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ABSTRACT 

Gas turbine sensors are prone to bias and drift. They may also 

become unavailable due to maintenance activities or failure 

through time. It is, therefore, important to correct faulty 

signal or replace missing sensors with estimated values for 

improved diagnostic solutions. Coping with a small number 

of sensors is the most difficult to achieve since this often leads 

to underdetermined and indistinguishable diagnostic 

problems in multiple fault scenarios. On the other hand, 

installing additional sensors has been a controversial issue 

from cost and weight perspectives. Gas path locations with 

difficult conditions to install sensors is also among other 

sensor installation related challenges. This paper proposes a 

sensor fault/failure correction and missing sensor 

replacement method. Auto-regressive integrated moving 

average models are employed to correct measurements from 

faulty and failed sensors. To replace additional sensors 

needed for further diagnostic accuracy improvements, neural 

network models are devised. The performance of the 

developed approach is demonstrated by applying to a three-

shaft turbofan engine. Test results verify that the method 

proposed can well-recover measurements from faulty/failed 

sensors, no matter with small or major failures. It can also 

compensate key missing temperature and pressure 

measurements on the gas path based on the data from other 

available sensors.  

Keywords: Gas turbine sensors; sensor fault; sensor failure; 

signal reconstruction; missing sensor replacement  

1. INTRODUCTION 

The quality and quantity of performance data collected along 

the gas path is key for an accurate gas turbine diagnostics. 

This depends on the number and type of sensors installed in 

real-life. In principle, gas path sensors should preferably be 

placed in the entry and exit of the critical gas path 

components, to get the complete picture of the engine health. 

However, this is not often possible in real situations for 

several reasons. The major sensor related challenges from the 

diagnostic perspective are discussed as follows. 

The first challenge is measurement noise. Noise affects early 

fault detection ability by hiding low-level fault signatures. It 

also increases false alarms during harsh operating conditions. 

Additionally, noise is known to cause Smearing effects in 

physics driven diagnostic methods (A. Fentaye, Zaccaria, & 

Kyprianidis, 2021; Zaccaria, Fentaye, Stenfelt, & 

Kyprianidis, 2020). Data denoising prior to fault diagnostic 

activities (Y. G. Li, 2002; Sadough Vanini, Meskin, & 

Khorasani, 2014) and developing noise tolerant diagnostic 

methods (Bettocchi, Pinelli, Spina, & Venturini, 2006) are the 

two widely studied solutions. 

A sensor fault/failure is the second challenge (Jombo, Zhang, 

Griffiths, & Latimer, 2018). Bias and drift are the two known 

forms of a sensor fault. Bias is a systematic measurement 

error which results in fixed and abrupt shifts. Installation 

errors, high vibrations and harsh working conditions can be 

the root causes. Drift is the other source of inaccurate 

measurements associated with sensor age. In some 

catastrophic working environments, a complete sensor failure 

is also expected. This includes not receiving signals and stuck 

to some specific readings. To diagnose an engine with a 

sensor fault/failure occurrence, either the faulty signals 

should be corrected first, or the diagnostic system should be 

tolerant enough to the corrupted data (J. Li & Ying, 2020; Lu, 

Li, Huang, & Jia, 2020). Another alternative is separating 

sensor faults from component faults before conducting any 

further fault analysis (Ogaji & Singh, 2003). 

The third challenge is that certain sensors may become 

unavailable through time due to maintenance activities or 

hostile operating conditions. This will lead to fleet engines 

having different gas path sensors, particularly between the 

older engines and brand-new ones. Consequently, a life-cycle 
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performance monitoring and diagnostic system needs to be 

modified to cope with the available sensors, or the missing 

sensor must be installed or automatically replaced by 

estimated values from the remaining measurements. 

