
Weighted-QMIX-based optimization for maintenance
decision-making of multi-component systems

Van-Thai Nguyen, Phuc Do, Alexandre Voisin, and Benoit Iung

Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
van-thai.nguyen@univ-lorraine.fr

phuc.do@univ-lorraine.fr
alexandre.voisin@univ-lorraine.fr

benoit.iung@univ-lorraine.fr

ABSTRACT

It is well-known that maintenance decision optimization for
multi-component systems faces the curse of dimensionality.
Specifically, the number of decision variables needed to be
optimized grows exponentially in the number of components
causing computational expensive for optimization algorithms.
To address this issue, we customize a multi-agent deep re-
inforcement learning algorithm, namely Weighted QMIX, in
the case where system states can be fully observed to obtain
cost-effective policies. A case study is conducted on a 13-
component system to examine the effectiveness of the cus-
tomized algorithm. The obtained results confirmed its perfor-
mance.

1. INTRODUCTION

Maintenance policy can be classified into two main categories,
namely, corrective and preventive maintenance (CM and PM)
(H. Wang, 2002). CM carries out maintenance actions on
failed machines, which is often associated with high related
costs due to unexpected production losses as well as unsched-
uled maintenance costs (Ahmad & Kamaruddin, 2012). On
the contrary, PM implements maintenance on functioning ma-
chines to prevent their sudden failures in order to reduce down-
time costs (Huang, Chang, & Arinez, 2020).

PM interventions can be planned in either time-oriented or
condition-based manner (CBM), however, the later appears to
be more advantageous. Particularly, it allows flexibly select-
ing maintenance decisions based on current states of main-
tained machines instead of on a fixed scheduled calendar.
Moreover, recent advances in sensing and information tech-
nology allows rich degradation data to be collected enabling
CBM to become a popular approach for maintenance decision-

Van-Thai Nguyen et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

making and optimization.

CBM policies can be divided into two main groups: direct
mapping and threshold-based policy. While the former maps
directly from component degradation measurements to main-
tenance actions, the later first compares component states to
predefined thresholds, and then choose maintenance actions
accordingly. Whereas CBM optimization processes used for
single-unit systems can be effectively achieved due to the
small number of decision variables needed to be optimized
(Quatrini, Costantino, Di Gravio, & Patriarca, 2020), the ones
of multi-component systems suffer from the curse of dimen-
sionality. Particularly, the number of decision variables grows
rapidly as the number of components increases, causing com-
putational expensive for optimization algorithms (Zhang &
Si, 2020).

Recent advancements in the field of reinforcement learning
(RL) give rise to direct mapping approaches by providing
new tools for single-agent deep RL algorithms (DRL) to deal
with maintenance decision optimization of systems with large
state spaces. Specifically, (Zhang & Si, 2020) used dou-
ble deep Q-network (DDQN) algorithm to minimize cost for
a 12-component system which suffers from stochastic, eco-
nomic dependence and competing failure risks. DDQN is
also employed to optimize maintenance cost for systems with
extremely large state spaces showing better performance in
comparison to threshold-based policies (Huang et al., 2020).
Despite the success of single-agent DRL algorithms for main-
tenance applications with state space complexities, they are
shown in the literature to suffer from the problem of large
action spaces (Andriotis & Papakonstantinou, 2019). In par-
ticular, the output layer of a conventional deep Q-network is
composed of Q-value for each available action, and is then
equal to the action space’s size. Similarly, actor networks
of policy-gradient-based DRL algorithms output a probabil-
ity distribution over all possible actions. As a result, these
network structures of single-agent DRL algorithms are not

1

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 360

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

suitable for applications with sizable action spaces.

