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ABSTRACT

Several studies have proposed Remaining-Useful-Life (RUL)
prognostics for aircraft components in the last years. How-
ever, few studies focus on integrating these RUL prognos-
tics into maintenance planning frameworks. This paper pro-
poses an optimization model for opportunistic maintenance
scheduling of aircraft components that integrates RUL prog-
nostics and that groups the maintenance of these components
to reduce costs. We illustrate our approach for the mainte-
nance of a fleet of aircraft, each equipped with multiple land-
ing gear brakes. RUL prognostics for the landing gear brakes
are obtained using a Bayesian regression model. Based on
these RUL prognostics, we group the replacement of brakes
using an integer linear program. As a result, we obtain a cost-
optimal RUL-driven opportunistic-maintenance schedule for
the brakes of a fleet of aircraft. Compared with traditional
maintenance strategies, our approach leads to a reduction of
up to 20% of the total maintenance costs.

1. INTRODUCTION

Remaining-useful-life (RUL) prognostics are regarded as a
key enabler for predictive aircraft maintenance (Sprong, Jiang,
& Polinder, 2019). Using RUL prognostics, predictive main-
tenance aims to perform maintenance tasks in anticipation
of failures of aircraft components. The expected impact of
predictive maintenance is to reduce unexpected failures, in-
crease system availability, and reduce overall maintenance
costs (Lee & Mitici, 2022).

Several studies have proposed algorithms for RUL prognos-
tics for various aircraft systems. For example, Mitici and de
Pater develop prognostics for aircraft cooling units using par-
ticle filtering. Lee and Mitici propose a regression model to
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characterize the degradation of aircraft landing gear brakes.
Eleftheroglou et al. present the data-driven prognostics for
batteries of unmanned aerial vehicles. de Pater, Reijns, and
Mitici predict the RUL of aircraft engines using a convolu-
tional neural network and the C-MAPSS data set (Saxena &
Goebel, 2008).

Despite the increasing number of RUL prognostics for air-
craft systems, few studies integrate these prognostics into ac-
tual maintenance planning frameworks to prescribe RUL-driven
maintenance tasks (de Jonge & Scarf, 2020; de Pater & Mitici,
2021; Kim, Choi, & Kim, 2022). Such integration is par-
ticularly complex since aircraft maintenance planning should
consider, apart from RUL prognostics, additional factors such
as the flight schedule, the limited availability of the hangar
where aircraft are maintained, the cost of different mainte-
nance tasks, and the management of spare parts (de Pater &
Mitici, 2021).

Moreover, when considering multiple components, it is desir-
able to group maintenance tasks to reduce maintenance setup
costs (Wildeman, Dekker, & Smit, 1997; Bouvard, Artus,
Bérenguer, & Cocquempot, 2011). The approach of group-
ing maintenance tasks is referred to as opportunistic main-
tenance (OM). Several studies have proposed OM for vari-
ous applications, especially for the maintenance of wind tur-
bines (Vu, Do, Fouladirad, & Grall, 2020; Aizpurua, Cat-
terson, Papadopoulos, Chiacchio, & D’Urso, 2017; Xia et
al., 2021). However, existing studies are not readily appli-
cable for predictive maintenance of a fleet of aircraft because
they consider neither RUL prognostics (Vu et al., 2020), nor
the limited availability of critical resources such as hangars
(Aizpurua et al., 2017), nor the fact that the flight schedule
of aircraft restricts the planning of maintenance (Xia et al.,
2021). Thus, these critical constraints need to be considered
for the OM for a fleet of aircraft.

In this paper, we integrate RUL prognostics of aircraft com-
ponents into opportunistic maintenance (OM) for a fleet of
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aircraft. Our approach groups maintenance tasks for aircraft
components based on their RUL prognostics. The goal of
grouping the maintenance of the components is to reduce
maintenance setup costs, i.e., the costs needed to initiate main-
tenance. We illustrate our approach for landing gear brakes of
a fleet of aircraft. We first propose a Bayesian linear regres-
sion model to predict the RUL of aircraft landing gear brakes.
The obtained RUL prognostics are validated against sensor
measurements obtained during the actual operation of the air-
craft. Then, taking into account these RUL prognostics, we
propose an integer linear programming model to opportunis-
tically plan maintenance for the brakes. Our model considers
the limited availability of hangars where maintenance can be
performed, as well as realistic flight schedules. The result
shows that the proposed RUL-driven OM reduces by 20% the
expected total maintenance cost for the brakes of a fleet of
aircraft compared to traditional maintenance approaches.