Modifying the performance monitoring and diagnostic 

system to cope with the remaining sensors may be difficult, 

since this may cause undistinguishable failure modes, 

underdetermined diagnostic problem, or may have a 

significant impact on the diagnostic accuracy. The second 

alternative is to automatically replace the missing sensor by 

estimated values from redundant and other available 

measurements. The estimation can be performed based on 

physics (Aivaliotis, Georgoulias, Arkouli, & Makris, 2019; 

X. Zhou, Lu, & Huang, 2019) as well as using machine 

learning methods (Kramer, 1992).  

Sensors can also be missing due to absence of technology. 

For instance, high-pressure turbine (HPT) entry and exit 

temperature and pressure sensors are unavailable due to the 

high gas temperature. Nevertheless, these measurements are 

vital to discriminate failure modes between the gas turbine 

hot components (A. Fentaye, Zaccaria, Rahman, Stenfelt, & 

Kyprianidis, 2020; Zaccaria et al., 2020; X. Zhou et al., 

2019). It is technically possible to measure HPT and 

intermediate-pressure turbine (IPT) blade metal temperatures 

using a pyrometer. For instance, the RB199 and EJ200 

military turbofan engines have a pyrometer on the HPT. But 

this is not available yet for civil aeroengines and does not 

represent the actual gas path temperature either. 

Cost and weight reduction is another reason why some 

configurations do not include some measurements. 

Historically, gas turbine sensors are installed primarily for 

safety and control purposes. Mostly they are equipped with 

less than 100 sensors. Modern gas turbines, in contrast, are 

equipped with over 5000 sensors in total. (Afman, Prasad, & 

Antolovich, 2017) This includes additional gas path 

temperature and pressure probes installed for diagnostic 

reasons. However, several studies on gas turbine diagnostics 

such as (Ganguli, 2002; Jasmani, Li, & Ariffin, 2011; Simon 

& Rinehart, 2016) indicated that even the modern gas 

turbines are still missing some useful gas path measurements 

which could potentially improve the diagnostic accuracy 

considerably. A measurement selection study conducted for 

the Rolls-Royce RB211-24G showed that the high-pressure 

compressor (HPC) exit temperature (T5), HPT exit pressure 

(P9), and power turbine (PT) exit temperature (T12) 

measurements are among the most critical measurements to 

accurately diagnose the engine gas path (Jasmani et al., 

2011). However, all these sensors are not included in the 

installation. Hence, due to the trade-off between cost plus 

weight reduction and improving diagnostic accuracy, the 

decision of installing more sensors is controversial. 

Redundancy between measurements (Jasmani et al., 2011) 

and singularity (Kaboukos, Oikonomou, Stamatis, & 

Mathioudakis, 2003) are additional challenges of sensors for 

fault diagnostics. Since sensors are basically installed for the 

sake of control and safety, some of them may not be useful 

for diagnostics due to redundancy and singularity issues. 

Redundancy of measurements is the phenomenon of having 

two or more sensors with high correlation, while singularity 

is the state of sensors not responding to performance changes.  

Lack of sufficient measurements due to the above highlighted 

reasons highly affects the maintenance decision making 

process. For model-based diagnostic approaches, the 

common way to deal with underdetermined and 

undistinguishable problems is to choose the best subset of the 

performance parameters that substantially represent the 

engine condition (Kaboukos et al., 2003). However, this 

technique is not effective enough since changes from the 

removed performance parameters propagate to the selected 

ones (Simon & Garg, 2009). Two measures can be taken to 

overcome the shortcoming: installing additional sensors or 

replacing the missing sensors with estimates. The former had 

not been of interest to both engine manufacturers and end 

users due to sensor related costs. Using models as virtual 

sensors has become indispensable in modern industry for 

process control, online monitoring, and diagnostics (Jiang, 

Yin, Dong, & Kaynak, 2021; Kamat & Madhavan, 2016). 

Recently, this topic has been also receiving attention by the 

gas turbine community (Afman et al., 2017; J. Zhou, Liu, & 

Zhang, 2016).  

