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ABSTRACT 

Due to the global transition to electromobility and the 

associated increased use of high-performance batteries, 

research is increasingly focused on estimating and 

forecasting the state of health (SOH) of lithium-ion batteries. 

Several data-intensive and well-performing methods for SOH 

forecasting have been introduced. However, these 

approaches are only reliable for new battery types, e.g., with 

a new cell chemistry, if a sufficient amount of training data is 

given, which is rarely the case. A promising approach is to 

transfer an established model of another battery type to the 

new battery type, using only a small amount of data of the 

new battery type. Such methods in machine learning are 

known as transfer learning. The usefulness and applicability 

of transfer learning and its underlying methods have been 

very successfully demonstrated in various fields, such as 

computer vision and natural language processing. 

Heterogeneity in battery systems, such as differences in rated 

capacity, cell cathode materials, as well as applied stress from 

use, necessitate transfer learning concepts for data-based 

battery SOH forecasting models. Hereby, the general 

electrochemical behavior of lithium-ion batteries, as a major 

common characteristic, supposedly provides an excellent 

starting point for a transfer learning approach for SOH 

forecasting models. In this paper, we present a transfer 

learning approach for SOH forecasting models using a 

multilayer perceptron (MLP). We apply and evaluate it on the 

method presented by von Bülow, Mentz, and Meisen (2021) 

using five battery datasets. In this regard, we investigate the 

optimal conditions and settings for the development of 

transfer learning with respect to suitable data from the target 

domain, as well as hyperparameters such as learning rate and 

frozen layers. We show that for the transfer of a SOH 

forecasting model to a new battery type it is more beneficial 

to have data of few old batteries, compared to data of many 

new batteries, especially in the case of superlinear 

degradation with knee points. Contrarily to computer vision 

freezing no layers is preferable in 95% of the experimental 

scenarios. 

1. INTRODUCTION 

Due to the mobility transition to electric vehicles worldwide, 

the battery’s state of health (SOH) gains interest of customers 

and consequently by research and industry. The SOH reflects 

the battery ageing which depends on the usage and 

environmental conditions of the battery. SOH forecasting 

enables e.g. fleet managers of battery electric vehicle (BEV) 

fleets to optimize their operational strategy w.r.t. battery 

ageing. In addition, by forecasting the replacement time of 

old BEVs due to battery degradation the transition to a new 

vehicle type can be supported. Nevertheless, establishing 

such services, requires reliability and availability in the 

underlying forecasting models. For example, when launching 

new BEVs with a new battery type, a usable model satisfying 

the aforementioned requirements is required. 

In this regard, both von Bülow et al. (2021) and Richardson, 

Osborne, and Howey (2019) have published reliable models 

for SOH prediction, though both are data-intensive. 

However, this is not justifiable for application in changing 

environments in most cases, as new data to build a reliable 

model using these methods cannot be collected in a temporal 

manner. Hence, due to the aforementioned needed 

availability their wide acceptance is currently limited. This is 

especially problematic for new battery types whose data 

availability is limited in the initial phase: First, only few 

laboratory battery ageing test are conducted which suffer 

under limited comparability to real-world operational 

conditions (Nuhic, Terzimehic, Soczka-Guth, Buchholz, and 

Dietmayer 2013; Sulzer et al. 2021; von Bülow and Meisen 

2022). Second, usually battery cells, but not packs, systems, 

or modules are tested in the laboratory. Third, potentially 

only a few prototypes or endurance tests may have been 

operated using the new cell type. 
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One obvious solution to extend this limited data base, is 

further extensive data generation either in the laboratory or 

using endurance test vehicles. Data synthesis or 

augmentation from physical ageing models still needs 

validation from laboratory tests. Furthermore, we consider an 

adaption of feature values of ageing data and knowing the 

resulting ageing as too difficult. The complexity of this causal 

relationship is the main reason why data-driven models are 

considered for SOH forecasting. Nevertheless, these 

solutions are expensive and difficult as battery ageing is a 

lengthy process. In their work, von Bülow et al. (2021) 

proposed a solution by transferring an established model for 

battery ageing of another battery type to the new battery type, 

as soon as a small amount of data of the new battery type has 

been gathered. Such methods, summarized under the term 

transfer learning, have been successfully applied in different 

domains, like computer vision (Shao, Zhu, and Li 2015) and 

natural language processing (NLP) (Ruder, Peters, 

Swayamdipta, and Wolf 2019). The application of transfer 

learning for battery SOH forecasting models is a crucial part, 

as there are differences in batteries like the nominal capacity, 

the cell cathode materials as well as the applied load due to 

usage. However, the general electrochemical behavior of 

lithium-ion batteries is a major common characteristic which 

supposedly provides an excellent starting point for transfer 

learning. As von Bülow and Meisen (2022) state, until now 

transfer learning has not yet been applied to battery SOH 

forecasting. 

In this regard, we contribute a transfer learning training 

process for SOH forecasting using a multilayer perceptron 

(MLP) with comprehensive experiments on five different 

known public datasets. We use the model presented by von 

Bülow et al. (2021) which showed very good results without 

limited availability of data. In the following, we examine 

when and how to transfer for. “When to transfer” concerns 

data availability in the target domain. I.e. the number of 

samples and their distribution by quantity and age of 

batteries. This shall enable practitioners to estimate the 

amount of data required for a successful transfer. “How to 

transfer” concerns the transfer method (i.e. freezing of layers 

of the pre-trained source model). 

The remainder of this paper is structured as follows: Section 

2 introduces the state of the art of battery components, their 

ageing and transfer learning including its applications in 

computer vison and battery ageing. In Section 3, the methods 

for SOH forecasting and transfer learning are explained. The 

used data basis is presented in Section 4. Subsequent, we 

present and discuss our results in Section 5. Section 6 

concludes our work. 

 
1 C-rate in [1/h]=[A/Ah] is the current relative to the nominal capacity 𝐶nom. 

2. STATE OF THE ART 

2.1. Lithium-Ion Battery Components and Ageing 

The major components of a lithium-ion battery cell are: A 

negative electrode (anode), a positive electrode (cathode), the 

ion-conducting electrolyte, and the electrically insulating 

separator. For a schematic representation of a typical lithium-

ion battery cell and information on the operating principle, 

interested readers are referred to (Keil 2017; Leuthner 2018; 

von Srbik 2015). The traditional cathode material has been 

lithium cobalt oxide (LCO). Alternatives are lithium nickel 

manganese cobalt oxide (NMC) and lithium iron phosphate 

(LFP) which have advantages over LCO regarding safety, 

cost, and size. Nevertheless regarding ageing, lithium-ion 

battery cells with different materials have different ageing 

characteristics (Vuorilehto 2018). Thereby, battery ageing is 

usually measured by the degradation of SOH. The SOH can 

be described by the internal resistance ( 𝑆𝑂𝐻R ) and the 

remaining capacity (𝑆𝑂𝐻C) (Chen, Lü, Lin, Li, and Pan 2018; 

Waag, Fleischer, and Sauer 2014). The relative change of 

internal ohmic resistance compared to a new battery is the 

𝑆𝑂𝐻R . The capacity-based 𝑆𝑂𝐻𝐶  is the remaining capacity 

𝐶(𝑡) relative to the initial capacity of a new battery, also 

called nominal capacity 𝐶nom (Lipu et al. 2018): 

𝑆𝑂𝐻(𝑡) = 𝑆𝑂𝐻C(𝑡) =
𝐶(𝑡)

𝐶nom

. (1) 

In the following, we focus on the 𝑆𝑂𝐻C , for simplicity 

referred to as SOH.  

