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ABSTRACT 

This paper focuses on the problem of predicting production 

line status for Printed Circuit Boards (PCBs). The problem 

contains three prediction tasks regarding PCB producing 

process. Firstly, data exploration is carried out and it reveals 

several data challenges, including data imbalance, data noise, 

small sample size, and component difference. To predict 

production line status for components of PCBs using records 

of inspection on pins, we proposed two possible feature 

extraction methods to compress the pin-level data into 

component-level. A statistical feature extraction method, 

which retrieves descriptive statistics such as mean, standard 

deviation, maximum, and minimum of pins on the same 

component, is applied to Task 1, while a PinNumber-based 

feature extraction method, which keep original values for 2-

pin components, is applied to Task3. In addition, a neural-net 

model with feeding imbalance control is established for Task 

1. and a random forests model is applied for both Task 2 and 

Task 3. Moreover, a threshold moving technique is proposed 

to optimize the threshold selection. Finally, the result shows 

that our models achieved f1-scores of 0.44, 0.54, and 0.71 on 

the test set for the three tasks, respectively. 

1. INTRODUCTION 

The PCB is a platform installed with semiconductor chips, 

capacitors, and other components, providing electrical 

interconnection between components. It is used in virtually 

all electronic products. Accurate prediction of PCB 

production line status can effectively reduce the production 

cost. During the production line, the PCB goes through the 

printing machine, solder paste inspection (SPI), surface 

mount device placement, reflow oven, and automatic optical 

inspection (AOI) in sequence. The production line contains 

two inspections: the SPI and the AOI. The SPI measures the 

shape of the solder paste and detects possible problems with 

the solder paste after it is placed by the printing machine. The 

AOI checks defects that might occur after the PCB goes 

through surface mount device placement and reflow oven. 

The AOI produces three labels as follows: 

1) AOI label: indicating the type of defects detected by the 

AOI machine. 

2) Operator label: assigned by the human operator, 

indicating whether the AOI machine raised a false defect 

or not. 

3) Repair label: assigned by the repairment operator, 

indicating the repair action.  

There are many benefits for predicting the above-mentioned 

production status. For example, by accurately predicting 

operator label and repair label, operators can improve their 

efficiency by arranging their work orders based on the 

prediction results. The problem of predicting the above three 

labels using SPI and AOI data is posed in PHME 2022 Data 

Challenge (PHME Data Challenge, 2022). Haichuan Tang et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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Predicting production line status is a challenging problem due 

to its extremely imbalanced dataset, where the population of 

the normal status data is far more than that of the faulty data. 

As imbalanced data is common in real world problems, many 

methods have been proposed by prior studies to deal with it. 

Data resampling is often considered as the first choice to 

solve the data imbalance problems (Batista, et al., 2004). The 

data resampling methods include randomly oversampling the 

minority class, randomly undersampling the majority class, 

and other advanced approaches such as the synthetic minority 

oversampling technique (Chawla, et al., 2002) and adaptive 

synthetic sampling (He, et al., 2008). However, resampling 

the data may lead to a worse model for some reasons: 1) 

undersampling may discard useful information and 2) 

oversampling may increase the chance of overfitting and the 

learning time. Another approach to deal with imbalanced data 

is moving decision thresholds of a learned model. This 

approach has been implemented and tested as a better 

alternative for resampling (Provost, 2000; Maloof, 2003).  

The problem of PHME 2022 Data Challenge is even more 

challenging in that the proposed models need to consider not 

only the high imbalance ratio, and noise in the dataset, but 

also the different numbers of pins for different components, 

which means specific feature extraction is needed to unify the 

feature structure.   

In our solution, we propose a machine learning-based method 

to predict production line status using data from previous 

production steps. A statistical feature extraction and a 

PinNumber-based feature extraction method are proposed to 

reconstruct pin-level data into component-level data to 

perform predictions on PCB components. The statistical 

feature extraction method retrieves descriptive statistics such 

as mean, standard deviation, maximum, and minimum values 

of pins on the same component. The PinNumber-based 

feature extraction method treats PCB components differently 

based on the number of pins they contain. This is inspired by 

the data exploration that most of the PCB components have 2 

pins. To deal with the imbalanced dataset, we introduce a 

neural network model with feeding imbalance control and a 

random forests method with a threshold moving technique. 

As a result, our proposed method achieved f1-scores of 0.44, 

0.54, and 0.71 on the test for the three tasks posed by this data 

challenge. 