This paper aims to explore the use of autoregressive 

integrated moving average (ARIMA) models to correct 

measurements from faulty sensors as well as failed sensors 

until recalibration or reinstallation is performed. Two modes 

of operation are considered: when a sensor fault/failure 

occurs while the engine is under the normal degradation mode 

and when a sensor fault/failure simultaneously occurs with a 

component fault. Neural network (NN) models are employed 

to replace missing sensors due to maintenance activities and 

additional sensors required to improve diagnostic accuracy.  

The rest of the paper is organized as follows. Section 2 

describes the method proposed and the case studies used to 

demonstrate and validate the method. The implementation 

results to a test case aeroengine with detailed discussion is 

presented in Section 3, followed by key concluding remarks. 

2. METHOD 

A generic framework shown in Figure 1 is proposed to 

address the above discussed sensor problems. From the 

diagnostic perspective, the first step is selecting the best 

measurement set that can allow accurate gas path analysis 

(GPA). Measurements are selected through a sensitivity and 

correlation analysis. Even among those limited 

measurements, few of them should be removed, if they are 

highly correlated with other measurements and/or insensitive 

to key performance deviations. Various combinations of 

measurements can also be needed depending on power setting 

parameters and flight conditions considered.  
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One of the widely applied methods to deal with limited 

sensors is choosing the subset providing maximum accuracy. 

For an invertible system matrix, the number of performance 

parameters should be reduced to the number of measurements 

selected. Checking all the possible performance parameter 

combinations and selecting the subset with maximum 

accuracy is an iterative process. This approach is prone to 

error propagation problem due to the unestimated 

performance parameters and time consuming. Observability 

analysis can help reduce some of the performance parameters 

showing high correlation. All the remaining gas path faults 

should be easily isolable by interpreting the measurement 

deviations. Choosing among the highly correlated 

performance parameters to be discarded could be decided 

based on user’s priorities (Stenfelt & Kyprianidis, 2022). 
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Figure 1. Proposed framework. 

In this proposed framework, Figure 1, a full set of health 

parameters associated with critical gas path components were 

considered. The necessary measurements were selected 

through a sensitivity and correlation analysis using 

performance model of the engine. Unavailable physical 

measurements are replaced by independently acting NN 

models developed based on the available information. One 

important point to note here is that, unlike for diagnostics, if 

two or more measurements among the available ones are 

showing high correlation, none of them should be discarded. 

They are important for each other’s predictions during failure. 

Since some sensors could become unavailable through time 

due to maintenance events and hostile operating conditions, 

the physical sensors available could vary with the engine age. 

This decreases the number of input measurements to the NN 

models, while increasing the number of NN modules required 

to replace missing sensors. Suppose the engine is equipped 

with m sensors when it was brand new and n measurements 

are selected for accurate invertible diagnostics, m-n NN 

modules will be needed to replace the missing sensors. To 

account missing sensors through time, the NN method should 

be evaluated for fewer instrumentation suites as well. 

In addition to missing sensor cases, a sensor can start 

providing false readings (due to bias or drift faults) or fixed 

readings (due to a complete failure) as illustrated in Figure 2. 

To continue the plant operation, process monitoring, and 

diagnostic tasks with no interruption, those readings should 

be automatically replaced by estimated values. In this paper, 

a forecasting approach was applied to recover inaccurate 

signals due to a sensor fault/failure. Actual measurements 

after the detection point are estimated based on the principle 

of time-series forecasting, by projecting the values before the 

sensor fault/failure has been detected. The popular 

forecasting method, ARIMA, is used. However, in a complete 

engine health monitoring system, this step should be preceded 

by a sensor fault detection and isolation (SFDI) process, 

which is not the scope of this paper.  

 

Figure 2. Schematic illustration of a sensor fault/failure in a 

deteriorating engine. 