Battery ageing can be structured into two causes considered 

in this paper: Calendar ageing and cyclic ageing. Calendar 

ageing is associated with the storage of batteries, meaning no 

charging or discharging is applied. Hence, it is also called 

passive ageing. Cyclic aging corresponds to the impact of 

battery usage on the SOH, i.e. ageing due to charging and 

discharging (Gewald et al. 2020).  

High temperatures (T) and high state of charges (SOC) are 

causing fast battery calendar and cyclic ageing (Matadi et al. 

2017). For example, a high SOC over 80% accelerates solid 

electrolyte interphase (SEI) growth (Barré et al. 2013). Other 

stressors accelerating battery ageing are high charge and 

discharge C-rates1 as well as a high ∆𝑆𝑂𝐶  (Gewald et al. 

2020; Marongiu, Roscher, and Sauer 2015). Known battery 

stressors are qualitatively displayed in Table 1. 

For the datasets used in this work, two types of battery ageing 

trajectories are relevant: Linear and superlinear degradation. 

Linear degradation is characterized by a constant aging rate 

over the whole battery life (e.g. NASA random in Appendix 

Figure 9). In contrast, batteries with superlinear degradation 

first age slowly, but change to accelerated ageing after the 
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knee-point (e.g. Data-Driven in Appendix Figure 9) (Attia et 

al. 2022; Fermín-Cueto et al. 2020). 

2.2. Transfer Learning 

Transfer learning is a learning paradigm in machine learning 

that utilizes knowledge previously attained in one domain to 

solve a task in a novel domain (Pan and Yang 2010). 

A domain 𝐷 = {𝒳, 𝑃(𝑋)} is defined by a feature space 𝒳 

and a marginal probability distribution 𝑃(𝑋) , where 𝑋 =
{𝑥1, … , 𝑥𝑛}, 𝑥𝑖 ∈ 𝒳. 𝑋 represents a particular sample that is 

made up of different observations 𝑥𝑖  which all lie in the 

feature space 𝒳. 

A task 𝑇 = {Υ, 𝑓(∙)} is defined by a label space Υ  and an 

objective predictive function 𝑓(∙), which is learned from the 

training data. 𝑓(∙)  can be seen as 𝑃 = (𝑦|𝑥)  from a 

probabilistic perspective. 

In general, we assume that there is source domain data as 

𝐷𝑆 = {(𝑥𝑆1
, 𝑦𝑆1

), … , (𝑥𝑆𝑛
, 𝑦𝑆𝑛

)}, where 𝑥𝑆𝑖
∈ 𝒳𝑆  is an input 

vector and 𝑦𝑆𝑖
∈ Υ𝑆 is the corresponding output vector. The 

target domain data can be denoted as 𝐷𝑇 =
{(𝑥𝑇1

, 𝑦𝑇1
), … , (𝑥𝑇𝑛

, 𝑦𝑇𝑛
)}, where 𝑥𝑇𝑖

∈ 𝒳𝑇  is an input vector 

and 𝑦𝑇𝑖
∈ Υ𝑇  is the corresponding output vector. (Pan and 

Yang 2010) 

Using these formal definitions, transfer learning can be 

defined in the follow way: 

“Given a source domain 𝐷𝑆  and learning task 𝑇𝑠 , target 

domain 𝐷𝑇  and learning task 𝑇𝑇 , transfer learning aims to 

help improve the learning of the target predictive function 

𝑓(∙) in 𝐷𝑇  using the knowledge in 𝐷𝑆  and 𝑇𝑠 , where 𝐷𝑆 ≠
𝐷𝑇 , or 𝑇𝑆 ≠ 𝑇𝑇 .” (Pan and Yang 2010) 

When applying transfer learning, Torrey and Shavlik (2010) 

indentify three measures by which learning might be 

improved due to a transfer. These are visualized in Figure 1 

at the exemplary model performance of a regression task 

measured by the root mean squared error (RMSE): Start, 

convergence speed and the asymptote of the model’s 

performance may improve. First, the initial RMSE before any 

training with data from the target domain might be lower with 

transfer learning than without. This occurs when a model, i.e. 

an artificial neural network (ANN) trained on source domain 

data provides a better starting for learning than a randomly 

initialized model. Second, transfer learning can increase the 

convergence speed, i.e. it can decrease the training time to 

fully learn the target task. Third, the final performance 

achievable in the target task with transfer learning can be 

lower than without transfer learning. The lower start and 

lower asymptote can easily be measured by the model 

performance at the start and end of training respectively. 

However, measuring the higher convergence speed is more 

difficult. A popular metric is the area under the learning curve 

(AULC). For the convergence speed we are interested in the 

improvement of the model performance. Thus, the exponent 

 

Figure 1: Measures in which transfer might improve 

learning: 1. lower start, 2. higher convergence speed 

and 3. lower asymptote (adapted from Torrey and 

Shavlik 2010). 

Table 1. Aging mechanisms and their accelerating stressors (Birkl 2017; Nguyen 2019) 

Battery component Aging mechanisms Accelerated by 

Anode 

Lithium plating ↑ C-rate, ↓ T, ↑ SOC 

Electrolyte decomposition ↑ T, ↑ SOC 

SEI formation ↑ & ↓ SOC 

SEI decomposition ↑ C-rate, ↓ T 

SEI growth ↑ T, ↑ SOC 

Structural disordering ↑ C-rate, ↑ & ↓ SOC 

Corrosion and loss of electrical contact ↓ SOC 

Separator Blocked pores (Separator and Electrodes) ↑ T, ↑ SOC 

Cathode 

Dissolving of transition metals ↑ T, 

Binder decomposition ↑ T, ↑ SOC 

Structural disordering ↑ C-rate, ↑ T 

Corrosion and loss of electrical contact ↑ C-rate, ↑ T, ↑ SOC 
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of a power-law fit is more suitable (Bertoldi, Cettolo, 

Federico, and Buck 2012; Viering and Loog 2021). 

Mathematically, this measure is concerning relative 

convexity (Palmer 2003). However, overall we consider the 

lower asymptote as the most important measure because the 

final model performance after transfer learning is the most 

relevant. Thus, we focus our experiments and their discussion 

on the final model performance. 

Further, Pan and Yang (2010) name three main concerns 

relevant when implementing transfer learning: What, how 

and when to transfer. What to transfer concerns the part of 

knowledge that is transferable across domains or tasks. On 

the one hand, the knowledge may be domain or task specific. 