2. RUL PROGNOSTICS FOR AIRCRAFT LANDING GEAR
BRAKES

2.1. Maintenance of aircraft landing gear brakes

We consider the maintenance of landing gear brakes of wide-
body aircraft. A wide-body aircraft is equipped with 8 land-
ing gear brakes, 4 on each side of the wings. The carbon disks
of the brakes are worn out when the aircraft decelerates. As
soon as the remaining thickness of a braking disk is below
an operational threshold, it needs to be replaced before the
aircraft can perform another flight.

According to current maintenance practice, aircraft landing
gear brakes are inspected periodically (Lee & Mitici, 2020).
Every d flight cycles, mechanics measure the remaining thick-
ness of the brakes. If the remaining thickness is below a pre-
defined threshold, then the brake is replaced with a new one.
In order to ensure a high reliability, the inspection interval d
is often short, i.e., frequent inspections. Using RUL prognos-
tics, predictive maintenance aims to reduce the wasted life of
brakes due to too-early replacements, while limiting the cases
when the degradation of a brake may unexpectedly exceed an
operational threshold.

2.2. Condition monitoring of aircraft landing gear brakes

New aircraft are equipped with brake condition monitoring
systems that measure the thickness of the brake disks. The
thickness of a disk is a direct measure of the degradation level
of a brake. Formally, let us denote the degradation level of a
brake after ¢*® flight cycle as Z. We normalize this degra-
dation level so that Z4 = 0 when the brake is new. As soon
as Zg > m, where 1) = 1 following normalization, the brake
needs to be replaced. As soon as Z; > 7, we say that the
brake becomes inoperable.

In this study, we analyze the actual brake degradation data

Degradation level Z,;

200 400 600 800 1000 1200
Flight cycle ¢

Figure 1. The degradation data of landing gear brakes.

collected from a fleet of aircraft. These aircraft have been in
operation for a period of 6 months up to 3 years. Figure 1
shows the normalized degradation data recorded for several
aircraft. The x-axis is the number of flight cycles (¢) dur-
ing which a brake was used, and the y-axis is the degradation
level (Z,) of the brakes. The line segments of different colors
represent different brakes. Figure 1 shows that the degrada-
tion of a brake continuously and stochastically increases over
time.

Under predictive maintenance, the goal is to use the informa-
tion provided by RUL prognostics to replace brakes just be-
fore their degradation reaches an operational threshold (n =
1). In Figure 1, the end of a line segment is the moment when
the brake is replaced under the current practice. We note that
in current practice, RUL prognostics are not yet utilized to
plan maintenance. Often, brakes are preventively replaced
before their degradation level reaches threshold 7, wasting
the useful life of the brakes. Using RUL prognostics, the aim
is to achieve a higher utilization of the brakes while minimiz-
ing maintenance costs.

2.3. RUL prognostics of aircraft landing gear brakes

Given the brake degradation data recorded for a fleet of air-
craft, we use a Bayesian linear regression (BLR) to predict
the remaining-useful-life (RUL) of the brakes. For the brake
degradation data in Figure 1, its linearity allows the BLR
model to achieve accurate RUL predictions compared to ad-
vanced non-linear models such as artificial neural networks
(Oikonomou, Eleftheroglou, Freeman, Loutas, & Zarouchas,
2022). The input of the BLR model is the number of flight
cycles ¢, and the output is the (predicted) degradation level
of a brake after this flight cycle Z¢. Formally, we consider
the following probabilistic model:

P(2¢‘¢,w,o> :N(Z¢‘¢w,02), (1

where w is the coefficient of the linear model, and o2 is the
variance of the Gaussian model. The prior of the coefficient w
is assumed to be zero-mean Gaussian, i.e., P(w) = N(w|0, AI).
Here, ) and o2 are the hyper-parameters of the model, and we
consider a Gamma distribution as their prior. Finally, the pa-
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rameters w, A, and o2 are jointly optimized by maximizing
the log marginal likelihood (Pedregosa et al., 2011).

Then, given that a brake is already operated for ¢ flight cy-
cles, its RUL p(¢) is the number of remaining flight cycles
until the probability that the degradation level exceeds 7 is
larger than a threshold &, i.e.,

p(¢) = m(sin{é tP(Zyss > |Zs) > f}, )

where £ is a given reliability threshold.

The RUL prognostics of the brakes are updated after every
flight cycle, taking into account the most recently available
degradation data collected from the on-board condition mon-
itoring systems.