2.1. Sensor Fault/Failure Correction using ARIMA 

The Box-Jenkins ARIMA is a statistical technique widely 

used for time-series forecasting. It is often designated as 

ARIMA(p,d,q). and consists of three key parameters: 

Autoregression (AR), Integrated (I) and Moving Average 

(MA). The AR part fits a time-series data and forecast future 

values based on previous values. The MA term uses past 

errors to make future predictions. The “I” term is needed to 

make the time-series stationary by taking differences, with d 

order of transformation. The underling mathematics can be 

expressed as  

1 1 2 2 1 1 2 2t t t p t p t t t q t qy y y y          − − − − − −= + + + + + + + + +  (1) 

where 𝑦𝑡  is the actual value at time t and 𝜀𝑡 is the associated 

normally distributed random error, α and γ represent model 

parameters, p and q are integer values that indicate orders of 
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the AR and MA models, respectively. q=0 ⇒ AR model of 

order p, and p=0 ⇒ MA model of order q. 

Four main steps are required to develop an ARIMA model: 

model identification, parameter estimation, model validation, 

and forecasting. The first step is used to determine the p, d, 

and q values from the sample data. It also involves converting 

the series to stationary through differencing. In the second 

step, α and γ are computed to optimize the overall error 

between the predicted and actual input-output data. Least-

squares method or other nonlinear optimization techniques 

can be applied here. Once these two steps are completed, the 

accuracy of the ARIMA model is verified using new data. 

The forecasting step is then followed for future timesteps.  

ARIMA models have been widely used for engine RUL 

forecasting so far (Marinai, Singh, Curnock, & Probert, 

2003). In our proposed framework, ARIMA is used to 

reconstruct measurement errors induced by a sensor fault or 

failure. This is important to avoid unnecessary downtimes for 

sensor maintenance. Particularly, if the problematic sensor is 

in the control loop, the reconstructed values can automatically 

be used for that period to continue the system process without 

any interruption plus estimate the magnitude of the engine 

deterioration. Regardless of knowing the type of sensor 

problem and its magnitude, the ARIMA model forecasts the 

actual readings based on the readings collected before the 

problem has been detected. Using the available fault-free 

signals from the same sensor and correcting the error part 

through forecasting is more effective than estimating the 

values based on measurements from other fault free sensors. 

However, if a sensor bias is detected due to installation errors, 

the ARIMA model cannot be applied.  Instead, the signals 

from this sensor should be replaced by a NN model estimates 

until a reinstallation or recalibration measure is taken. 

Moreover, if a component fault occurs after a sensor failure, 

the failed sensor readings should be replaced with estimated 

values from the NN module. Because the component fault 

induced measurements cannot be predicted by the ARIMA 

model based on the normal data or trend before the sensor 

failure. 

2.2. Missing Sensor Replacement using NNs 

The typical feed-forward multilayer perceptron has a proven 

performance record to learn relationships between variables 

from data and make accurate predictions. In the method 

proposed, independently acting NN models are developed for 

each sensor as a regression problem to replace when they are 

missing, and to replace other additional sensors required for 

enhanced diagnostic solutions. All available measurements 

were used as input to each network. The output is the 

estimated version of a weighted sum of the input.  

 

Model hyperparameters for each NN estimator were 

determine through a training process the Levenberg-

Marquardt backpropagation algorithm. Although a NN model 

with one hidden layer, with sufficient neurons, is known to be 

capable enough to approximate most nonlinear regression 

problems, different number of hidden layers (up to 3) and 

neurons (up to 60) were evaluated. Variety of activation 

functions (tanh, logsig, and ReLU) and optimization 

algorithms (Adam, RMSProp, and sgdm) with different data 

structure and number of epochs were also checked. The most 

appropriate network structure was then selected based on the 

training time, accuracy, and robustness. The Adam 

optimization algorithm and ReLU activation function showed 

better performance. The accuracy of the predictions was 

assessed using the standard deviation (σ) mean absolute error 

(MAE) and root mean square error (RMSE) indicators. 

2.3. Case study: three-shaft turbofan engines 

The schematic of the case study engine is shown in Figure 3. 