Fortunately, the framework of multi-agent DRL (MADRL)
appears as a promising solution to this challenge. Particu-
larly, in a multi-agent maintenance planning task, each agent
observes the state of a subsystem or the system and deter-
mines maintenance actions of one or more components. As a
result, the action space of an agent is much smaller than the
one of the entire system, which helps alleviate the issue of
large action spaces at system level (Zhou, Li, & Lin, 2021).
MADRL has been received recently increasing attention from
maintenance researchers and several related articles are re-
viewed in the following. Wolpertinger deep deterministic pol-
icy gradient algorithm is employed in (Liu, Chen, & Jiang,
2019) to optimize selective maintenance policies for a coal
transport system consisting of 14 components. However, this
algorithm requires a nearest neighbor layer used for action
reduction that interrupts the differentiability of the network,
potentially leading to training instabilities due to improper
backpropagation of gradients (Andriotis & Papakonstantinou,
2019). Deep centralized multi-agent actor-critic (DCMAC)
algorithm is developed by (Andriotis & Papakonstantinou,
2019) to optimize maintenance actions for large structures.
The truncated importance sampling mechanism is employed
in DCMAC to cope with high variance in gradient estima-
tors of learning policies, however, bias still exists which may
cause unstable training (Z. Wang et al., 2016). More recently,
hierarchical coordinated DRL algorithm is proposed in (Zhou
et al., 2021) to optimize maintenance decisions of a specific
natural gas plant consisting of 14 components which may be
difficult to be applied for other kinds of systems.

Besides, recent advances in monotonically decomposing joint
action-value functions allow to improve MADRL algorithms’
scalability as well as training stability. Among the papers em-
ploying this technique, Weighted QMIX (WQMIX) (Rashid,
Farquhar, Peng, & Whiteson, 2020) is one of the state-of-
the-art algorithms, however, its performance for maintenance
decision-making has not been investigated yet. Furthermore,
WQMIX adopts the centralized training and decentralized ex-
ecution paradigm which may cause slow learning in applica-
tions where agents can fully observe system states.

To address these issues, in this paper, we customize WQMIX
to effectively optimize maintenance decisions of large-scale
multi-component systems for the fully observable setting. In
particular, separate agent networks are replaced by a single
branching dueling network (branching network) (Tavakoli,
Pardo, & Kormushev, 2018) to take advantage of the fully
observable setting. The branching structure allows achieving
a linear increase in the size of deep Q-networks’s output layer
to avoid the cure of dimentionality. Moreover, it also allows
to create virtual communication channels between learning
agents to facilitate decision-making processes as well as to
avoid the use of recurrent neural networks in agent networks

in the original paper that may slow down learning processes.

Our main contributions in this study are two folds. Firstly, we
customize WQMIX algorithm specifically for the fully ob-
servable setting . Secondly, we conduct a comparison study
to benchmark the performance of the customized algorithm,
the branching dueling deep Q-learning (Tavakoli et al., 2018)
and a threshold-based policy when they are used to optimize
maintenance actions of large-scale systems.

The rest of the paper is organized as following. Section 2 is
devoted to the general description of the maintained system.
Maintenance operations and optimization problem statement
formulation are described in section 3. The fully cooperative
multi-agent setting for maintenance decision-making is de-
picted in section 4 and the detail of maintenance optimization
process is presented in section 5. The numerical results are
depicted and analyzed in section 6. The conclusions drawn
from this work and some perspectives are presented in the
last section.

2. SYSTEM DESCRIPTION

We consider a series-parallel system being composed of N
components which can be grouped into M subsystems. It
is assumed that subsystem i contains Hi components of the
same type i. As a result, N =

∑M
i=1H

i.

A component of type i at a periodical inspection time tk can
be observed in any discrete health state, sik ∈

{
0, ...,mi

}
,

ranging from new to complete failure. Furthermore, it is also
assumed that without any maintenance intervention, the state
transition of a component of type i between two successive
inspections obeys its inherent Markov probability transition
matrix that has the following form:

P i =

pi00 pi01 pi02 · · · pi0mi

0 pi11 pi12 · · · pi1mi

0 0 pi22 · · · pi2mi

...
...

...
. . .

...
0 0 0 · · · 1

(1)

in which piuv is a non-negative real number representing the
degradation transition probability from state u to state v of
a component of type i that satisfies:

∑mi

v=u p
i
uv = 1,∀u ∈{

0, . . . ,mi
}

.

As an example, figure 1 illustrates a 13-component series sys-
tem with four parallel subsystems. Specifically, component 1
is considered as the first subsystem. Component 2, 3 and 4
together form the next subsystem. The third one is composed
of component 5, 6, 7 and 8. The last subsystem consists of
the remaining components.

