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ABSTRACT

Sparse & noisy monitoring data leads to numerous challenges
in prognostic and health management (PHM). Big data vol-
ume but poor quality with scarce healthy states information
limits the performance of training machine learning (ML) and
physics based failure modeling. To address these challenges,
this thesis aims to develop a new hybrid PHM framework
with the ability to autonomously discover and exploit incom-
plete implicit physics knowledge in sparse & noisy monitor-
ing data, providing a solution for deep physics knowledge-
ML fusion by physics-informed machine learning algorithms.
In addition, the developed hybrid framework also apply the
self-supervised learning paradigm to significantly improve the
learning performance under uncertain, sparse, and noisy data
with lower requirements for specialist area knowledge. The
performance of the developed algorithms will be investigated
on the sparse and noise data generated by simulation data sets,
public benchmark data sets, and the PHM platform to demon-
strate its applicability.
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1. MOTIVATION AND RESEARCH PROBLEM STATEMENT

Prognostics and health management (PHM) plays a construc-
tive role in ensuring the real-time health assessment of a sys-
tem under its actual working conditions as well as the pre-
diction of its future state based on up-to-date information
(N. Kim, An, & Choi, 2017). Two mainstream methods,

which are mainly used are Machine Learning (ML) and Physics-

based methods (PBM). ML is proficient at automatically ex-
tracting features from data and building relationships between
features based health indicators and system states. However,
as a data-hungry and black-box method. ML meets dilemmas
in processing sparse & noisy data. The pervasive monitor-
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ing instrument costs, the high run-to-failure operation costs,
and the lack of data label are objective conditions that cre-
ate sparse/noisy data that is insufficient for ML to learn a
meaningful knowledge representation. Besides, PBM repre-
sent the degradation mechanisms by observing failure phe-
nomena and then establishing mathematical equations or nu-
merical laws, with the ability to infer hidden states from a lim-
ited sample (Chao, Kulkarni, Goebel, & Fink, 2019). How-
ever, modern engineering systems have simultaneous non-
linear interactions between their subsystems and their envi-
ronment. Failure mechanisms and degradation processes are
difficult to identify. With incomplete failure cognition, imple-
menting detailed parametric or numerical degradation models
for these systems in sparse & noisy data is challenging.
These challenges prompt PHM techniques into a hybrid frame-
work. Hence, this thesis aims to explore the combination of
PBMs and ML by physics informed machine learning (PIML).
Providing a deep model & data-driven embedding fusion so-
lution to assist trustworthy PHM deployment in *“ small data,
small laws ” contexts. The developed framework is hoped to
be trained in self supervised learning training (SSL) paradigm
to build the ability to autonomously discover and exploit im-
plicitly incomplete physics knowledge in sparsenoise moni-
toring data.

2. NOVELTY AND SIGNIFICANCE RELATIVE TO THE STATE

OF THE ART

To the best of our knowledge, the research about SSL-PIML
hybrid framework is scarce, most of them are derived from
reconstructive recognition of image data in the medical field,
and physics-based loss functions are designed to test the ef-
fectiveness of the feature extractors in pretext (Yaman et al.,
2020; Martin-Gonzalez et al., 2021). A brief review of ad-
vanced research on PIML and SSL in PHM is performed. The
bibliometrics results from Citespace analysis for 185 PIML
hybrid methods -related and 35 SSL hybrid methods related
papers are presented in Fig.1. In PHM field, the rotating ma-
chinery, grid, production lines, batteries, and materials are
the main application scenarios of SSL and PIML techniques
while the anomaly detection, fault diagnosis, and RUL pre-
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diction are their core objectives.

On one hand, the PIML methods have risen and are attracting
more attention since 2017. According to the way of integrat-
ing physics knowledge in the ML pipeline, the PIML meth-
ods can be categorized into three groups: 1) Physics informed
input space, 2) Physics informed structure, and 3) Physics in-
formed loss function (Karniadakis et al., 2021). According
to the Fig.1, the research has shifted from the integration of
features and rules (expert systems) to the integration of al-
gorithms structure and parametric models (physics informed
neural network (Karniadakis et al., 2021)). It suggests that
researchers seek to create an augmented input feature and a
physics informed (PI) derivation process that can be inter-
pretable (S. W. Kim, Kim, Lee, & Lee, 2021). In this process,
a variety of refined laws and analytic relations such as linear
damage accumulation laws, crack extension formula are in-
corporated by the different methods such as neural networks
(Viana & Subramaniyan, 2021), Gaussian processes (Cury,
Ribeiro, Ubertini, & Todd, n.d.). Besides, the research related
to embedding the partial differential equations representing
system behaviors into ML models is gradually becoming a
popular method. The essence of PIML is to introduce physics
constraints to ML data processing process. Its drawback is the
high requirement of physics domain knowledge because the
incorporation methods still relies heavily on manual designed
explicit knowledge with parsed form.