On the other hand, it may be common across different 

domains and tasks. In the latter situation transfer learning 

may be beneficial. How to transfer concerns the learning 

algorithm for transfer learning, such as fine tuning, layer-

wise freezing of an ANN or domain adaptation. Lastly, when 

to transfer also includes the question of when not to transfer 

to avoid a negative impact on the performance in the target 

domain which is known as negative transfer  

2.2.1. Computer Vision 

Transfer learning is well established in the field of computer 

vision. For example, for image classification pre-trained 

convolutional neural network (CNN) models like VGG-16, 

ResNet50, and Inceptionv3 are popular. These models were 

trained on large datasets, like the VGG-16 on 1.3 million 

images with 1,000 classes (Simonyan and Zisserman 2014). 

Yosinski, Clune, Bengio, and Lipson (2014) stated that on the 

first convolutional layers CNNs learn abstract features such 

as edges and corners that are relevant for many datasets and 

tasks. When only a much smaller target dataset is available, 

learning such abstract features with a good generalization 

might be difficult. In this case, the first layers of the pre-

trained CNN are useful as feature extractor and improve 

generalization. Building on these features, some of the higher 

convolutional layers and the classifier part of the CNN 

generate specialized features. 

In addition, features from CNNs are suitable for many 

computer vision tasks (Razavian, Azizpour, Sullivan, and 

Carlsson 2014). The major advantage of transfer learning in 

computer vision is the elimination of the lengthy training 

process. Rawat and Wang (2017) provided a comprehensive 

overview of the application of CNNs to visual tasks. 

2.2.2. Battery Ageing 

Compared to the application of transfer learning in computer 

vision, pre-trained models related to battery ageing or SOH 

forecasting do not exist. This is potentially due to the fact that 

there are only few publicly available battery ageing datasets. 

In the field of battery ageing standardized tasks like RUL 

prediction and SOH estimation exist, just like image 

classification and image segmentation in computer vision. 

However, input features are very different regarding 

complexity and aggregation which complicates providing 

pre-trained models. 

For transfer learning applied to SOH forecasting no direct 

related work exists. However, there exist two works in the 

context of transfer learning and battery ageing: Azkue, Lucu, 

Martinez-Laserna, and Aizpuru (2021) trained a baseline 

MLP using only calendar ageing data of 30 NMC cells. Then 

they apply transfer learning with a reduced amount of another 

LFP dataset. As benchmark they trained a model solely on 

the LFP dataset. They achieved a better performance with 

two LFP cells and transfer learning than without transfer 

learning and five LFP cells. Moreover, their results indicate 

improved generalization with transfer learning. However, 

they only compared to one benchmark model and use only 

one target dataset. In addition, the transfer is only examined 

for calendar ageing, not cyclic ageing.  

Shen, Sadoughi, Li, Wang, and Hu (2020) trained a CNN for 

capacity estimation of lithium-ion batteries on a source 

dataset of ten years of cycling ageing data. All five 

convolutional layers and the three fully-connected layers of 

the pre-trained model were transferred. The best performance 

was achieved, when fine-tuning all layers providing the most 

capabilities for model adaption to the target domain. 

Compared to Azkue et al. (2021), Shen et al. (2020) vary the 

amount of target data available for fine-tuning. They find that 

training a benchmark model from scratch needs three times 

more training samples compared to transfer learning. Thus, 

transfer learning saves time and costs for data collection in 

their application. 

In summary, these two papers indicate that transfer learning 

is a promising approach for battery ageing models. However 

none of these papers, considered the temporal sequence when 

data becomes available for training. This consideration is 

important to answer the question “when to transfer.” Further, 

each paper only used one target dataset. Thus, they cannot be 

used to compare the influence of different cell chemistry and 

battery operation on the success of transfer learning.  

3. METHOD 

In Section 3.1, a short overview of a method for SOH 

forecasting is given whose suitability for the task was shown 

(von Bülow et al. 2021). Building on this method for SOH 

forecasting, we introduce a training process for transfer 

learning in Section 3.2 to overcome the lack of training data 

for new battery types. This training process can also be 

applied to other machine learning methods in the field of 

battery ageing. 

3.1. State of Health Forecasting 

As mentioned in Section 2.1, battery ageing is perceived as a 

state change from a current 𝑆𝑂𝐻(𝑡1) to a future 𝑆𝑂𝐻(𝑡2) due 
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to ageing causes. The ageing causes are encoded in the 

battery operational data which consists of multidimensional 

time series signals of c-rate, temperature, and SOC. As 

depicted in Figure 2 first, this battery operational data is used 

to extract stressor table data of battery stressor types which 

are known to induce battery ageing. Second, the flattened 

stressor table data is input of a machine learning (ML) model, 

that outputs the state change ∆𝑆𝑂𝐻 from a current 𝑆𝑂𝐻(𝑡1) 

to a future 𝑆𝑂𝐻(𝑡2) . The SOH values are assumed to be 

known for the training data. The two parts of the proposed 

SOH forecasting method are explained in detailed by von 

Bülow et al. (2021). 

 
Figure 2: Model structure - stressor extraction (1) and 

ML model (2) (von Bülow et al. 2021) 

3.2. Transfer Learning 

First, a SOH forecasting MLP model in 𝐷𝑆, the source model, 

is (pre-)trained according to Section 3.1. Second, the source 

model is parametrically transferred to another domain 𝐷𝑇  

that has only little data available at transfer time.  

We assume 𝐷𝑆  to be a battery type with plenty of training 

samples available. Further, 𝐷𝑇  represents a new battery type 

that has little available training samples at the point in time 𝑡 

of the transfer (|𝐷𝑇(𝑡)| ≪ |𝐷𝑆|). We assume that in time the 

amount of training samples of the new batteries increases 

(|𝐷𝑇(𝑡1)| < |𝐷𝑇(𝑡2)| for 𝑡1 < 𝑡2). We preprocess the battery 

operational time series data according to von Bülow et al. 

(2021). For all datasets the same signal interval width and the 

same boundaries of the stressor tables in 𝐷𝑆 and 𝐷𝑇  are used 

so that 𝒳𝑆 = 𝒳𝑇 . However, for different operation and 

different battery types 𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇) hold true because the 

distribution within the stressor tables and also 𝑆𝑂𝐻(𝑡1) is 

different. As 𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇), also the domains are different 

(𝐷𝑆 ≠ 𝐷𝑇). 

Regarding the learning tasks, we assume Υ𝑆 = Υ𝑇  because we 

only output ∆𝑆𝑂𝐻 . However, we state that 𝑓𝑆(∙) ≠ 𝑓𝑇(∙) 

because the range of ∆𝑆𝑂𝐻 is different for the battery types 

in 𝒯𝑆 and 𝒯𝑇  given 𝑋𝑆 = 𝑋𝑇 . E.g. the target domain may be 

unbalanced with more new batteries. As 𝑓𝑆(∙) ≠ 𝑓𝑇(∙), also 

the tasks are different (𝒯𝑆 ≠ 𝒯𝑇). As source and target task are 

different, we face the setting of inductive transfer learning. 

Thus, we need to use labeled data from the target domain to 

induce 𝑓𝑇(∙) (Pan and Yang 2010).  

3.2.1. What to Transfer: Common Characteristics 

In the context of this work, “what to transfer” concerns the 

common characteristics of the relationship of current 

𝑆𝑂𝐻(𝑡1), battery operation (c-rate, temperature, and SOC) 

and the future 𝑆𝑂𝐻(𝑡2).  