The degradation transition matrices of the four component

2

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 361

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

2
4
3

5
6
7
8

10
9
11
12
13

1

Figure 1. Reliability block diagram of the studied system

types are given as belows:

P 1 =

0.60 0.30 0.05 0.05
0.00 0.60 0.30 0.10
0.00 0.00 0.60 0.40
0.00 0.00 0.00 1.00

 (2)

P 2 =

0.50 0.30 0.10 0.10
0.00 0.50 0.30 0.20
0.00 0.00 0.50 0.50
0.00 0.00 0.00 1.00

 (3)

P 3 =

0.65 0.25 0.05 0.05
0.00 0.65 0.25 0.10
0.00 0.00 0.65 0.35
0.00 0.00 0.00 1.00

 (4)

P 4 =

0.60 0.30 0.05 0.05
0.00 0.60 0.30 0.10
0.00 0.00 0.60 0.40
0.00 0.00 0.00 1.00

 (5)

3. MAINTENANCE OPERATIONS

Maintenance operations of the studied system are planned
following both CM and PM strategy. A CM intervention re-
places a failed component by a new one of the same type. PM
actions could be either perfect or imperfect. While a perfect
PM action completely restores a survival component to be as
new, the imperfect one implies that state after maintenance
of a component is somewhere between its state before main-
tenance and “as good as new” state. Moreover, it should be
noted that maintenance actions can only be carried out after
component states are revealed by inspections. As a result,
when the failure of a component or a group of components
occurs between two consecutive inspections, maintenance ac-
tions must wait until next scheduled inspection to be imple-
mented.

The cost of maintaining a component individually consists
of an inspection cost, a setup cost and a component-specific
maintenance cost. The inspection cost is denoted as cins,
which is necessarily paid even for survival components in or-
der to reveal their current degradating states. We consider
in this paper two levels of setup cost following (Wijnmalen
& Hontelez, 1997), which are system setup cost, c0, caused
by, for example, transportation of spare parts or administra-
tive handling, and component-type setup cost, ct,i, originated
from the requirement of specific tools or repairman skills.
The component-specific maintenance cost is denoted as cm,i

which depends on maintenance quality. Based on the above
descriptions, the cost of separately maintaining a component
i is computed as belows:

ci = c0 + ct,i + cins + cm,i (6)

In practice, maintenance operations of multi-component sys-
tems usually benefits from shared setup costs when several
components are grouped to maintain thanks to the positive
economic dependency between them. For the studied sys-
tem, the system setup cost can only be charged once if several
components are maintained together. In the same manner, the
component-type setup costs are charged once if a group of
components of the same type are maintained simultaneously.
As a result, the total maintenance cost at system level denoted
as c can be calculated as follows:

c =

N∑

i=1

ci − I0(N0 − 1)c0 −
M∑

i=1

Im,i(Hm,i − 1)ct,i (7)

in which N0 is the number of maintained components; Hm,i

is the number of maintained components of subsystem i; I0 is
the system maintenance indicator whose value is equal to one
if there is at least one component being maintained or equal
to zero otherwise; Im,i is the maintenance indicator of type i
whose value is equal to one if there is at least one component
of type i being maintained or equal to zero otherwise. In ad-
dition to the maintenance cost, the downtime cost denoted as
cdt that is caused by the failure of a component or a group of
components leading to the shutdown of the system should be
considered. Our objective of maintenance decision-making
optimization is to minimize to the long-run average cost rate.

4. FULLY COOPERATIVE MULTI-AGENT SETTING FOR
MAINTENANCE DECISION-MAKING

4.1. Agent-environment interaction

The maintenance optimization problem of the studied sys-
tem is modeled as a fully cooperative multi-agent decision-
making task with a group of N agents, AG =

{
AGi

}N
i=1

, in
which one agent controls maintenance decisions of one com-
ponent and can fully observe system states. A component i
has its own state space, Si, that help form the state space at

3

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 362

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

system level, Sjoint ≡ S1×S2× ...×SN . At any inspection
time tk, each agent AGi ∈ AG observes the system’s current
state sk ∈ Sjoint and then choose an action aik from its own
action space, Ai, based on the observation and its own policy
denoted as πi. The actions chosen by individual agents form
a joint action ak ∈ Ajoint ≡ A1 ×A2 × ...×AN . Once the
chosen joint action is implemented, the system transitions to
a state after maintenance s̄k and releases a numerical reward
rk shared by all agents. After that, it degrades naturally to a
next state before maintenance sk+1 at inspection time tk+1

according to the transition matrices P i (i = {1, ...,M}).

