_RULs.keys())
return coverage, mean_width
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def area_under(x_1, x_2, f_1, f_2):
mmn
This functions calculates the area between the ideal curve and the reliability curve, between
x_1 and x_ 2. Here, the reliability curve 1is under the ideal curve between x_1 and x_2.
Parameters
x 1 : Float
Start value of alpha.
x_ 2 : Float
End value of alpha.
f 1 : Float
Coverage at alpha = x_1.
f 2 : Float
Coverage at alpha = x_2.
Returns
area : Float
Area between the ideal curve and the reliability curve, between x_1 and x 2.
area = (x_2 - f_2) » (x_.2 — x_1) — 0.5 » (x_2 - x_1) = (x_2 — x_1)
area = area + 0.5 * (x_2 — x_1) = (f_2 - f_1)
return area

def area_above(x_1, x_2, f_1, f_2):
mmn
This functions calculates the area between the ideal curve and the reliability curve, between
x_1 and x_2. Here, the reliability curve is above the ideal curve between x_1 and x_2.
Parameters
x_1 : Float
Start value of alpha.
x_2 : Float
End value of alpha.
f 1 : Float
Coverage at alpha = x_1.
f 2 : Float
Coverage at alpha = x_2
Returns
area : Float
Area between the ideal curve and the reliability curve, between x_1 and x_2.
mmn
area = (f_1 - x_1) » (x.2 - x_1) - 0
area = area + 0.5 * (x_2 - x_1) = (f
return area

L5 ox (x2 - x_ 1) * (x_2 - x_1)
2 - f_1)

def reliability_score(true_RULs, RUL_distributions, name, stepsize = 0.01 ):
won
This functions calculates the reliability scores (under, over and total),
and plots the reliability diagram.
Parameters
true RULs: Dictionary
A dictionary with for each test instance (key, integer), the true RUL (value).
RUL _distributions : Dictionary
A dictionary with for each test instance (key, integer), a list (value) with all RUL predictions
of this test instance. true_RULs and RUL distributions should have the same set of keys.
Returns
RS_total : Float
Total Reliability Score.
RS_under : Float

Reliability Score - underestimation of uncertainty.
RS _over : Float
Reliability Score - overestimation of uncertainty.

mwn
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#o——————— Calculate the Reliability curve

reliability_curve = []

for alpha in np.arange (0, 1 + sys.float_info.epsilon, stepsize): #0ne is included
alpha_coverage = coverage (true_RULs, RUL_distributions, alpha) [0]

reliability_curve.append (alpha_coverage)

#o——————— Plot the reliability diagram

ideal_curve = list (np.arange(0, 1 + sys.float_info.epsilon, stepsize)) #ideal curve, where y = x
fig, ax = plt.subplots()

ax.set_ylabel (r"$\alpha\mathrm{-Coverage}s", fontsize = 16)

ax.set_xlabel (r"$\mathrm{Width \: of \: credible \: interval \: }\alphas$", fontsize = 16)

ax.plot (ideal_curve, ideal_curve, label = "Ideal curve", c = "red")
ax.plot (ideal_curve,reliability_curve , label = "Reliability curve", color = "blue", \
linestyle = "dashed")

ax.legend()

plt.show ()

Fomm Calculate the reliability score

RS_under = 0 #The reliability score: underestimation of the uncertainty

RS_over = 0 #The reliability score: overestimation of the uncertainty

for alpha in np.arange (0, 1, stepsize): #Loop over all alpha's
next_alpha = alpha + stepsize
coverage_alpha = coverage (true_RULs, RUL_distributions, alpha) [0]
coverage_next_alpha = coverage (true_RULs, RUL_distributions, next_alpha) [0]

#If the reliability curve is beneath the ideal curve:

if coverage_alpha <= alpha and coverage_next_alpha <= next_alpha:
surface = area_under (alpha, next_alpha, coverage_alpha, coverage_next_alpha)
RS_under = RS_under + surface

#If the reliability curve is above the ideal curve:

elif coverage_alpha >= alpha and coverage_next_alpha >= next_alpha:
surface = area_above (alpha, next_alpha, coverage_alpha, coverage_next_alpha)
RS_over = RS_over + surface

#If the reliability curve starts under the ideal curve, and ends above the ideal curve
elif coverage_alpha <= alpha and coverage_next_alpha >= next_alpha:
#Find the place where the reliability curve crosses the ideal curve

dy = coverage_next_alpha - coverage_alpha

a = dy / stepsize

alpha_cross = (coverage_alpha - a * alpha) / (l-a)
coverage_cross = alpha_cross

#Calculate the surface under the ideal curve

surface_under = area_under (alpha, alpha_cross, coverage_alpha, coverage_cross)

RS_under = RS_under + surface_under

#Calculate the surface above the ideal curve

surface_above = area_above (alpha_cross, next_alpha, coverage_cross, coverage_next_alpha)
RS_over = RS_over + surface_above

#If the reliability curve starts above the ideal curve, and ends under the ideal curve
elif coverage_alpha >= alpha and coverage_next_alpha <= next_alpha:
#Find the place where the reliability curve crosses the ideal curve

dy = coverage_next_alpha - coverage_alpha

a = dy / stepsize

alpha_cross = (coverage_alpha - a * alpha) / (l-a)
coverage_cross = alpha_cross

#Calculate the surface above the ideal curve
surface_above = area_above (alpha, alpha_cross, coverage_alpha, coverage_cross)
RS_over = RS_over + surface_above
#Calculate the surface under the ideal curve
surface_under = area_under (alpha_cross, next_alpha, coverage_cross, coverage_next_alpha)
RS_under = RS_under + surface_under
RS_total = RS_under + RS_over #Total reliability score
return RS_total, RS_under, RS_over
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