A result of RUL prognostics of a brake in the actual data set
is shown in Figure 2. We predict the RUL of this brake after
it has been operated for 748 flight cycles. Given the degrada-
tion, the degradation level is expected to exceed 17 = 1 after
40 flight cycles with probability ¢ = 0.5, and thus, the pre-
dicted RUL is p(¢) = 40. Given the true RUL p* = 44, the
error of the RUL prediction is —4 flight cycles.

Los | —+— Degradation data Z Predicted RUL
§ o = = Mean prediction of Z@ () =40
()
£ 1004 W RZyrolZs) A L‘—
B Threshold 5
<
-
g“ 0.95 1 >

¢=[748 *
0.90 S —
680 700 720 740 760 780 800

Flight cycle

Figure 2. Result of RUL prognostics obtained for a brake in
the data set. The predicted RUL is 40 cycles and true RUL is
44 cycles.

2.4. Performance of the RUL prognostics

The performance of the proposed RUL prognostics using BLR
is validated based on the actual degradation data collected
from a fleet of aircraft. We consider the sensor measurements
of 40 brakes of a fleet of aircraft which have been operated in
real-life conditions. Each of these 40 brakes have been oper-
ated for ¢* flight cycles until these brakes become inoperable,
i.e., Zy« = 1. Their recorded degradation data are used as a
test set for our BLR model since we know the true RUL of
the 40 brakes.

We apply BLR at several moments during the operation of
the brakes: at 200, 100, 50, and 25 flight cycles before the
brakes become inoperable, i.e., the true RUL at these mo-
ments in time is p* € {200, 100, 50,25} flight cycles. We

predict the RUL of 40 test brakes at these moments, and plot
the box plots of the error p — p* in Figure 3. We also de-
termine the mean-bias-error (MBE) and root-mean-squared-
error (RMSE) as follows:

where K = 40 brakes considered. Table 1 shows the MBE
and RMSE of the proposed RUL prognostics.

The error of the RUL prognostics is smaller when true RUL
is smaller, i.e., the accuracy of the prognostics increases as
we approach the time of failure. In particular, MBE is smaller
than 2 flight cycles when the true RUL is 100 flight cycles (see
Table 1). Considering the fact that an aircraft makes 2 flights
per day on average, the bias of the prognostics is roughly 1
day only. Moreover, the RMSE decreases to 5.4 flight cycles,
which is very small considering the average useful life of the
brakes in our model (approximately 1250-1450 flight cycles)
(Lee & Mitici, 2022). Based on this performance of the BLR,
we conclude that our prognostics are reliable to be used for
maintenance scheduling.
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Figure 3. Error of the RUL prognostics for the brakes in the
data set.

Table 1. Performance of the proposed RUL prognostics for
the brakes in the data set.

True RUL p™ [Flight cycles] | 200 100 50 25

MBE [Flight cycles] 8.4 1.7 -05 -1.7
RMSE [Flight cycles] 413 124 60 54

3. INTEGRATION OF RUL PROGNOSTICS INTO OPPOR-
TUNISTIC MAINTENANCE SCHEDULING

We propose a RUL-driven opportunistic maintenance plan-
ning (RUL-driven OM) for a set of generic aircraft compo-
nents whose degradation is monitored over time and whose
RUL is updated over time. We propose an integer linear pro-
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gramming (ILP) model to group maintenance tasks for these
components considering their RUL prognostics.

3.1. Problem description

Our goal is to schedule the maintenance of multiple compo-
nents of a fleet of aircraft, while minimizing the total mainte-
nance cost. We consider M aircraft (i € Z = {1,...,M}),
each equipped with N components (j € J = {1,...,N}).
The aircraft perform a sequence of flights according to a flight
schedule. Figure 4 shows an example of a historical flight
schedule. The components are used during flight-time when
their degradation evolves stochastically over time. Based on
the flight schedule, we define maintenance slots, which are
time periods when the aircraft is on-ground at an airport with
a hangar. The aircraft can undergo maintenance only at the
hangar. Due to the limited space and resources at the hangar,
at most H aircraft can be maintained at the same time in the
hangar.

47T INMZAY NN NZNT NN
0 12 24 36 48 60 72 84 96 108 120 132 144 156
Time, 7[Hours]

XX Flight-time

Aircraft ¢

%

I Maintenance slot

Figure 4. An example of flight schedules for 5 aircraft for a
week.