Full set of performance parameters, i.e., efficiency and flow 

capacity for the Fan, intermediate-pressure compressor (IPC), 

HPC, HPT, intermediate-pressure turbine (IPT), and low-

pressure turbine (LPT) were considered. Table 1 presents 

selected measurements via an observability analysis using the 

engine performance model and the measurement noise 

considered. The noise incorporated was a normally 

distributed Gaussian noise with zero-mean and standard 

deviation varies as percentage of the actual sensed values. 
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Figure 3. Schematics of three-shaft turbofan engine with measurement locations.
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Table 1. Selected measurements for 3-shaft turbofan engine. 
 

Measurement parameter Notation Unit Noise (σ) 
IPC inlet total temperature T23 K ±0.4% 

IPC inlet total pressure P23 kPa ±0.25% 

IPC exit total temperature T25 K ±0.4% 

IPC exit total pressure P25 kPa ±0.25% 

HPC exit total temperature T3 K ±0.4% 

HPC exit total pressure P3 kPa ±0.25% 

HP shaft speed N4 rpm ±0.05% 

IP shaft speed N43 rpm ±0.05% 

LP shaft speed N46 rpm ±0.05% 

HPT exit total pressure P43 kPa ±0.25% 

IPT exit total pressure P46 kPa ±0.25% 

LPT exit total temperature T5 kPa ±0.25% 

Based on (Marinai, 2004; Saias, Pellegrini, Brown, & 

Pachidis, 2021), N4, N44, N46, T25, P25, T3, P3, T46, and 

T5 are considered mostly available sensors for the 

commercial 3-shaft turbofan engine. However, sensitivity 

and correlation analysis results indicate that, N4, N44, N46, 

T23, P23, T25, P25, T3, P3, P43, P46, and T5 are important 

to distinguish and estimate the full set of health parameters of 

the turbofan gas path. Although sensors that have strong 

correlation between them are not needed in the main 

diagnostic scheme, they are useful to estimate each other 

when they fail. That is why high correlation sensors are 

included in the proposed method. To address the sensor 

fault/failure correction and missing sensor replacement 

problems, the following cases were investigated: 

1. A single sensor fault/failure was considered and 

independently acting ARIMA models devised for each 

available sensor for correction. The engine was under 

gradual degradation mode. 

2. Sensor fault/failure correction was carried out when it 

simultaneously occurs with a component fault. It is less 

likely to occur both a sensor fault/failure and a 

component fault together, but for the sake of 

inclusiveness this case was also investigated.  

3. Four independent NN modules were devised to replace 

the missing T23, P23, P43, and P46 measurements. 

4. Six other NN estimators were developed for the available 

measurements T25, P25, T3, P3, T46 and T5 to replace 

them when they are missing. 

5. The sensitivity of T23, P23, P43, and P46 estimators was 

also analysed when case 4 happens. 

Data required for training and testing was generated via 

model simulation. In-house software EVA was used for the 

simulation as described in (Kyprianidis, 2017). A database of 

127080 random inputs was generated considering healthy, 

deteriorated, and faulty engine conditions. For the sake of 

generic estimation models, the fault patterns were derived 

from 63 single and multiple fault types, obtained by 

considering all possible combinations of the six gas path 

components taken r each time (where r = 1, 2, …, 6). The 

fault magnitude (FM) was a function of efficiency and flow 

capacity changes (∆Γ:∆η) as expressed in Equation (2). For 

the Fan and the two compressors, equal fault magnitudes (up 

to 5%) were considered. To accommodate possible ratio 

differences between efficiency and flow capacity 

performance factors (A. D. Fentaye, Baheta, Gilani, & 

Kyprianidis, 2019), 12 different ratios (from 1:1 to 4:1) were 

considered. Likewise, for the three turbines, equal fault 

magnitudes (up to 4%) with similar ∆Γ:∆η ratios, ranging 

from 1:3 to 3:1, were considered. 