The rest of the paper is organized as follows: the problem 

definition, datasets, and scoring functions are described in 

Section 2. Data exploration and preprocessing methods are 

provided in Section 3. In Section 4, classification methods are 

introduced. Results are discussed in Section 5 and 

conclusions are drawn in Section 6. 

2. DATA CHALLENGE DESCRIPTION 

2.1. Problem Definition 

The data challenge focuses on predicting labels produced by 

the AOI. As the AOI produces three labels, the problem is 

divided into three tasks as follows:  

1) Task 1: Predict whether any defects in PCB components 

will be detected by the AOI machine. 

2) Task 2: Predict whether the AOI machine will raise a 

false defect according to the human operator. 

3) Task 3: Predict the repair label assigned by the 

repairment operator. 

Task 1 and Task 2 are binary classification problems, 

whereas Task 3 is the only multi-class classification problem 

in this data challenge. 

2.2. Datasets 

The datasets of this challenge were collected from the SPI 

and AOI. After removing the data with a null value, the SPI 

data contains 5,985,381 records on 1,969,523 components, 

while AOI data contains 31,617 records on 27,514 

components. This is because a component may have several 

pins used for soldering. For a detailed description of the 

datasets, please refer to https://phm-europe.org/data-

challenge.  

2.3. Scoring 

In this challenge, the F1-score is used to evaluate the model 

performance. The F1-score is calculated based on the ground 

truth and the predicted labels. The relating functions are listed 

as follows: 
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Where TP represents the true positive, FP represents the false 

positive, FN represents the false negative, and the sub-

notation l denotes the positive class. The specific scoring 

function for each task is listed in Table 1. Task 1 considers 

the components in the AOI dataset as the positive class. Task 

2 considers the “Bad” operator label as the positive class. In 

Task 3, which is a multi-class classification problem, the 

average of the F1-scores using “NotPossibleToRepair” and 

“FalseScrap” as positive classes respectively is calculated. 

The final score is the average of the F1-scores computed from 

the three tasks. 
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Table 1. Scoring function for each task 

Task No. Scoring Function 

Task 1 F1inAOI 

Task 2 F1Bad 

Task 3 (F1FalseScrap+F1NotPossibleToRepair)/2 

3. DATA EXPLORATION AND PREPROCESSING 

In this section, we explore the original dataset to find a 

potential design basis for the data preprocessing methods as 

well as the prediction models. According to our exploration, 

we propose two feature extraction methods to reduce the data 

redundancy and construct a proper data frame to be used as 

model input. 

3.1. Data Exploration 

To find the correlation between each two data columns, we 

plot two-dimensional dot charts using one column for the x-

axis and the other for the y-axis. An example of the dot charts 

is shown in Figure 1. The x-axis represents the value for 

“Height(um)” in SPI data, while the y-axis denotes the 

“Volume(um3)” value. In Figure 1, the dots constitute 

multiple linear patterns, which we assume are caused by 

different component characteristics. Thus, we group the 

components into 14 types based on the letters in the 

ComponentID. For example, ComponentIDs {“BC1”, “BC2”, 

“BC3”, “BC4”} belong to the component type “BC”. The 

different colors in Figure 1 indicate the component types, 

which validates our assumption. 

 

Figure 1. Scatter plots of Volume(um3) and Height(um) 

with component types in different colors. 

Since this challenge focuses on component-level prediction 

when the original datasets stores pin-level records, we need 

to convert the original records to component-level features. 

Figure 2 below shows the frequency distribution of the 

number of pins in each component in the SPI dataset, where 

2-pin components are the majority. 

 

Figure 2. Frequency distribution of the number of pins in 

each component. 

For task 2, the distribution of ‘OperatorLabel’ concerning 

PosX/Y is presented in Figure 3.  

 

Figure 3: The ‘OperatorLabel’ distribution with respect to 

PosX/Y.  

Some essential features of the dataset are summarized as 

follows: 

• Highly imbalanced. The ratio between the majority and 

minority classes is quite high, 250:1 for Task #1 for 

example.  

• Quite noisy. There is a lot of noise inside the dataset.  

• Small sample size. For Task #2 and #3, the data sample 

sizes are quite small.  

• Component difference. There are 14 different types of 

components and the number of pins of the components 

varies from 2 to 49. Also, it can be found that different 

components may have very different feature 

distributions, and are related to a different defect 

probability.  

3.2. Statistical Feature Extraction 

SPI dataset contains measurements regarding welding paste 

characteristics (i.e., volume, height, area, offset, size) for 

every pin. To retrieve features for components, we group all 

measurements of pins in the same component and compute 

their statistical features (i.e., mean, standard deviation, 

minimum, maximum). Based on the data exploration above, 

we also consider the component type and the number of pins 

as two important features. The pseudo-code for merging pin-
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level records into components and the statistical feature 

extraction algorithm is shown in Algorithm 1.  