The cost of aircraft maintenance consists of i) the setup cost
and ii) the component replacement cost. The setup cost Cqet
is the cost to prepare the maintenance of an aircraft in the
hangar. This cost can be reduced if multiple maintenance
tasks are grouped and performed together during one hangar
visit.

Over time, components are scheduled for replacement several
weeks in advance. The cost of a scheduled replacement for
a component is Cycp. If, however, this component becomes
inoperable unexpectedly before the moment of the scheduled
replacement, we perform an unscheduled replacement for this
component at cost Cys. In general, we assume Clyps > Cisep
(Pereira, Gomes, Melicio, & Mendes, 2021).

3.2. Rolling horizon for RUL-driven OM

We consider a sequence of time windows that move forward,
using a rolling horizon approach (see Figure 5). The r*" time
window is the time period [T{, T7]. At the beginning of each
time window, we update the RUL prognostics using the most
recent degradation data collected until 7 < 7. In addi-
tion, we know the maintenance slots available for the fleet

of aircraft during this time window, and the availability of the
hangar H. Taking into account this information, we optimize
the maintenance schedule for the time window [T}, T7] (see
Section 3.3).

Having obtained a maintenance schedule for time window
[T4,T7], we roll forward A days. The maintenance sched-
ule for the time period [T}, Ty ] is fixed, Tj ™' = T§ + A.
If during [T}, T "] a component becomes inoperable be-
fore its scheduled maintenance, then we perform unscheduled
maintenance. We next optimize the maintenance schedule for

the new time window [T, 77 '], updating the RUL prog-
nostics.
s 7
Time window r I Y I I l VT : l Time, T

Roll forward
TT+1

-------- » il
A days To * 1
Time window (r + 1) : I I T Time, T

‘ % Fixed maintenance schedule

Under optimization

Figure 5. Rolling horizon approach.
3.3. Integer Linear Programming of RUL-driven OM
3.3.1. Decision variables

We define the following two decision variables x; ; ; and y; 4

1 if component j of aircraft ¢ is scheduled

Tigt = for maintenance at time slot £ 3)
0 otherwise
1 if aircraft 7 is scheduled for maintenance
Yit = at time slot ¢ but not at time slot (¢ — 1) (4)

0 otherwise

Here, x; ;; is a binary variable indicating the maintenance
schedule, and y; ; is a binary variable indicating the hangar
visit of an aircraft. If an aircraft is scheduled for the mainte-
nance of more than 2 components in consecutive time slots,
we regard this as one hangar visit, which requires the setup
cost once. Thus, Zteﬂ ;¢ 1s the number of hangar visits of
aircraft ¢.

3.3.2. Objective function
We consider the following objective function:
min» > (Csetyi,t + Y CenZiji+ Y Ci,j,txi,j,t)a
€L teT; J€Ti FISNE
&)

where the first term is the setup cost for hangar visits, and the
second term is the cost for scheduled replacements.
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The third term of the objective in Eq. (5) penalizes com-
ponent replacements that are scheduled too early or too late
relative to its predicted RUL. Specifically, the penalty c; ; ; is
defined as follows:

{Clt —
Cijt =
/ C3t

Here, p; ; is the estimated RUL of component j of aircraft
1 at time slot ¢. This RUL is estimated using the prognostics
model introduced in Section 2. Also, we assume that 0 <
c1 < cg <cC3.

02> pije
0 < pige

C2p04,5.t

(6)

An example of a penalty c; ;; in Eq. (6) is shown in Figure
6. If time slot ¢ is before the moment when component j is
expected to become inoperable, i.e., if p; j; > 0, then the
penalty decreases after each flight cycle. Thus, this penalty
incentivizes solutions that schedule replacements when RUL
is small, i.e., small wasted useful life. When two time slots
t1 and t5 have the same RUL (p; ; ¢, = p; jt,), the first term
in Eq. (6), cit, leads to lower penalties for a replacement
scheduled at an earlier time slot. On the other hand, if time
slot ¢ is after the moment when component j is expected to
become inoperable, i.e., if p; ; ; < 0, then the penalty rapidly
increases by cst. Thus, with this RUL related penalty c; ; ¢,
our model avoids scheduling a component replacement at a
later time then its predicted RUL.

2000 1 : ailure predicted after this flight cycle

1500 13 \\F\l\\p d\t d\f \h\ ﬂ\git y\i\ag AN L
§101\\\ \\\\\\QY"

RN

ES_\\\\\ \\%}Q%

N\ Flight time \\ \

Malntena.nce slots \ \ \Q \ \ %\

‘ 0 25 50 75 100 125 L%O 17I5 Z(I)O

Time slot ¢

Figure 6. An example of penalty parameter c; ;; in Eq. (6).