3.2.2. How to Transfer: Layer Freezing 

We accomplish knowledge transfer by a parametric transfer 

of the weights and biases from a source model to the target 

model. As common procedure in computer vision shown in 

Section 2.2.1, weights and biases of the model’s layers can 

be frozen, i.e. they do not change while further training. Thus, 

the knowledge leant from 𝐷𝑆 is preserved in the frozen layers. 

In the unfrozen layers, the weights pre-trained in 𝐷𝑆 serve as 

starting point compared to randomly initialized weights. 

After freezing, we continue training the target model with the 

target training data. The parametric transfer has the transfer 

hyperparameter learning rate 𝛼 , epochs, and number of 

frozen layers 𝑛frozen. The number of frozen layers is counted 

from the input layer towards the output layer as the example 

in Figure 3 shows. For answering “how to transfer”, we 

examine how to optimize 𝑛frozen for achieving the best result 

on the target test data.  

3.2.3. When to Transfer: Data Availability 

“When to transfer” for battery ageing models refers to the 

temporal availability of target data. Thus, we artificially split 

the target data into training and validation data which is 

available at transfer time and test data which has not been 

recorded at transfer time. The test data will be input to the 

model when it runs in production, i.e. in prediction mode 

applied e.g. by automotive manufacturer or BEV fleet 

managers. Thus, model evaluation on the test data is a 

suitable measure for the success of the transfer. The amount 

of training target data is measured by the number of samples 

available for the transfer. The distribution is defined by the 

quantity and age of batteries, i.e. the maximum cycle number.  

The target data is split according to three scenarios inspired 

by an automotive manufacturer that will introduce a BEV 

with a new battery type. The new battery type is the target 

domain 𝐷𝑇  from a machine learning point of view. For each 

data split, first the order of the battery cells is shuffled. Then 

samples are added to the training and validation dataset 

according to the data split until the specified number of 

samples is reached. If multiple window lengths are present in 

the dataset, we sort ascendingly. The remaining samples 

 
Figure 3: MLP with exemplary freezing of two layers 

(first and second). The output layer is trainable. 
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compose the test dataset. The three data splits are shown 

exemplary in Figure 4:  

First, the data split “few old” (FO) assumes that before the 

market launch of the new BEV type endurance tests are run: 

A few vehicles are intensively driven so that components like 

the batteries age quickly (Choi, Jung, Ham, and Bae 2011; 

Gassner 1984). Further, limited data from laboratory 

experiments is possibly available. Thus, target data of few, 

but old batteries is available for transfer learning.  

Second, the data split “many new” (MN) assumes that after 

the market launch of a new BEV type after some time already 

many vehicles are driven by customers. However, these 

batteries have only aged very little or non-measurably. Thus, 

target data of many, but new batteries is available for transfer 

learning. 

Third, the data split “old new mixed” (ONM) assumes the 

availability of data from the first two data splits. Thus, target 

data of many, but new batteries and few, but old batteries is 

available for transfer learning.  

3.2.4. Benchmarks 

For comparing the performance of transfer learning with non-

transfer learning approaches whilst having the same 

availability, we define three benchmarks with a different 

composition of training and validation data as shown in Table 

2. All benchmarks are tested on the same test data like the 

 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 128 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 512 

FO 

  

MN 

  

ONM 

  
Figure 4: Exemplary data splits “few old” (FO), “many new” (MN), and “old new mixed” (ONM) with 

𝒏𝐬𝐚𝐦𝐩𝐥𝐞𝐬 = {𝟏𝟐𝟖; 𝟓𝟏𝟐} using the Closed-loop dataset and random seed 0. 
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MLPs with transfer learning according to the data split type 

and the number of samples available. Only the training and 

validation data differ. Source Only (SO) is the source model 

without further modifications tested on the target test data. 

Source Target Mixed (STM) uses data from source and target 

domain for training and validation. The Target Only (TO) 

model is exclusively trained and validated on target domain 

data. For comparability, all benchmarks are MLPs with the 

same network architecture as the source model, but the 

weights are randomly initialized. Only their learning rate and 

batch size are optimized. 

4. DATA 

We selected public datasets that first provide data of 

sufficient battery cells, second have overall the same as well 

as different battery types, and third have a variety of battery 

operation to examine transfer learning in different 

circumstances. We differentiate battery types among others 

regarding materials and nominal capacity. Regarding battery 

operation charging, discharging, and storage of the batteries 

are relevant. This variety enables us to examine the effect of 

different battery types and operation. An overview of the 

used datasets regarding battery operation and materials is 

given in Table 3. 

In the following, for each dataset we first present a brief 

description. Then, if necessary, we describe applied data 

cleansing methods, if physical inconsistencies in the data like 

time jumps or measurement errors were found. Lastly, cells 

that were not used and the reasons for this decision are 

specified. 

The following two procedures were applied to more than one 

dataset:  

• For the NASA Random and Oxford dataset, the start of 

a new cycle is not given. Thus, we define cycle starts 

when the current in a new step switches from zero or 

below zero (storage or discharging) to higher than zero 

(charging) so that every cycle starts with charging. But 

we require the previous cycle to be at least a full 

equivalent cycle (FEC) before a new cycles starts.  

• For ISEA, NASA Random, and Oxford, capacity 

measurements are conducted in regular intervals. The 

 
2 The discharged electric charge is specified by the end value of the signal 

"Qd". 

SOH values are interpolated over time in between these 

capacity measurements. 

4.1. Stanford Datasets 

Severson et al. (2019) and Attia et al. (2020) present public 

datasets using the same battery cells with varying fast 

charging protocols. We refer to these two datasets by the 

paper’s name first using the dataset as "Data-Driven" and 

"Closed-Loop" respectively. These commercial LFP/graphite 

cells, manufactured by A123 systems (APR18650M1A), 

were cycled in a forced convection temperature chamber set 

to 30°C under varied fast charging conditions but identical 

discharging conditions of 4C. The cells have a nominal 

capacity of 1.1 Ah. The sampling rate is 1s. 

The SOH values are defined by the discharged electric charge 

of the corresponding cycle. The SOC signal is calculated 

offline relatively to the discharged electric charge of the 

previous cycle.2 SOH values corresponding to single cycles 

are identified as outliers when they deviate more than three 

local standard deviations from the local mean within a 30-

element window of the neighboring SOH values. These 

values are interpolated linearly using the neighboring SOH 

values. 

4.1.1. Data-Driven 

The Data-Driven (DD) dataset (Severson et al. 2019) used in 

this work consists of 42 lithium-ion batteries belonging to the 

batch of 2017-05-12 cycled up to 80% SOH. All cells are 

charged with a two-step fast-charging protocol. This protocol 

has the format “C1(Q1)-C2”, in which C1 and C2 are the 

C-rates of the first and second CC steps (CC1 and CC2 

respectively) and Q1 is the SOC at which the current 

switches. C1 and C2 range from 3 to 8C, while Q1 ranges 

from 15 to 80 % SOC.3 The second current step ends at 80% 

SOC, after which the cells charge with another CC step at 1C 

(CC3) followed by a CV phase.  