4.1.1. Environment element definition

The definition of system state, action and reward distribution
mechanism within the context of this study is presented in the
following paragraphs.

System state The state of a component i at inspection time
tk is its degradation level sik. Hence, the system state at that
time is a vector consisting all component states defined as
sk =

[
s1k, s

2
k, . . . , s

N
k

]T
.

System action Similarly, the action at system level at in-
spection time tk is a vector being composed of all compo-
nent maintenance actions which is mathematically defined as:
ak =

[
a1k, a

2
k, . . . , a

N
k

]T
where aik is the maintenance action

of component i at that time. More specifically, there are three
possible maintenance actions for each component which are
encoded as belows:

aik =

0 leave component i as it is
1 perform imperfect maintenance on component i
2 replace component i by the one of the same type

(8)
Imperfect maintenance implies that a component can be main-
tained to be in a better state which is some where between its
current state and “as good as new”. We employ the imperfect
maintenance model in (Do & Bérenguer, 2012) where state
after maintenance of a component can be obtained by sam-
pling uniformly discretely from the interval from new state
to its state before maintenance. The cost of maintaining a
component i is computed as belows:

cm,ik = cr,ik .

(
sik − s̄ik
sik

)β
(9)

in which cr,ik is a constant representing the replacement cost
of component i; sik and s̄ik are respectively the state before
and after maintenance of component i; β is a real positive
number representing the components’ imperfect maintenance
characteristics.

Reward Maintenance optimization involves balancing the
trade-off between maintenance frequency and downtime cost,
which means that if maintenance is conducted too often, main-
tenance cost can be high or if maintenance operations are con-
ducted less frequently, downtime cost is more prone to occur-
rence. To deal with this issue, the reward function used in this
work is defined as the opposite of the total cost which is the
sum of the maintenance cost at system level and the downtime
cost as follows:

rk = −ck − Ikcdt (10)

in which Ik is the system failure status indicator at time tk
whose value is equal to one if the system is in failed state at
that time or is equal to zero otherwise; cdt is a real constant
representing downtime cost.

5. MADRL-BASED MAINTENANCE OPTIMIZATION

We first present BDQ algorithm to introduce the branching
network in subsection 5.1 and then the customized WQMIX
algorithm in subsection 5.2.

5.1. Branching dueling Q-learning (BDQ)

DRL has emerged recently as an effective framework for solv-
ing decision-making tasks with large state spaces by using
deep neural networks to approximate action-value functions.
This parameterized functional form allows to reduce the prob-
lem of determining values at each point in a Q-table to de-
termining the number of weights of the corresponding net-
work which is much less than the number of state-action pairs
(Andriotis & Papakonstantinou, 2019). Moreover, the weight
sharing in neural networks enables the generalization in the
sense that updating weights for a single state-action pair af-
fect the estimation of action values of other state-action pairs.
Despite the success of DRL algorithms for applications with
state space complexities, they may not be efficient for the
ones with large action spaces due to the fact that the out-
put layer of a deep Q-net work or a dueling deep-Q network
consist of Q-values for each available actions. As a result,
its size is equal to the size of action space (Andriotis & Pa-
pakonstantinou, 2019). For the system studied in this paper,
the size of action space is equal to

∏N
i=1 |Ai| which grows

exponentially in the number of components.

To tackle this problem, the BDQ algorithm in (Tavakoli et al.,
2018) provides a special network structure, namely, branch-
ing dueling deep Q-network (or branching network for short),
that allows the number of outputs of deep Q-networks to lin-
early increases with the number of components as illustrated
in figure 2.

Specifically, at component level, each agent AGi chooses a
maintenance decision aik = argmaxaik∈Ai Qi(sk, a

i
k) based

on its own action-value function which is computed based
on its own advantage function, Ωi(sk, a

i
k) and the state-value

4

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 363

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

Shared MLP
MLP MLP

MLPShared MLP
MLP

MLP

Figure 2. (a) Dueling Q-network structure. (b) Branching
dueling Q-network structure.

function that is shared by all agents, V (sk), as belows:

Qi(sk, a
i
k) = V (sk) + Ωi(sk, a

i
k)− 1

|Ai|
∑

ak∈Ai

Ωi(sk, a
i
k)