                         ( )
2

1 :FM  = − +                         (2) 

The 127080 dataset was divided in to three groups: 70% for 

training, 15% for validation and 15% for test. For further 

testing the generalization performance of the estimators, a 

different set was generated from bleed valve leakage faults. 

Up to 7% leakage faults were considered for each compressor 

to generate 140 sample points in total. This dataset is referred 

in this paper as a blind test case data. 

3. RESULTS AND DISCUSSION             

3.1. For the ARIMA model 

The first part of the proposed method is faulty signal 

reconstruction using ARIMA. This part aims to correct sensor 

fault/failure corrupted measurements via the concept of time-

series forecasting. When a sensor malfunction is detected, the 

measurements of that sensor before the malfunction is started 

are, in principle, considered and the actual values for the 

affected timesteps are forecasted. However, since a delay in 

the detection is inevitable, typically for drift fault scenarios, 

some previous measurements should be discarded. This is 

because the future timestep predictions are influenced 

primarily by the current and the closest previous 

measurements in the time-series. 

Two different scenarios were taken into consideration. The 

first is when a sensor fault/failure occurs while the engine is 

undergoing through the state of gradual deterioration. The 

second is when a sensor fault/failure occurs together with a 

component fault. Gradual deterioration is a natural 

phenomenon that a gas turbine engine undergoes over its 

lifetime. This causes slow and simultaneous changes on the 

gas path measurements with time. Measurement changes are 

used to track performance trends, but at the same time, a 

sensor can also fail or become faulty. To be able to track the 

performance trend of the engine with no interruption, the 

corrupted data should automatically be corrected.  

During training, three different datasets were considered. The 

first set was used to train the ARIMA model. Unseen dataset 

was then used to evaluate the performance of the trained 

model. Once the validation step was completed, the model 

was used to forecast future timestep values. Figure 4 shows 

the results obtained for the IPC delivery temperature in 
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comparison with the original dataset. The x-axis represents 

timesteps in “flight cycles” and the y-axis the measured 

values. The first 1500 data points (red line with diamond 

marks) indicate the training results, the next 500 points (green 

line with asterisk) show the test results, the following 500 

points (blue line with plus sign marks) refer to the forecasted 

values, and the black label dedicated to the original dataset 

with no sensor fault/failure effects. It can be seen in Figure 4 

that the forecasted values are more accurate and smoother 

than the measured values. The results from the remaining 

sensors are not included here due to space limitation. 

 

Figure 4. T25 fault/failure correction through forecasting 

using ARIMA. 

In the second problem scenario, a sensor fault/failure 

occurrence in a faulty engine was analysed. When a 

component fault occurs, a set of measurements show 

considerable deviations from the gradual trend. The evolution 

period of component faults is shorter than the gradual 

deterioration. If one of the important sensors is failed or 

become faulty simultaneously with a component fault 

(although less likely to occur), the ARIMA model will correct 

the sensor problem. As illustrated in Figure 5, regardless of 

knowing the type of the sensor malfunction (bias, drift, or 

complete failure), just based on the detection information, the 

ARIMA model predicts the actual measurement using the 

faulty engine data collected before the sensor malfunction is 

detected. Avoiding the concern to identify the type and 

magnitude of the sensor malfunction reduces the complexity 

of the diagnostic problem and computational time. Figure 6 

shows training results (red line with diamond marks), test 

results (green line with asterisk marks) and forecasting results 

(blue line with plus sign marks) obtained for N4 compared to 

the original dataset. Similar performances were recorded for 

the remaining sensors as well, but they are not presented in 

this paper due to space limitations. The ARIMA model was 

able to forecast N4 for the 100 future values with 2.13 RMSE. 

If required, it can also continue forecasting the values after 

the 100 future flight cycles without losing its accuracy. 