Algorithm 1: get_stat_features(spi) 

1   com_ids = get_unique_com_ids(spi) 

2   rows = empty list 

3   for id in com_ids: 

3       panel_id = id[0] 

4       figure_id = id[1] 

5       com_id = id[2] 

6       spi_temp = spi[(spi.PanelID==panel_id) & 

(spi.FigureID==figure_id) & 

(spi.ComponentID==com_id)] 

7       means = get_mean(spi_temp) 

8       stds = get_std(spi_temp) 

9       max_min = get_max(spi_temp) – get_min(spi_temp) 

10     com_type = get_comtype(com_id) 

11     com_pin_num = len(spi_temp) 

12     rows.append([panel_id, figure_id, com_id, 

com_type, com_pin_num, means, stds, max_min]) 

13 return rows 

3.3. PinNumber-based Feature Extraction 

As shown in Figure 2, most components in the SPI dataset 

contain 2 pins. Thus, we keep all original measurements for 

2-pin components to ensure that no information regarding the 

majority is discarded. For the components with only 1 pin, 

we duplicate the measurements to form a unified structure. 

For the rest components with more than 2 pins, we adopt the 

maximum and minimum values for each measurement as 

follows: 
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Where c represents a specific component, {C} is the complete 

set for all components during PCB manufacture, p is the pin 

number, Pc is the max pin number for a given component c, f 

is one of the numerical features, {F} is the complete set of 

numerical features, 
, ,c p fX  is the original numerical feature 

with given component and pin number, 
, ,1

ˆ
c fX  and are two 

new numerical features for a given component to replace 

original ones. 

The pseudo-code for merging pin-level records into 

components and pin number-based feature extraction 

algorithm is shown in Algorithm 2. 

Algorithm 2: get_pinn_features(spi) 

1   com_ids = get_unique_com_ids(spi) 

2   rows = empty list 

3   for id in com_ids: 

3       panel_id = id[0] 

4       figure_id = id[1] 

5       com_id = id[2] 

6       spi_temp = spi[(spi.PanelID==panel_id) & 

(spi.FigureID==figure_id) & 

(spi.ComponentID==com_id)] 

7       com_pin_num = len(spi_temp) 

8       if com_pin_num == 2: 

9           rows.append(spi_temp[0]+spi_temp[1]) 

10     else if com_pin_num > 2: 

11         rows.append(get_max(spi_temp) + 

get_min(spi_tem[1])) 

12     else: 

13         rows.append(spi_temp[0]+spi_temp[0]) 

14 return rows 

4. CLASSIFICATION METHODS 

4.1. Neural Network with Feeding Imbalance Control 

The neural-net structure is given in Figure 4. It is a typical 

forward architecture with multiple dense nets and there is a 

SoftMax layer before the final output. The key points are 

given as follows:  

• Categorization. All continuous features are converted 

into categorical features according to percentiles 

division. The percentiles are set as [0, 1, 5, 10:10:90, 95, 

99, 100]. This operation will somehow compress the 

information of some continuous features, such as 

height(mm) and area(mm). This can be taken as a 

denoise approach.  

• Binarization. All categorical features are converted into 

binary vectors according to one-hot coding and then 

merged into one binary vector. The label is also encoded 

by one-hot coding.  

• Training by Feeding Imbalance Control. According to 

Section 3.1 Data exploration, we know that the dataset is 

extremely imbalanced. When training a neural net to fit 

an imbalanced dataset, we need to control the imbalance 

ratio of each mini-batch during the training process. As 

a result, we proposed the concept of Feeding Imbalance 

Ratio (FIR), which is an implementation of an under-

sampling approach.  

 

Figure 4. Forward Architecture of Neural-net Model for 

Probability Prediction 

Note that the AOI defect is a rare event, the overall 

occurrence probability of an AOI defect is about 0.4%. The 
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ratio between non-event and event is around 250:1. To 

enhance the performance of the model, we design the training 

process in a particular way. Firstly, we use the stochastic 

gradient descent (SGD) method to train the model. Secondly, 

during the training process, instead of feeding the data 

randomly, we feed the data with a constraint on the ratio 

between the majority and minority. We define Feeding 

Imbalance Ratio as follows: 

Definition: Feeding Imbalance Ratio (FIR). The ratio 

between the majority and minority classes within the 

resampled mini-batches fed into the NN model during the 

training process.  