(11)
At system level, the agents cooperatively resolve to select a
joint maintenance action ak which is defined in previous sec-
tion as a vector of all component maintenance actions accord-
ing to the following equation:

ak =

argmax
a1k∈A1

Q1(sk, a
1
k)

argmax
a2k∈A2

Q2(sk, a
2
k)

· · ·
argmax
aNk ∈AN

QN (sk, a
N
k)

(12)

The loss of one transition sample, (sk,ak, rk, sk+1), used to
train the branching network is aggregated between all branches
as belows:

L =
1

N

N∑

i=1

(Qi(sk, a
i
k)− y)2 (13)

in which y = r + γ 1
N

∑N
i=1Q

i
target(sk+1, a

i,∗
k+1) is con-

sidered as the target which is shared between all branches
where ai,∗k+1 = argmaxaik+1∈Ai Qi(sk+1, ak+1). It should
be noted that Qitarget is computed from a separate branching
network called “target network” whose weights are period-
ically copied from the one used to calculate Qi after every
fixed number of training steps.

5.2. The customized WQMIX

Despite the advantage of the BDQ’s branching network that
allows to deal with the exponential increase in the number of
outputs of deep Q-networks for high-dimensional systems, its
training scheme is based on the idea of distributing temporal-

difference errors across all branches, which is a heuristic ap-
proach and lacks of theoretical methodology. Indeed, BDQ
does not guarantee one of the most important concepts of
multi-agent systems which is the decision selection consis-
tency between component and system level in the sense that
learning agents cooperate with each other to choose a joint
maintenance action ak according to the system action-value
function, Q(sk,ak), that should be consistent with actions
chosen by local agents. The action selection consistency is
mathematically expressed as:

argmax
ak∈A

Q(sk,ak) =

argmax
a1k∈A1

Q1(sk, a
1
k)

argmax
a2k∈A2

Q2(sk, a
2
k)

· · ·
argmax
aNk ∈AN

QN (sk, a
N
k)

(14)

Branching dueling network

Q-value selection at each branch

Mixing network MLP

MLP
Hyper network

Figure 3. (a) The customized WQMIX architecture. (b) Mix-
ing network structures.

Fortunately, the action selection consistency between compo-
nent and system level can be achieved through the factoriza-
tion method of VDN (Sunehag et al., 2017) which supposes
that the system Q-function can be approximated by the sum
of the per-component ones:

Q(sk,ak) ≈ Qtot(sk,ak) =

N∑

i=1

Qi(sk, a
i
k) (15)

QMIX (Rashid et al., 2018) generalizes the VDN’s linear rep-
resentation by assuming that Qtot(sk,ak) is a monotonic
continuous function of the per-agent Q-functions, in other
words, ∂Qtot(sk,ak)/∂Qi(sk, a

i
k) ≥ 0,∀i ∈ {1, ..., N}.

This assumption can be realized by using a multi-layer per-

5

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 364

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

ceptron (MLP) called mixing network that takes agents’ own
Q-values as inputs and outputting values of Qtot(sk,ak),
whose weights are generated by a hyper network (Ha, Dai,
& Le, 2016) to assure their values greater than or equal to
zero.

The monotonic factorization scheme restricts an agent choos-
ing its own actions independent of the actions chosen by other
agents which may lead to the finding of suboptimal polices
for applications required strong cooperation efforts between
learning agents as in the case of maintenance decision-making
for multi-component systems. (Rashid et al., 2020) showed
that this factorization limit originates from the equal weight-
ing placed on each join action in the loss function used to up-
date the joint Q-function, and proposed a weighting scheme
to cope with this issue. Specifically, a MLP without any re-
striction to its weights is used to estimate system action val-
ues which is considered as baselines to put more attention on
potential optimal joint actions in the loss function.

The network architectures used for computing Q(sk,ak) and
Qtot(sk,ak) is illustrate in figure 3. The losses of one tran-
sition sample, (sk,ak, rk, sk+1), used to update the weights
of these networks are computed as belows:

LQtotal

= w(sk,ak)(Qtotal(sk,ak)− y)2

LQ = (Q(sk,ak)− y)2
(16)

where:

• y = r+γQtarget(sk+1, argmaxak+1
Qtot(sk+1,ak+1))

is the fixed target with Qtarget is computed from the tar-
get networks of Q.

• w(sk,ak) is the weight of joint action ak whose value
is equal to 1 if Qtot(sk,ak) < y or equal to α ∈ (0, 1]
otherwise.