The SOH signal is smoothed using a moving mean with a 

span of 15 data points because the SOH signal is noisy. The 

cells 1 to 5 of batch 2017-05-12 continued as cells 8 to 17 in 

batch 2017-06-30. Thus, we concatenated them in batch 

2017-05-12. The thermocouples of cells 15 and 16 in batch 

2017-05-12 were switched. This means that the temperature 

signals of these cells are not synchronized with the other 

cells’ signals. It was not possible for us to synchronize them. 

Thus, we do not use these cells. Neither do we use cells no. 1 

and 19 as some of their cycles are up to 11.8 times longer as 

the previous cycles because the switching from charging to 

discharging happens late. This would skew the min-max-

normalization. We use cells no. 3, 7, and 8 as validation cells 

which means that they are not part of the training, validation 

or test set. 

3 C1 and C2 ∈ {3, 3.6, 4, 4.4, 4.8, 5.4, 6, 7, 8}C. Q1 ∈ {15, 25, 30, 35, 40, 

50, 60, 70, 80} % SOC. 

Table 2: Overview of benchmarks for transfer learning 

Benchmark 
Training and 

validation data 

Test 

data 

Source Only (SO) 𝐷𝑆 

𝐷𝑇  
Source Target Mixed 

(STM) 
𝐷𝑆 & 𝐷𝑇  

Target Only (TO) 𝐷𝑇  
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4.1.2. Closed-Loop 

The Closed-Loop (CL) dataset (Attia et al. 2020) used in this 

work consists of 45 lithium-ion batteries belonging to the 

batch of 2019-01-24 cycled up to 22.8 % SOH. All cells are 

charged with a three-step fast-charging protocol. This 

protocol has the format "CC1-CC2-CC3", in which CC1, 

CC2, and CC3 are the C-rates of the first, second, and third 

CC steps that end at 20%, 40%, and 60% respectively. CC1, 

CC2 and CC3 each range from 3.6 to 8C. A fourth parameter, 

CC4, is dependent on CC1, CC2, CC3, and the charging time. 

CC4 ranges from 2.68 to 4.755C.4  

 
4 CC1, CC2, and CC3 ∈ {3.6, 4.4, 4.8, 5.2, 5.6, 6, 7, 8}C. CC4 ∈ {2.68, 3, 

3.652, 3.834, 3.94, 4.16, 4.252, 4.755}C. 

The SOH signal is smoothed using a moving mean with a 

span of 25 data points because the SOH signal is noisy. We 

use cells no. 3, 7, and 8 as validation cells which means that 

they are not part of the training, validation or test set.  

4.2. ISEA 

The RWTH ISEA (ISEA) (Sauer 2021) battery dataset 

consists of 48 commercial lithium-ion battery cycled with the 

same profile under equal conditions to explore intrinsic cell 

manufacturing variability and small temperature differences 

in battery packs during operation. These cylindrical 

Table 3: Overview of the used datasets and their relevant characteristics 

Dataset 

 
Stanford 

Data-driven 

(DD) 

Stanford 

Closed-

Loop (CL) 

ISEA NASA 

randomized 

(random) 

Oxford 

S
o

u
rc

e 

 

(Severson 

et al. 2019) 

(Attia et al. 

2020) 

(Sauer 

2021) 

(Bole, 

Kulkarni, and 

Daigle 2012) 

(Raj, Wang, 

Monroe, and 

Howey 2020) 

B
at

te
ry

 a
g

ei
n

g
 Number of cells 42 45 48 26 27 

Life time range 

[cycles] 
532-2,235 530-1,231 1,410-1,872 199-1,188 300-1,681 

Min. SOH [%] 80-88 22-76 50 50-86 2-86 

B
at

te
ry

 t
y

p
e 

Nominal 

capacity [Ah] 
1.1 1.1 ≅1.85 2.1 3 

Nominal voltage 

[V] 
3.3 3.3 3.7 ? 3.6 

Voltage limits 

[V] 
2.0-3.6 2.0-3.6 3.0-4.1 3.2-4.2 2.5-4.2 

Packaging style 
18650 

(cylindrical) 

18650 

(cylindrical) 

18650 

(cylindrical) 

18650 

(cylindrical) 

18650 

(cylindrical) 

Cathode material  LFP LFP NMC LCO NCA 

Anode material Graphite Graphite Carbon Graphite Graphite 

B
at

te
ry

 o
p

er
at

io
n

 

Max. charging c-

rate 
3-8C 3.6C-8C 2.2C 2.2C 0.5C 

Max. 

discharging c-

rate 

-4C -4C -2.2C -2.4C -0.5C 

∆SOC 100% 100% 
60% (SOC 

20-80%) 
Up to 100% 100 % 

Ambient 

temperature [°C] 
30 30 25 20 & 40 24 

Storage time 0h 0h 0h 0h 5 or 10 d 
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NMC/graphite cells, manufactured by Panasonic/ Sanyo 

(UR18650E), were cycled at constant ambient temperature of 

25°C. One cycle consists of 30 min discharging to 3.5 V and 

30 min charging to 3.9 V, both currents limited to a maximum 

of 4 A. The charge turnover is about 1 Ah corresponding to 

cycles between approximately 20% and 80% SOC. Because 

of the voltage limits the charge turnover varies with the SOH 

of the cell, but the DOD in relation to the aged capacity is 

being kept nearly constant. The cells were graded into group 

C from the manufacturer and are drawn from the same 

production lot. Due to this factory selection the cells only 

have a mean capacity of approximately 1.85 Ah which we 

chose as nominal capacity. Capacity measurements are on 

average conducted every 165 cycles. The sampling rate is on 

average 0.1s. 

The SOC signal calculation is orientated at the given 

boundaries of approximately 20% and 80% SOC for each 

cycle. Jumps of the time signal where corrected for cell 3 and 

8. If the temperature signal is 0°C for a complete cycle, the 

ambient temperature of 25°C was set because this is the 

lowest physically possible temperature. This ensures that 

these states are considered in the stressor tables at least in the 

ambient temperature bin. If the temperature dropped to 0°C 

only for some time stamps, it was interpolated using the 

neighboring values because sudden temperature breaks are 

seen as impossible as the temperature only changes slowly. 

Cell 47 has a noisy temperature signal which was smoothed 

using an Fourier transform (FT) and moving mean. For some 

cells the last cycle length is 1,820 min instead of 60 min. For 

cell 29 and 18 the last 3 and 86 cycles respectively are very 

short. Because of these irregularities, we only use data 

corresponding to SOH higher than 50%. 

4.3. NASA Randomized 

NASA Ames Prognostics Center of Excellence Randomized 

Battery Usage Data Set (NASA Random) (Bole, Kulkarni, 

and Daigle 2012) consists of 26 battery cells of type 

LCO/graphite LG Chem. 18650 that were cycled in seven 

groups with different cycling protocols for each group 

(Details Appendix Table 7). The cycling protocols specify 

randomized sequences of current loads ranging from 0.5 A to 

4 A. The sequences are randomized in order to better 

represent practical battery usage. The temperature was 

environmentally controlled. The sampling rate is 1s. After 

every fifty randomized discharging cycles, the capacity was 

determined (reference discharge cycles). These capacity 

measurements are executed twice. 