3.3.3. Constraints

The following constraints are considered:

Y wiju=1 VieLVjed, (7
teT;
SN wije<H VteT, )
€L jET;
> wiji<1 VieILVteT )
Jj€T:
> wije=0 VieILVteT:t¢ T,  (10)
jEeT;:
Z Tijt — Z Ti g t—1) S Yip Vi €L (11)

JjE€T; JjET;

Constraint (7) ensures all components whose RUL is within
the time horizon (j € J;) are scheduled for replacements
exactly once. Constraint (8) ensures that no more than H
aircraft are maintained in the hangar at the same time. In ad-
dition, constraint (9) ensures that only one component of an
aircraft can be maintained during a time slot ¢. This constraint
(9) is necessary only if H > 1. If H = 1, then constraint
(8) is sufficient. Constraint (10) prevents scheduling mainte-
nance outside of available maintenance slots (¢t ¢ 7;).

Lastly, constraint (11) ensures that the variable y; ; satisfies
its definition given in Eq. (4). In particular, constraint (11)
provides a lower bound of y; ;. So, y;; > 1 if the aircraft is
brought to the hangar at time slot ¢, i.e., it is scheduled for
maintenance at time slot ¢, but not at time slot (¢ — 1). On the
other hand, y; ; > 0 if the aircraft is at the hangar at both time
slots ¢ and (¢t — 1), or if the aircraft is not at the hangar at both
time slots ¢ and (¢—1). Since we are minimizing the objective
and Cyet > 0 (see the objective in Eq. (5)), the optimal value
of y; ¢ is its lower bound.

4. NUMERICAL RESULTS:
INTEGRATION OF RUL INTO OM STRATEGY OF
AIRCRAFT LANDING GEAR BRAKES

4.1. RUL-driven OM strategy of landing gear brakes

The proposed RUL-driven OM is applied to the maintenance
of aircraft landing gear brakes. A wide-body aircraft has 8
brakes (N = 8), We consider a fleet of 10 wide-body air-
craft (M = 10), and assume that at most 1 aircraft can be
maintained in a hangar ( = 1) at the same time. Using the
rolling horizon approach (see Section 3.2), we simulate 10
years of maintenance. The actual degradation of the brakes
is shown to follow a Gamma process whose parameters have
been estimated in (Lee & Mitici, 2020; van Noortwijk, 2009).

An example of a maintenance schedule generated by our pro-
posed RUL-driven OM is shown in Figure 7. We predict the
RUL of components every 2 weeks (the grey vertical lines).
The short black vertical lines indicate the moment when the
RUL is predicted, the triangles indicate the moment when the
component is expected to become inoperable (see Eq. (2)),
and the horizontal line segments indicate the length of RUL.
Squares indicate the scheduled time of replacements. The
optimal solution always allocates the aircraft to maintenance
slots within the predicted RUL, i.e., squares are always on the
horizontal line segments. The vertical red lines indicate the
grouped maintenance tasks. For example, aircraft 1 replaces 6
components with only 3 hangar visits due to grouping: com-
ponents 5 and 3, components 6 and 2, and components 8 and
4 are grouped together for maintenance. For aircraft 3, com-
ponent 2 is replaced strictly at RUL without grouping because
the closest group of tasks scheduled in November is too early
for it, i.e., the benefit of grouping is small.
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Figure 7. An example of optimal maintenance schedule gen-
erated by the proposed RUL-driven OM.

4.2. Benchmarks: traditional maintenance strategies

The performance of the proposed RUL-driven OM is com-
pared with respect to 3 traditional maintenance strategies shown
in Table 2. Their schedules are optimized using the ILP in
Section 3.3 with modified objective functions, as follows.

1) Preventive maintenance (PM)

Under preventive maintenance (PM), the brakes are replaced
at fixed time interval, without making use of the updated con-
dition data or RUL prognostics. Thus, the PM schedule is
obtained by modifying the penalty parameter c; ;; in Eq. (6)
as follows:

Clt — Cg(
Ci gt =

Cgt

— Git) Qi < di

it > d; .

Here, d; ; is the deadline to replace brake j of aircraft ¢, and
it is assumed to be the mean-cycles-to-failure of the brakes
estimated in (Lee & Mitici, 2020). Also, we set Cyet = 0 in
the objective function in Eq. (5) since the setup cost is not
considered under PM.