Notably, FIR is an important parameter for training the model. 

If FIR is too large, the dataset fed into the model is 

imbalanced, and it is hard to learn the feature combination 

related to the AOI defect. FIR is set to 1 in our case. The 

training algorithm is given in Table 2.  

 

 

 

 

 

 

 

 

Table 2. Training Algorithm for probability prediction by 

feeding imbalance control. 

Input:  

 𝐹𝐼𝑅 = 1, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑛_𝑒𝑝𝑜𝑐ℎ, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 

 Training dataset: (𝑭, 𝑳); 

 The number of layers and neurons of the neural net; 

Initialize:  

 Initialize a neural-net 𝒑(∗ |𝜽);  

 Split the(𝑭, 𝑳) into(𝑭, 𝑳)+ and (𝑭, 𝑳)− according to the label, 

‘+’ and ‘-’ represent the majority and minority classes, 
respectively. 

Main:  

For _ in range (𝑛_𝑒𝑝𝑜𝑐ℎ), do    
(𝑭, 𝑳)+ = (𝑭, 𝑳)+. shuffle()   
(𝑭, 𝑳)− = (𝑭, 𝑳)−. shuffle()  

For _ in range (round(𝑠𝑖𝑧𝑒((𝑭, 𝑳)−)/𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒)), do   
(𝑭, 𝑳)𝑖

+ =  (𝑭, 𝑳)+. next_batch(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒)  
(𝑭, 𝑳)𝑖

−  =  (𝑭, 𝑳)−. next_batch( 𝐹𝐼𝑅 ∗  𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒)   

𝑭𝑖
+ = 𝑜𝑛𝑒ℎ𝑜𝑡(𝑭𝑖

+)  
𝑳𝑖

− = 𝑜𝑛𝑒ℎ𝑜𝑡(𝑳𝑖
−)  

(𝑭, 𝑳)𝑖 = shuffle(concat(𝑭𝑖
+, 𝑳𝑖

+), concat(𝑭𝑖
−, 𝑳𝑖

−)) 

Update the parameter 𝜽 of 𝒑(∗ |𝜽) given mini-batch (𝑭, 𝑳)𝑖 
End For 

End For 

Output: The trained neural-net 𝒑(∗ |𝜽).  

4.2. Random Forests 

A random forests classifier is an ensemble of tree-structured 

classifiers. It is an upgraded Bagging algorithm (Breiman, 

2001). In Bagging, a bootstrap sample is used to train each 

weak classifier and the majority vote of the weak classifiers 

is considered the final prediction. Random Forests further 

introduces feature randomness to Bagging. Instead of using 

all features, Random Forests splits each node using a 

randomly selected subset of features. The Random Forests 

classifiers are used to solve task 2 and task 3 and are 

implemented by the scikit-learn python library (Pedregosa et 

al., 2011). 

4.3. Threshold Principles 

Since the performance evaluation is based on the F1-score, 

we have to set a proper threshold for each task once we obtain 

the continuous output from our model to present our final 

predicted result set. There are two possible principles for the 

selection of thresholds: 

• Equal probability. A threshold is selected assuming 

that the minority class in the test set has the same 

occurrence probability as the training set.  

• Best in Training. A threshold of the test set is selected 

that performs best in the training set.  

Note that the threshold principles work only for Task 1 and 

Task 2.  

5. ANALYSIS OF RESULTS 

In this section, we apply our methodologies to PHME 2022 

Data Challenge. The scores are displayed in Table 3 below.  

The train scores are averages of the scores computed through 

a 5-fold cross-validation and the test scores are the final 

scores of our team shown on the leaderboard. In addition, a 

detailed analysis for each task with only the best result of our 

experiments is demonstrated in this section. 

Table 3. F-Scores of the proposed methods 

 Task 1 Task 2 Task 3 Final 

Training 

data 

0.43 0.68 0.83 0.65 

Test data 0.44 0.54 0.71 0.56 

5.1. Task 1 

Task 1 is focused on predicting whether the AOI machine 

will raise a defect record based on the SPI information of a 

component. For the feature extraction part, the main 

challenge is to unify the pin features of different component 

types.  

In our solution, for each component, regardless of the number 

of pins, we compress the pin-level features (“Volume(%)”, 

“Height(um)”, “Area(%)”, “OffsetX(%)”, “OffsetY(%)”, 

“Volume(um3)”, “Area(um2)”, “Shape(um)”, “PosX(mm)”, 
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“PosY(mm)”) to component-level by introducing three 

statistical operators: (1) average, (2) standard deviation and 

(3) maximal-minimal difference. As a result, the whole SPI 

dataset is converted into an SPI-Com-level dataset, and each 

unique component has one data sample with 33 features(the 

other 3 features are “ComponentID”, “com_type”, and 

“com_pin_num”).  