Some capacity measurements were incomplete, resulting in a 

lower capacity value. Thus, if the capacity values deviate 

more than 0.1 Ah from each other, the higher values is 

chosen. The SOC signal calculation is orientated at the 

voltage limits after charging and discharging. We identified 

voltage jumps from 3.2 to 4.2 V combined with a time jump 

which are likely due to missing charging data. For best 

correction we added values with the sampling rate of 1s of 

the dataset: The current so that battery is fully loaded with 

CC. Temperature and voltage are linearly interpolated. Else 

the average of both is used. Batteries RW2 and RW18 were 

not used because the temperature signal has many values 

of -4,000°C which lies below absolute zero.  

4.4. Oxford 

Oxford Path Dependent Battery Degradation Dataset (Oxford) 

(Raj, Wang, Monroe, and Howey 2020) consists of 27 battery 

cells of type Panasonic NCA/graphite 18650 that were cycled 

in four groups with different cycling protocols for each 

group. All cells were cycled with CC between 0% and 100% 

SOC. After a period of cycling, calendar ageing was 

performed at 90% SOC. The time ratio of cyclic to calendar 

ageing was 1:5 with different c-rates and storage SOC 

(Details Appendix Table 6). Compared to the other datasets, 

only the Oxford dataset contains calendar aging. The 

temperature was environmentally controlled at 24°C. 

Capacity measurements are conducted every 48 cycles. The 

sampling rate is 1s. 

The SOC signal calculation is orientated at the voltage limits 

after charging and discharging. Again, we justify the 

replacement of temperatures below 0°C and Not a Number 

values (NaN) by the ambient temperature of 24°C, as we aim 

to minimize adulteration of the training data ( 𝑇min =
24°𝐶 , 𝑇max = 36.6°𝐶 , ∅𝑇 = 25.2°𝐶 ). Inconsistency like 

negative time deltas and time jumps of “TestTime” higher 

than the sampling rate with following constant time values 

were corrected by replacing the time signal with the sampling 

rate of 1s onwards. This sampling rate was determined from 

the consistent time signals. This adaption seems legitimate to 

us, especially for the time jumps, because the duration of the 

time jumps equals the product of sampling rate and the 

amount of following constant time values. The file no. 27 of 

battery number 9 from part 2, group 1 has some single current 

values around −10282 A during CC phases. These were 

replaced by the average of the two neighbor current values. 

Battery no. 1 from part 2, group 6 was not used because it is 

only exposed to calendar ageing which prohibits the 

identification of cycles. Battery no. 10 from part 1, group 2 

was not used because it only contains a single cycle. The file 

no. 14 and 15 of battery no. 14 from part 1, group 3 are 

renamed and used for battery no. 15 of the same part and 

group because these are the only files of battery no. 14. At 

the same time exactly these file numbers are missing for 

battery no. 15. 

5. RESULTS AND DISCUSSION 

5.1. Design of Experiments 

We aim at answering when and how to transfer a SOH 

forecasting model from the source to the target domain. For 

developing the parametric transfer the essential model 
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hyperparameters are the learning rate 𝛼 and the number of 

frozen layers 𝑛frozen . In addition, we compare the transfer 

learning to the benchmarks proposed in Section 3.2.4. 

Further, we examine the number of samples and their 

distribution over different batteries and ageing states (data 

split type). Model users are also interested in how the number 

of samples and data split type are influenced by the similarity 

of source and target dataset. 

The target datasets for training and validation have 128, 256, 

512, 768, and 1024 samples. This is limited by the NASA 

Random dataset which has only 1183 samples. We use a 

learning rate in the common range of 0.001, 0.0001, and 

0.0001. Training did not converge with higher learning rates. 

We use the RMSE as evaluation metric because it is common 

for regression problems and, compared to the MSE, has the 

same unit as the predicted output value. 

The source dataset of all experiments is the DD dataset which 

was also used in previous works (von Bülow et al. 2021). The 

source dataset contains 3127 training samples and each 391 

validation and test samples. The source model is obtained 

following the method presented in previous work using the 

DD dataset again (von Bülow et al. 2021). The DD dataset 

provides an ideal starting point for our experiments because 

of its similarity to CL. We use fine 2D stressor table, variant 

A because this showed the best result in previous work 

(Appendix Table 4 and Table 5). Further, we assume that the 

fine signal interval width enables the model to learn the target 

data better. Batteries in the Oxford and NASA random 

dataset have a lifetime below 400 cycles. This prohibits 

window lengths of 400 and 530 (W5 and W6 in previous 

work) as well as the corresponding grouped datasets W10 to 

W12. Further, a grouped window length of {25; 50; 500} 

cycles (named W9 in previous work) showed promising 

results regarding generalization in the source domain. Thus, 

we chose W9 and a window shift of 𝑤s = 25 . The 

hyperparameters, model complexity and model performance 

of the source model on the source data are shown in the 

Appendix in Figure 9. 

For better comparability, the benchmark MLPs use the same 

amount of layers and neurons as the source model. For TO 

and STM, only the learning rate 𝛼 ∈ {10−𝑁|3 ≤ 𝑁 ≤ 5} and 

the batch size 𝑏𝑠 ∈ {16; 32; 64; 128} are hyperparameters of 

a grid search. For SO, the source model is simply run in 

prediction mode as it is already trained only with the source 

data. 

Compared to previous work (von Bülow et al. 2021), the min-

max normalization is adapted to be suitable for the transfer 

learning. In previous work, min-max normalization was 

executed feature-wise using the source training data, i.e. each 

feature separately was normalized based on its min and max 

value in the source training data. The minima in the source 

and target data are mostly zero because the dwell time for 

every stressor type is zero. However, the max values of the 

target training data are different as stated in Section 3.2 

(𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇)). Furthermore, determining the maxima of 

the features of the test target data is not possible at transfer 

time, because the test target data becomes only available in 

the future. Thus in this work, min-max normalization is 

executed in two groups: First, for the 𝑆𝑂𝐻(𝑡1) and second for 

all other features, i.e. the stressor values from the stressor 

tables. We use the maximum of all stressor values of the 

source training data for normalization. Further, we keep the 

same scaling from the source data for all target data to ensure 

that the weight of the stressor values is the same for all 

features. In addition, this eases the model’s transfer because 

the model does not need to adapt to a different normalization 

of the target data. 

Experiment 1: How to transfer? Freezing & Learning 

rate 

In general, we expect 𝑛frozen and 𝛼 to jointly influence the 

convergence speed and also the final target model 

performance. 𝑛frozen  is a measure how much information 

from the source domain is kept at transfer time. Thus, we 

have a special interest in it as it also is a measure of similarity 

between source and target domain. We assume that a frozen 

model will perform well, if the domains are similar. 

Contrarily, if less information on the future ageing is given in 

the target domain training data, freezing is also beneficial to 

prevent negative transfers. 