6. NUMERICAL STUDIES

This section compares the performance of the customized
WQMIX with BDQ and a threshold-based policy for main-
tenance optimization of the 13-component system depicted
in figure 1.

6.1. System parameters

All cost parameters are given in arbitrary units (acu) which
are presented in the following. The inspection cost cins and
system setup cost c0 are 5 and 30 (acu) respectively. The
component setup cost of type i is ct,i ∈ {25, 20, 15, 10} for
i = 1, 2, 3, 4. The replacement costs cr,i of four component
types are 65, 60, 55, 50 (acu) respectively. The downtime cost
constant is cdt = 1000 (acu). Finally, the imperfect mainte-
nance parameter β is set to 3.

6.2. Training descriptions

The branching network of WQMIX and BDQ takes compo-
nent states as input, hence, its input layer’s size is 13. The
shared MLP consists of two layers of 128 hidden units and
the advantage MLP for each branch and the MLP used for
computing system value function are composed of a single
layer of 64 and 128 hidden units respectively. The number of
outputs in each branch is equal to the number of maintenance
actions at component level which is 3. The mixing network of
Qtot consists of two hidden layers of 64 units, whose weights
are generated by a two separate hyper-networks of 64 units.
The mixing network of Q is a MLP of two hidden layers of
64 units.

It should be noted that due to the maintenance constrain de-
scribed in section 3 that if a component is failed, it can only
be replaced by a new one of the same type or be left as it is,
we classify a component action, aik, chosen at a given system
state sik as a wrong action if sik = mi then aik = 1, or as a fea-
sible action, otherwise. In order to realize this constrain, an
action mask is applied to filter out invalid actions. In partic-
ular, Q-value corresponding to wrong actions at each branch
are forced to be −∞ to guarantee that invalid actions cannot
be chosen by DRL agents.

The two MADRL algorithms are trained through 2 × 106

steps. Learning rates are scheduled to decline from 10−3 to
0.25×10−3 during the first 300×103 training steps. Through
training, exploration constant is annealed linearly from 1.0 to
0.05 over 500 × 103 training steps and kept as constant for
the rest of the learning. A mini-batch size of 128 is used for
uniformly sampling from relay buffers of 300 × 103 system
transitions. The target update frequency is 20 × 103 steps.
Latest policy networks after every 103 steps are employed to
interact with a validation environment 5× 103 times to com-
pute corresponding cost rates.

The threshold-based maintenance policy used in this compar-
ison study is originated from (Do & Bérenguer, 2012) which
can be expressed by a vector l =

[
l1, l2, . . . , lN

]
where li

is the preventive maintenance threshold of component i. The
detail description of maintenance schedule of a component
i is given in the following. If sik = mi, component i is in
failed state. Thus, the “replacement” action is implemented
immediately. If li ≤ sik < mi, component i is still function-
ing but badly. Therefore, the “imperfect maintenance” action
is carried out. If sik < li, component i is functioning well.
Accordingly, the “do nothing” action is chosen.

The optimal system-level preventive maintenance thresholds
are obtained via genetic algorithm (GA). During optimization
processes, each solution is evaluated using simulation results
from 5 runs of 5 × 103 maintenance interventions. The GA
optimizer is initialized with a population of 20 elements and
a mutation rate of 0.1. The training converges after 25 itera-

6

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 365

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

tions.

6.3. Simulation results

The simulation results are presented in figure 4, figure 5, table
1 and table 2. It can be noticed that the optimized cost rate of
the threshold-based method is highest which is 326.53 (acu)
with the corresponding preventive thresholds [1 2 2 2 2 2 2 2
2 2 2 2 2]. The cost rate obtained by BDQ is 265.75 (acu).
In comparison with the two others, the customized WQMIX
found the best cost rate which is 255.55 (acu).

Based on table 2, it can be seen that the optimization time
of the threshold-based policy is shortest due to the fact that
the search space of preventive maintenance thresholds is not
too large for the studied system. The training time of the
customized WQMIX is larger than the one of BDQ because
of the extra neural networks used to compute Q and Qtot.