The Neural-net model is initialized according to the 

parameters given in Table 4. During the training process, the 

FIR is fixed to 1.0. The convergence curve is presented in 

Figure 5 (x-log scale). Note that the initial value of the loss 

function is 0.5, indicating the initial untrained neural-net 

outputs randomly. Soon after about 10 training iterations, a 

quick converging trend can be found, and the converging 

trend slows down as the learning rate decays.  

Table 4. Parameters of Neural-net for Task 1. 

 Parameter Value 

1 Number of neurons 256 

2 Batch size 32 

3 Learning rate 1e-2 to 1e-4 

4 F.I.R. 1.0 

5 Training epochs 50 

6 Train-test split 70% training and 30% test  

The F1-scores of the training and test dataset in terms of 

different thresholds are given in Figure 6. It can be found that 

the best F1-score is only slightly larger than the test result. 

More importantly, the related threshold for the best F1-score 

is almost the same, which is about 0.976. As a result, 

conclusions can be drawn as follows: 

• The best F1-score of the training and test set is about 0.43, 

and our model is less likely over-fitted. Note that it may 

be possible to increase the model scale and do more 

iterations to achieve better performance.  

The best threshold to be selected is about 0.976. More 

generally, the best threshold can be determined according to 

the one who performs best in the training dataset. 

 

Figure 5: The loss function with respect to training 

iterations. 

 

Figure 6: The F1-scores of the training and test dataset.  

5.2. Task 2 

Task 2 focuses on predicting if the AOI machine will raise a 

false defect. Thus, we need to remove components that do not 

exist in the AOI dataset and 27,514 components are left in the 

training set. Among the 27,514 components, there are 412 

components having a “Bad” operator label, and 27,093 

components having a “Good” operator label, which is 

considered highly imbalanced. To tackle the data imbalance 

issue, we apply a threshold moving technique, best in 

training, to select the optimized threshold and use it for final 

testing. Figure 7 validates our threshold moving technique by 

comparing the predicted test F1-score and the best test F1-

score among all possible thresholds. Based on our 

experiments, a random forests model is built using the 

selected features: “com_pin_num”, “Result”, “com_type”, 

“AOILabel”, and “MachineID”.  200 n_estimators, 21 

max_depth, and 4 min_samples_split are considered the best 

hyperparameters for our model using grid-search 

optimization. Note that one-hot encoding is applied for 

categorical variables. 

 

Figure 7. F1-scores for the training set, test set using 

selected threshold, and the global best f1-score for the test 

set 

5.3. Task 3 

Task 3 aims to predict the repair label for only faulty 

components. Thus, we need to remove components if 

OperatorLabel is “Good”. There are 412 components left in 

the training set for task 3. Based on our experiments, a 

combination of the PinNumber-based feature extraction and 

random forest algorithm produces the best result. The 

selected features are “com_pin_num”, “com_type”, 
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“Volume(%)”, “Height(um)”, “Area(%)”, “OffsetX(%)”, 

“OffsetY(%)”, “Volume(um3)”, “Area(um2)”, “Shape(um)”, 

“PosX(mm)”, “PosY(mm)”, “Result”, “AOILabel”, and 

“MachineID”. In addition, 300 n_estimators and 7 

max_depth are considered the best hyperparameters for our 

model using grid-search optimization. 

Using the optimal model parameters, the model performance 

on the training set of this multi-classification problem has 

been presented in the form of a confusion matrix, which is 

shown in Figure 8. 

 

Figure 8. Task 3 confusion matrix using the training set 

 

6. CONCLUSION 

This paper focuses on three prediction tasks regarding the 

PCB manufacturing process. Firstly, data exploration is 

carried out and it reveals several data challenges: (1) highly 

imbalanced data, (2) noisy data, (3) small sample size, and (4) 

component difference. Secondly, to address these challenges, 

statistical feature extraction is proposed to compress the pin-

level dataset into component-level. Thirdly, a neural-net 

model with feeding imbalance control is established for Task 

1. Fourthly, the random forests model is applied for both Task 

2 and Task 3. Moreover, a threshold moving technique is 

proposed to optimize the threshold selection. Finally, the 

results show that our models achieved F1-scores of 0.44, 0.54 

and 0.71 (average of 0.56) using the test dataset for the three 

tasks, respectively.  
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