On the other hand, SSL methods mainly focuses on mining
its own supervised information from large-scale unlabelled
monitoring data using an auxiliary task (pretext), and train-
ing ML with this constructed supervised information to build
valuable representations for downstream detection, diagnos-
tic, and prediction tasks. It is clear in Fig.1 that SSL meth-
ods in PHM are in the stage of self-supervised feature engi-
neering. They focus on signal reconstruction and feature ex-
traction through principal component analysis (PCA) (Wang,
Qiao, Zhang, Yang, & Snoussi, 2020), Deep Clustering and
Auto-encoder (Zhang, Chen, He, & Zhou, 2022), Generative
Adversarial Network (Ding, Zhuang, Ding, & Jia, 2022). In
these studies, self-supervised (SS) features construct bounds
for different health states by fine-tuning valuable representa-
tions for downstream tasks, such as bounds for reconstruc-
tion error as a normal-abnormal watershed and bounds for
similarity as a distinguishing representation for different fault
states. Particularly, SSL based RUL predictions are rarely
studied. Moreover, only generative schemes are widely used
compared to the other SSL architectures, e.g., contrastive or
generative-contrastive strategies.

In summary, the focus of the hybrid framework proposed in
this study is autonomously incorporating the implicit incom-
plete physical knowledge into ML, under sparse/noisy moni-
toring data. It is an issue that is hardly mentioned in existing
studies but indeed needs to be addressed by original and in-
novative research in the development of PHM without delay.

3. WORK PROGRESS AND FUTURE DIRECTION

Motivated by the philosophical concept of “ constructivism
learning”, it is hoped to build PIML-SSL hybrid framework
based on conformity and assimilation. In conformity, ML
transforms the original data-driven reasoning process by in-
corporating physics constraints. In assimilation, ML trains
feature extractors in self-supervised way for downstream PHM
tasks without changing the PIML framework. Currently, the
literature review has completed and based on it, this thesis is
at the beginning of the methodological development. Particu-
larly, the developed hybrid framework using PI-SSL paradigm
consists of the following techniques in Fig.2:

a) Knowledge - ML module inter-conversion mechanisms
The inter-conversion mechanisms are dedicated to embed-
ding the mathematical relations, i.e., Input-output (I0) model
(analytical function) or physics operator (differential relation-
ships) of the failure to a part of the ML calculation diagram in
layer functions, regression formulas, coefficient distribution,
etc. Based on generic mathematical relations, ML will infer
uncertain parameters and automatic search for hidden repre-
sentations of the possible formation of degradation relations
for these units of embedded physical knowledge.

b) Physics informed metric learning

It aims to establish boundaries metric distances for failure
states and the corresponding HI. This enables the ML’s re-
sults to respect the basic physics consistency such as physics-
informed similarity, principle of cumulative energy dissipa-
tion for wear behavior, etc. In particular, distance measures
between different health states based on comparative learning
will be investigated in depth.

¢) Boundary condition exploration pretext task design

In SSL, the inter-conversion mechanisms helps to establish
a downstream data-driven health indicator (HI) according to
PHM tasks. In detail, an appropriate PI computational struc-
tures will be constructed to complete the assimilation process,
e.g., Siamese, Codec, Graph, etc. These structures seek to
maximize the difference between the boundaries of different
health states while satisfying physics consistency. Through
training on a “pretext task”, these structures automatically
generates pseudo labels. Their parameters are frozen as a su-
pervised feature extractor, connecting with the different func-
tional ML module in the fine tuning process when it is trans-
ferred into the downstream PHM tasks.

d) Hybrid framework design and validation

Based on the previous research, we will construct the PI-SSL
hybrid framework. The quantitative and sensitivity analyses
of data quality on the its performance will be performed to
probe the lower limit of tolerance and upper limit of its appli-
cability in sparse & noise and incomplete physics knowledge.
Relevant metrics on sparsity, noise, and knowledge complete-
ness will be defined and quantified through masking and se-
lective cropping of public data sets, mechanistic models, and
experimental data. The influence of the above indicators to
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Figure 2. Technology road-map for the thesis.

varying degrees under different working conditions will be
studied deeply in the rotating machine PHM test platform.
The results from different data sources will be compared to
find the difference in their feature representation.

4. DISCUSSION ON THE APPLICATIONS

This thesis develop a PIML hybrid framework equipped with
SSL training paradigm for fault diagnostics and prognostics
purposes in the context of sparse & noisy data with incom-
plete and implicit failure knowledge. It design the physics
informed operator or ML module to completes the seamless
methods integration, establishing fault boundary metric dis-
tance in the objective function to improve the physics con-
sistency as well as to reduce the data dependency of ML. In
fact, the need of large labeled and high-quality data is too dif-
ficult or costly to satisfy. Meanwhile, the ability to correctly
interpret the output of a PHM model is essential in high-value
devices. The developed hybrid PHM framework with physics
consistency and excellent exploitation of sparse & noise data
allows better understanding of the system state and mainte-
nance supports. Its algorithms potentially extended to the
large-scale and low-cost deployment.
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