Moreover, it can be seen in Figure 6 that the forecasted values 

are smoother than the measured values due to the MA model. 
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Figure 5. Schematic illustration of a sensor malfunction in a 

deteriorating faulty engine. 

 

Figure 6. N4 fault/failure correction when a malfunction is 

detected on N4 in a deteriorating faulty engine. 

3.2. For the NN models 

Four individual NN models are developed to replace T23, 

P23, P43, and P46. These four sensors are considered 

physically unavailable for the turbofan engine. However, they 

are among the key measurements to distinguish between the 

Fan, IPC, HPC, HPT, IPT, and LPT faults and accurately 

estimate their severity. Two different datasets were used to 

train and verify the NN models. First, the 127080 dataset was 

randomly divided in to three groups: 70% for training, 15% 

for cross-validation and the remaining 15% for test. The 

estimation accuracy of the NN models were examined based 

on the MAE and σ of the estimation errors in percent. These 

two parameters are selected to compare the prediction error 

with that of the Gaussian noise imposed to the data. Figure 7 

shows 100 sample normalized test prediction errors. It 

compares the estimation errors with the measurement noise 

incorporated. It is seen that the predicted values are smoother 

and less affected by noise than the measured ones. This is also 

shown in Table 2 that all estimation error σ values are lower 

than the associated measurement noise values considered. 
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Figure 7. Estimation errors vs. the measurement noise incorporated, 100 random test cases out of the 19,062 test cases. 

 

 

Figure 8. Estimation errors vs. the measurement noise incorporated, for the leakage fault data set. 
 

Table 2. Prediction error vs. measurement noise added. 

Error T23 P23 P43 P46 Reference 

Prediction 

MAE 

0.006 -0.002 0.000 -0.001 
Measured 

value 

-0.002 0.003 0.001 0.004 Actual value 

Prediction 

error σ 

(%) 

0.399 0.315 0.297 0.294 
Measured 

value 

0.043 0.189 0.167 0.157 Actual value 

Noise σ 

(%) 
0.4 0.25 0.25 0.25  

When applying the blind test data, the results shown in Figure 

8 were obtained. The first 70 points represent the estimated 

measurements associated with the IPC leakage fault and the 

cases from 71 to 140 are the estimated measurements for the 

HPC leakage data. To show how far the measurements with 

leakage faults are from the 127080 training data feature 

space, the equivalent performance parameter deviations for 

the Fan, IPC, HPC, HPT, IPT, and LPT were estimated 

through an adaptive scheme and presented in Figure 9. The 

equivalent fault magnitude estimated for the Fan, HPT, and 

IPT reaches up to 8.5%, which is greater than twice of the 
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fault magnitude considered for the 127080 data. For the HPC, 

it is approximately 1.6 times and for the IPC and the Fan 1.2 

times the fault magnitude used to generate the 127080 set. 

This proves the generalization capability of the NN 

estimators developed. Enlarging the training domain could 

also further improve the estimation accuracy of the models. 

The effect of missing one sensor among T25, P25, T3, P3, 

T46 and T5 on the accuracy of T23, P23, P43, and P46 

estimators was also analysed. Figure 10 and Table 3 show test 

results for the leakage fault data. For all the measurements, 

estimation errors often fall within the threshold of the 

measurement noise incorporated. As shown in Figure 10, the 

error increases with increasing the magnitude of the leakage 

faults. Particularly, when the effect of the leakage faults on 

the input measurements excides the equivalent component 

fault effects. This is expected since the input data distribution 

starts significantly shifting from the training data space. 

Although the obtained accuracy is satisfactory, it could also 

be further improved by increasing the training feature space. 

 

Figure 9. Performance parameter deviations induced by the 

IPC and HPC leakage faults. 

 

Figure 10. T23, P23, P43, P46 test results for the leakage dataset when one of T25, P25, T3, P3, T46, and T5 is missing. 

  

Table 3. Calculated RMSE values for estimated T23, P23, 

P43, and P46 measurements when one of the T25, P25, T3, 

P3, T46 and T5 is missing, for the leakage fault dataset. 