Experiment 2: When to transfer? Data splits & no. of 

samples 

After examining the selection of the best model regarding 

𝑛frozen  and 𝛼  in Experiment 1, the question “when to 

transfer” concerns the suitability of the target data specified 

by the three data splits FO, MN, and ONM as well as the 

number of samples.  

Experiment 2a:Closed-Loop 

As visible in Table 3, the batteries in DD and CL have the 

same battery characteristics. Only the battery operation 

deviates regarding the charging protocols. Thus, DD and CL 

are similar domains, providing an ideal situation for transfer 

learning.  

Experiment 2b: ISEA, NASA random, and Oxford 

The transfer to the ISEA dataset provides a change in cathode 

material from LFP to NMC and a smaller SOC range. 

Batteries in automotive applications like BEVs experience 

variable discharging and not simple CC discharging like 

batteries in laboratory operation (von Bülow and Meisen 

2022). Compared to the other datasets, in the NASA random 

dataset not CC discharging, but stepwise randomly changing 

discharge rates are applied. Not only cyclic ageing, but also 

calendar ageing is important in automotive applications for 

battery ageing which is considered by the Oxford dataset. 

Because of these differences that influence the stressor data 

(⊂ 𝑃(𝑋𝑇)) and the predictive function 𝑓𝑇(∙), we expect these 
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three datasets to be more challenging for successful transfer 

learning than the CL dataset. Furthermore, the NASA random 

and Oxford datasets are a step towards applying the SOH 

forecasting model and its transfer to BEV operational ageing 

data. 

Each non-test target dataset was randomly split for training 

and validation by the ratio of 90:10. The validation MSE was 

set as metric for early stopping with patience of 5 epochs and 

minimum delta of 0 to avoid overfitting on the training target 

data. We apply a maximum of 90 epochs. The constant 

hyperparameters from source model training are not changed: 

Optimizer Adam, MSE as loss function, and a linear 

activation function of the output layer. We also opted for 

keeping the kernel regularizer for the transfer to prevent 

overfitting. Version 2.8.0 of TensorFlow was used as back-

end including version 2.8.0 of Keras. 

5.2. Evaluation of Experiments 

When selecting a model regarding the hyperparameters 

𝑛frozen and α for a given target dataset, the validation and the 

test target RMSE are possible selection criteria. Both have a 

different distribution of the output values because of the 

temporal data split specified in Section 3.2.3. which leads to 

different ageing rates for samples from the beginning of life 

(BOL) compared to the end of life (EOL) (see Appendix 

Figure 9). Due to these assumptions of data availability for 

the model selection at transfer time only the validation target 

set is available, even though we are overall interested in the 

test target RMSE which indicates the model’s performance 

when run in production. 

Result experiment 1: How to transfer? Freezing & 

Learning rate 

In experiment 1 we do not only evaluate which 𝑛𝑓𝑟𝑜𝑧𝑒𝑛 and 

α  are optimal in the majority of scenarios, but we also 

evaluate the reduction of model performance on the test 

dataset due to the selection criteria only being the validation 

RMSE. Exemplarily, Figure 5 shows the model’s RMSE of 

all three α  with different 𝑛frozen  for ISEA, MN with 128 

samples. Selecting by the test RMSE (rectangles) 𝛼 = 0.001 

and 𝑛frozen = 7  would be optimal, but by the validation 

RMSE (crosses) 𝛼 = 0.0001 and 𝑛frozen = 0 is best.  

As depicted in Figure 6 for all four target datasets and 

selected by the validation RMSE, freezing no layer is the best 

choice in 95 % of the data splits (𝑛frozen = 0). However, 

when selecting by the test RMSE this would only be the case 

in 45 % of the data splits. 18 % of all data splits have a better 

test RMSE with freezing the first layer instead of none. This 

indicates that in the majority of the data splits no general 

features have been learnt from the source domain. Compared 

to the state of the art procedure in the field of computer vision 

this is potentially due to the limited amount of source training 

data. 𝑛frozen = 10 selected by the test RMSE is only optimal 

to prevent a negative transfer in the case of MN and CL as 

further discussed in Experiment 2.  

Further, for α the selection based on validation and target 

RMSE diverges even more as shown in Figure 7. For 72 % 

 
Figure 6: Best 𝒏𝐟𝐫𝐨𝐳𝐞𝐧 selected by validation and test 

RMSE of all four target datasets 

 
Figure 7: Best learning rate 𝜶 selected by validation 

and test RMSE of all four target datasets 

 
Figure 5: Exemplary model selection (ISEA, MN, 

128 samples) 
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of the data splits 0.0001, which is also the source model’s α, 

is the best α when selected by the validation RMSE, but for 

60% of the data splits 0.001 is the best when using the test 

RMSE. Overall, these discrepancies lead to an average 

deviation of the test RMSE when selecting 𝑛frozenand α by 

the validation RMSE of 23% with a standard deviation of 28 

%. Unfortunately, we have to accept this error because we 

cannot access the test RMSE itself for model selection. In the 

following, for each data split we select the best model based 

on the validation RMSE. 

Experiment 2: When to transfer? Data splits & sample 

no. 

Figure 8 depicts the performance of the best model selected 

by validation RMSE on training, validation, and test data as 

well as the SO, TO, and STM benchmarks of all four target 

datasets. We first analyze CL as target dataset and then the 

remaining three target datasets. 

Experiment 2a: Closed-Loop 

Figure 8a) shows for the CL target dataset FO that the training 

and validation RMSE are on the same level as the source 

RMSE (see Appendix Table 8 for comparison). The test 

RMSE is higher overall and just acceptable for an application 

of the model e.g. by fleet managers who are interested in 

forecasting degradation from 100% down to approximately 

80%. The test RMSE is decreasing once more data becomes 

available for training. This is coherent with our expectations. 

Independently of the amount of data only STM can compete 

with transfer learning. TO only reaches a similar model 

performance with 1,024 training samples.  

For MN, we observe a negative transfer that leads to a RMSE 

of around 5 which is too high for a practical model 

application. This is caused by a lack of degradation 

information about the knee point. Even with 1,024 samples 

not sufficient information about ageing at EOL and the knee 

point is provided because 1,024 samples only correspond to 

the first 250 cycles and a minimum SOH of 93%, but the 

earliest knee point of CL is at around 500 cycles (Appendix 

Figure 9). 

For MN, also the benchmarks SO and STM perform better 

than transfer learning and TO is as bad as transfer learning. 

This underlines the unsuitability of the data of MN for 

transfer learning.  

 

a) Closed-Loop 

 

 

b) ISEA 

 

 

c) NASA random 

 

d) Oxford 

 

Figure 8: Best models selected by validation RMSE of all four target datasets and their benchmarks 
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For the ONM, the model performance is similar to FO. Thus 

adding MN to FO does not provide additional relevant 

information to the model. Again TO performs worse than the 

transferred model. 