12)

2) Opportunistic maintenance (OM)

Opportunistic maintenance (OM) also replaces components
at fixed time intervals, but it does consider the grouping of
maintenance tasks to minimize the setup cost. Thus, for OM,

Table 2. Comparison of benchmark strategies.

Strategy Replacement Considering
based on hangar setup cost

PM Fixed-interval No

oM Fixed-interval Yes

RUL-driven M RUL-prognostics | No

RUL-driven OM | RUL-prognostics | Yes

we consider a nonzero Cy in the objective function in Eq.
(5), and the penalty parameter c; ;; defined in Eq. (12).

3) RUL-driven maintenance (M)

RUL-driven maintenance (M) schedules all component re-
placements at the predicted RUL, but without grouping these
components. The objective function of RUL-driven M has
the same penalty parameter c; ;; defined in Eq. (6). How-
ever, grouping is not performed as setup cost at hangar is not
considered, i.e., Cse; = 0.

4.3. RUL-driven OM vs benchmark maintenance strate-
gies

We perform Monte Carlo simulation to evaluate the expected
long-run cost of the maintenance strategies in Table 2. The
long-run cost is defined as:

C= Csetth + Cscthch + C’unsZVun& (13)

Here, Nyy, Nsch, and Ny are the number of hangar vis-
its, the number of scheduled replacements, unscheduled re-
placements, per year per aircraft, respectively. These values
(Nnv, Nsen, and Nypg) are evaluated by Monte Carlo simu-
lations (103 runs). Also, Ciet, Ceen, and Clps are the setup
cost of a hangar visit, the cost of a scheduled replacement,
and the cost of unscheduled replacement, respectively (see
Section 3.1) for unscheduled replacements). The parameters
Csets Cseh and Clyys depend on the cost model of an aircraft
operator. For this case study, we assume Cset = 1, Cyen = 1,
and Cyps = 2.

The simulation results in Figure 8 and Table 3 show the ben-
efit of utilizing RUL prognostics and considering component
grouping, i.e., the benefit of the proposed RUL-driven OM.
Figure 8 shows that the RUL-driven OM results in the low-
est expected cost per aircraft per year. The results show that
RUL-driven OM leads to 20% lower costs than PM, which is
the traditional maintenance strategy.

Table 3 shows two reasons why the RUL-driven OM achieves
the lowest expected cost. First, it has the smallest number
of unscheduled replacements because it optimizes the mo-

1.2
1
5 0.8
2 206
S 204
O =
g EO02
o Qo
== 0
= g RUL-driven RUL-driven
& M oM

Maintenance Strategy

Figure 8. Expected cost and its 95% confidence interval.
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Table 3. Performance of benchmarks.

PM OM RUL- RUL-
driven M | driven OM

Maintenance 1.078 1 0.919 | 1.042 0.858
cost C
Scheduled 0.255 | 0.327 | 0.291 0.370
replacements Ngch
Unscheduled 0.223 | 0.154 | 0.186 0.111
replacements Nyns
Hangar visits Ny 0.377 | 0.285 | 0.379 0.266

ment of replacements using RUL prognostics. Second, the
RUL-driven OM results in the smallest number of hangar vis-
its, saving the setup cost. Compared to the OM that mini-
mizes the setup cost without considering RUL prognostics,
the RUL-driven OM further reduces the number of hangar
VISIts.

In Table 3, it is also interesting to see that the total number
of scheduled and unscheduled replacements are roughly the
same for all strategies, e.g., Nych +Nuns =~ 0.47. This implies
that the best maintenance strategy does not reduce the total
number of replacements, but rather optimizes the timing of
the replacements so that there is sufficient time to prepare
tasks in advance, and reduce the setup cost.

5. CONCLUSION

In this study, we integrate Remaining-Useful-Life (RUL) prog-
nostics for aircraft components into opportunistic maintenance
planning that groups the maintenance of multiple components.
First, the RULs of aircraft landing gear brakes are estimated

based on a Bayesian regression model and the actual degra-

dation data collected from a fleet of aircraft. Then, these

prognostics are integrated into a maintenance planning op-

timization - opportunistic maintenance. With this, we group

replacements of several brakes to reduce the setup cost for

hangar visits. The proposed maintenance planning is applied

for a long time horizon using a rolling horizon. Finally, the

numerical results show that our proposed RUL-driven op-

portunistic maintenance planning results in a 20% reduction

of total costs compared with several traditional maintenance

strategies.
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