0.0 0.5 1.0 1.5 2.0
Step (×106)

200

400

600

800

1000

1200

C
os

t
ra

te

BDQ

WQMIX

Figure 4. The evolution of cost rates during training

1.0 1.2 1.4 1.6 1.8 2.0
Step (×106)

250

260

270

280

290

300

310

C
os

t
ra

te

BDQ

WQMIX

Figure 5. A closer look at the evolution of cost rates

Table 1. Cost rate summary (acu)

WQMIX 255.55
BDQ 265.75
Threshold-based policy 326.53

Table 2. Computing time summary (hours)

WQMIX 12.33
BDQ 8.68
Threshold-based policy 2.35

7. CONCLUSION

In this work, WQMIX algorithm is customized to effectively
optimize maintenance decisions of large-scale systems in the
case where system states can be fully observable. Particu-
larly, separate agent networks are replaced by a single branch-
ing network to take advantage of the fully observable set-
ting. The branching network reserves the ability of avoiding
the cure of dimentionality as well as to facilitate decision-
making processes. A comparative study is conducted on a
13-component system to examine the performance of the cus-
tomized algorithm. The obtained results confirmed its effec-
tiveness.

Our future work will focus on CBM modeling approaches for
multi-component systems that can integrate multiple kinds of
dependencies into maintenance models. Developing MADRL
algorithms for maintenance decision optimization will be also
considered.

ACKNOWLEDGMENT

This work is part of the AI-PROFICIENT project which has
received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement No
957391.

REFERENCES

Ahmad, R., & Kamaruddin, S. (2012). An overview of
time-based and condition-based maintenance in indus-
trial application. Computers & industrial engineering,
63(1), 135–149.

Andriotis, C., & Papakonstantinou, K. (2019). Managing
engineering systems with large state and action spaces
through deep reinforcement learning. Reliability Engi-
neering & System Safety, 191, 106483.

Do, P., & Bérenguer, C. (2012). Condition-based mainte-
nance with imperfect preventive repairs for a deterio-
rating production system. Quality and Reliability En-
gineering International, 28(6), 624–633.

Ha, D., Dai, A., & Le, Q. V. (2016). Hypernetworks. ArXiv.
Huang, J., Chang, Q., & Arinez, J. (2020). Deep reinforce-

ment learning based preventive maintenance policy for

7

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 366

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

serial production lines. Expert Systems with Applica-
tions, 160, 113701.

Liu, Y., Chen, Y., & Jiang, T. (2019). Dynamic selective
maintenance optimization for multi-state systems over
a finite horizon: A deep reinforcement learning ap-
proach. European Journal of Operational Research,
283(1), 166–181.

Quatrini, E., Costantino, F., Di Gravio, G., & Patriarca, R.
(2020). Condition-based maintenance—an extensive
literature review. Machines, 8(2), 31.

Rashid, T., Farquhar, G., Peng, B., & Whiteson, S. (2020).
Weighted qmix: Expanding monotonic value function
factorisation for deep multi-agent reinforcement learn-
ing. Advances in Neural Information Processing Sys-
tems.

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Fo-
erster, J., & Whiteson, S. (2018). Qmix: Monotonic
value function factorisation for deep multi-agent rein-
forcement learning. In International conference on ma-
chine learning (pp. 4295–4304).

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zam-
baldi, V., Jaderberg, M., . . . others (2017). Value-
decomposition networks for cooperative multi-agent
learning. ArXiv.

Tavakoli, A., Pardo, F., & Kormushev, P. (2018). Action
branching architectures for deep reinforcement learn-
ing. In Proceedings of the aaai conference on artificial
intelligence (Vol. 32).

Wang, H. (2002). A survey of maintenance policies of de-
teriorating systems. European journal of operational
research, 139(3), 469–489.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,
Kavukcuoglu, K., & de Freitas, N. (2016). Sample effi-
cient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224.

Wijnmalen, D. J., & Hontelez, J. A. (1997). Coordinated
condition-based repair strategies for components of a
multi-component maintenance system with discounts.
European Journal of Operational Research, 98(1), 52–
63.

Zhang, N., & Si, W. (2020). Deep reinforcement learn-
ing for condition-based maintenance planning of multi-
component systems under dependent competing risks.
Reliability Engineering & System Safety, 203, 107094.

Zhou, Y., Li, B., & Lin, T. R. (2021). Maintenance opti-
misation of multicomponent systems using hierarchical
coordinated reinforcement learning. Reliability Engi-
neering & System Safety, 108078.

8

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 367