Experiment 2b: ISEA, NASA random, and Oxford 

The results using the target datasets ISEA, NASA random, 

and Oxford confirm that FO is the preferred scenario of data 

availability. Only for NASA random and Oxford the test 

RMSE of FO and MN is similar, but still FO is better. We 

assume that this is caused by a constant ageing rate of NASA 

random and Oxford (see Appendix Figure 9). Contrarily, DD, 

CL, and ISEA show superlinear degradation and, thus, have 

a knee point. This knee point makes forecasting with the MN 

data split more difficult than when having linear degradation 

because data of the accelerated ageing after the knee point is 

missing. Consequently, the test RMSE of ONM of CL and 

ISEA is better than of MN because ONM contains 

information about the knee point. 

Overall, the SO benchmark is worse than the other 

benchmarks and transfer learning except in 16% of the cases. 

This indicates that any data from the target dataset improves 

the model’s performance. The comparison of the TO and 

STM benchmarks with transfer learning leads to no 

unambiguous results as each of the three is performing 

slightly better in some cases. Unfortunately, we could not 

identify any clear pattern under which circumstances which 

of the three is preferable. Probably, a more extensive source 

dataset is required for a clear added value of transfer learning. 

One could for example, use four of the presented datasets as 

source dataset and only one as target dataset. 

6. CONCLUSION 

This paper showed under which conditions transfer learning 

enables SOH forecasting based on a comprehensive study 

using four known public target battery datasets: Having data 

of few aged batteries shall be preferred over data of many 

young batteries, especially in the case of superlinear 

degradation with knee points. In the case of data of few aged 

batteries, having data of more aged batteries from the target 

domain will improve model performance. We also discussed 

the problem of an available metric (Validation vs. test 

RMSE) which prohibits selecting the best possible model. 

In contrast to state of the art transfer learning in computer 

vision, freezing no layers was best for the transfer with most 

datasets and data splits. This is due to the limited amount of 

source data and coherent to the results of Shen et al. (2020). 

The results are biased by the MLP architecture chosen by a 

hyperparameter optimization based on the source dataset. 

Furthermore, none of the dataset originates from BEV 

operation, but only laboratory data was used. Only the NASA 

random and Oxford dataset come close to BEV operational 

data with variability in discharge c-rate and calendar ageing 

respectively. Thus, transfer learning from laboratory to BEV 

operational data is planned as future work. In that case, 

possibly another advantage of transfer learning might 

become relevant if models are trained on thousands of 

samples from BEV fleets. Like in computer vision, then 

transfer learning might save usage of computational 

resources when pre-training a model requires weeks of 

training, but transfer learning significantly less. 

In this work, we only considered a single battery type each in 

the source and target domain. Now that conditions for 

transfer learning enabling SOH forecasting are known, future 

work could examine SOH forecasting for several battery 

types whose data become available sequentially. This 

paradigm is called continual learning. Continual learning is 

similar to transfer learning, but aims not only at transferring 

to a single new task, but to several sequentially occurring 

tasks. Thus, catastrophic forgetting after the first new task 

becomes relevant for continual learning (Parisi, Kemker, 

Part, Kanan, and Wermter 2019). Continual learning in the 

context of SOH forecasting is imaginable in two scenarios: 

First, with progressing time more and more data of the same 

battery type or fleet will be available. Each time, integrating 

this new data into an existing model is a task of continual 

learning. Second, a single SOH forecasting model may be 

desirable for several battery types of different generations 

that are only developed in temporal sequence. Once, data of 

a new battery type is accessible an existing model shall be 

made suitable for the old battery types and the new one.  

Connected to continual learning, curricular learning is worth 

examining to find a training strategy that presents training 

samples not randomly, but organized in a meaningful order. 

This enables the model to gradually learn more complex 

concepts (Bengio, Louradour, Collobert, and Weston 2009). 
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APPENDIX 

 

 

  

Table 5: Signal interval width for current, 

temperature, and SOC 

 Signal interval width 

 I T SOC 

Fine (F) 0.5C 0.5 °C 5 % 

Medium 

(M) 
1C 1 °C 

10 % at 0 and 

100%, else 

20 % 

Coarse (C) 3C 3 °C 20 % 

 

Table 4: Combined signals for 2D stressor tables, 

variant A 

 Charging Discharging Hold 

variant A 

T & SOC T & SOC T & SOC 

I & SOC I & SOC  

I & T I & T  

 

Table 6: Overview of battery operation Oxford dataset 

D
a

ta
se

t 

p
a

rt
 

G
ro

u
p

 n
o

. 

C
el

l 
n

o
. Cycling Calendar aging 

Duration [d] C-rate Cycling type Duration [d] 𝑺𝑶𝑪𝐒𝐭𝐨𝐫𝐚𝐠𝐞   

1 & 2 

1 9, 15, 20 

1 

C/2 

CC 

5 

90% 

2 3, 4, 8 C/4 

3 10, 11, 14 

2 

C/2 

10 

4 12, 18, 19 C/4 

2 

5 5, 6, 16 
From 2.5V-

4.2V 
C/2 CC - - 

6 1 - - -  90% 

3 

7 4, 19, 27 1 

C/2 CCCV 

5 90% 

8 5, 18, 20 2 10 90% 

9 1, 8, 9 

1 

5 4.2V 

10 2, 22, 25 10 4.2V 
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Table 7: Overview of battery operation NASA random dataset. *CC(CV): CC then CV if enough time 
G

ro
u

p
 n

o
. 

C
el

l 
n

o
. 

Charging Discharging 

𝑻𝐀𝐦𝐛𝐢𝐞𝐧𝐭 

[°C] 
Duration C-rate Cycling type C-rate 

Length 

random 

sequence 

High 

probability 

1 9-12 5 min or U=4.2V 
Rand. up to 

4.5A 
CC(CV)* 

Rand. up to 

4.5A 

5 min or 

U=3.2V 
- 20 

2 3-6 To 4.2V 2A CCCV 

Rand. 0.5-4A 5 min 

- 20 

3 1,2,7,8 
Rand.  

0.5 - 3 h 
C/2 CC(CV)* - 20 

4 25-28 

To 4.2V 2A CCCV Rand. 0.5-2A 1 min 

High 𝐼 

40 

5 17-20 20 

6 21-24 

Low 𝐼 

40 

7 13-16 20 
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a) Stanford Data-driven (DD) 

 

 
b) Stanford Closed-Loop (CL) 

 

 
c) ISEA 

 

 
d) NASA randomized (random) 

 

 
e) Oxford 

 

 
f) All 

 

Figure 9: SOH over cycle number 𝒌 of all used datasets. Discontinuities appear because of plotting over cycles, 

but the SOH is interpolated over time for ISEA, NASA Random, and Oxford. 
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Table 8: Hyperparameters of the source model 

 {25, 50, 100} 

cycles (W9) 

Hyperparameters  

Activation Function ReLU 

Batch Size 64 

Learning Rate 𝛂 0.0001 

Regularization 

{𝛌𝟏, 𝛌𝟐} 
{0, 0.001} 

Dropout rate 0 

MLP layout 

[195, 45, 395, 95, 

245, 295, 245, 

145, 245, 245] 

Model Complexity  

No. of Hidden Layers 10 

No. of Model 

Parameter 
1,693,126 

Metrics  

RMSE 

Train 0.0861 

Validation 0.1032 

Test 0.1083 

𝐑𝟐 

Train 0.9967 

Validation 0.9961 

Test 0.9935 
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