Estimated 
Missing sensor 

T25 P25 T3 P3 T46 T5 

T23 0.143 0.442 0.594 0.275 0.489 0.441 

P23 0.253 0.251 0.398 0.226 0.194 0.427 

P43 1.809 2.952 1.332 2.630 1.480 1.941 

P46 0.550 1.718 0.581 2.567 1.299 1.506 

The capability of the NN models to accurately estimate T25, 

P25, T3, P3, T46 and T5 when one among them is missing 

was also investigated. If, for example, T25 is missing, it will 

be estimated from the remaining measurements: N4, N44, 

N46, P25, T3, P3, T46, and T5. The standard deviation of the 

estimation error for each of the six NN modules, for the 

leakage fault dataset, is presented in Table 4. It is seen in that 

the estimation error for T25, T46 and T3 is approximately 

half times the measurement noise considered. The estimation 

error for T5, on the other hand, is higher, almost twice of the 

measurement noise incorporated. This is expected because 
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T5 is shown to have very low correlation with T25, P25, T3, 

and P3. Similarly, the estimation error for P25 and P3 is 

higher. The reason could be since P25 and P3 are the most 

useful measurements to estimate bleed leakages and flow 

capacity in the two compressors, and since they are also the 

only pressure measurements available on the gas path, 

estimating them based only on the other temperature and 

speed measurements seams relatively difficult. In particular, 

the estimation error associated with the IPC bleed leakage 

data was higher than the HPC bleed leakage data for both P25 

and P3. For the T25 case, the error for the IPC leakage data 

was equivalent to a soft sensor fault. Whereas for the HPC 

leakage data, the error was close to the measurement noise 

added. Including some leakage induced measurements in the 

training data sample may improve the accuracy of the two 

pressure estimators.  
 

Table 4. T25, P25, T3, P3, T46 and T5 estimation accuracy 

for the leakage fault data set vs. measurement noise added. 

Error σ 

(%) 

Estimated measurement  

T25 P25 T3 P3 T46 T5 

Estimation  0.245 1.000 0.199 0.983 0.256 0.777 

Noise 0.400 0.250 0.400 0.250 0.400 0.400 

4. CONCLUSION 

A sensor fault/failure correction and missing sensor 

replacement method is proposed for three-shaft turbofan 

engines. In this method, Autoregressive integrated moving 

average and feedforward neural networks are utilized. The 

former is responsible to correct faulty measurements through 

time-series forecasting.  A set of neural network models are 

also devised to replace important sensors for diagnostics 

which are not installed from the beginning or missed through 

time due to maintenance activities and damages. When the 

engine is brand new equipped with full instrumentation suite, 

the neural network models are used to replace additional 

measurements required for more advanced diagnostic 

solutions. Another set of neural network models is developed 

to replace missing sensors sometime in the engine life cycle. 

This kind of sensor fault/failure correction and missing 

sensor replacement system is important in real-time to enable 

a continuous engine monitoring and diagnostic process with 

no interruption for re-calibration and re-installation. 

Additionally, the missing measurement may result in 

underdetermined problem, indistinguishable failure modes, 

and inaccurate severity level estimation results. 

Performance data generated from the turbofan engine model 

under different degradation scenarios were used to train and 

evaluate the method proposed. For all scenarios considered, 

the faulty sensor signals were able to be corrected 

successfully with reconstruction errors lower than the 

measurement noise incorporated. Similarly, for most of the 

neural network estimators developed, the standard deviation 

of the test errors was lower than the measurement noise 

standard deviation considered. The method proposed is 

flexible for modification to accommodate different engine 

configurations. However, future work should assess the 

impact of the sensor scheme on the engine gas path analysis. 

Ambient condition and operating condition variations were 

not also included in this paper. Moreover, a linear gradual 

deterioration profile was considered while gas turbines 

exhibit nonlinear behavior. 
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