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ABSTRACT

Industrial systems with multiple subsystems are monitored
via various sensors to control the ongoing process. If the
number of monitoring signals collected from these sensors
is high and the number of faulty samples is low, then the
machine learning methods may fail to provide effective so-
lutions for fault detection and root cause identification. This
paper proposes an efficient feature selection model based on
the regularized LSTM neural networks, and fault detection
and classification using an ensemble of binary LSTM classi-
fiers. The model is verified in PHME Data Challenge 2021
which provides quality-control-pipeline monitoring data.

1. INTRODUCTION

Fault detection, identification, and prediction in complex pro-
duction systems with several subsystems are still challenging
tasks. Deep learning algorithms try to provide effective and
efficient solutions to these problems (Zhang et al., 2019). In
the literature, various deep learning architectures have been
proposed to detect faults and estimate failure time. Han et
al. employed convolutional neural networks-based spatio-
temporal feature learning for fault diagnosis in complex sys-
tems (Han, Liu, Wu, Sarkar, & Jiang, 2019). Li et al. utilized
Hidden Markov models for rotating machinery to detect and
classify faults (Li, Wei, Wang, & Zhou, 2017). Deep belief
networks were also proposed to detect multiple faults in a
complex system, namely a cryogenic propellant loading sys-
tem (Ren, Chai, Qu, Ye, & Tang, 2018).

Machine learning (ML) algorithms, particularly neural net-
works, need large training datasets to model fault detection,
classification, and estimation appropriately (Zhang et al., 2019;
Han et al., 2019; Li et al., 2017; Ren et al., 2018). The train-
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ing of ML models becomes challenging if the number of sam-
ples is limited in any task (Ren et al., 2018). If there are also a
large number of monitoring signals besides limited samples,
data-driven ML models suffer from the curse of dimension-
ality. The model may easily overfit in training in such cases
since the number of training parameters is high as compared
to the available measurements.

This study uses a regularized long short-term memory(LSTM)
network to select prominent features and suggests using an
ensemble of LSTM networks to detect the faults in streaming
data. Firstly, an LSTM network for each fault is trained using
a cost function in which the ¢; norm of the weight coefficients
is added to binary classification loss. This approach provides
sparse weight coefficients in the LSTM network, i.e., the net-
work uses only a few input features to detect each fault. Once
the prominent features are determined, a separate LSTM net-
work that uses only the related prominent features as input
is trained as a binary classifier to detect defined faults. In
the validation dataset, the classifiers are ranked according to
their accuracy. The final fault decision is made according to
the priority of the classifiers. If none of the classifiers have a
fault alarm, the state is determined to be faultless. The pro-
posed model is verified on real-world industrial testbed data
provided by PHME Data Challenge 2021.

The rest of the paper is organized as follows: Section 2 briefly
reviews the provided dataset. Section 3 presents the sug-
gested feature extraction and fault detection approach in de-
tail. Section 4 evaluates the performance of the proposed
model on given data. Lastly, Section 5 concludes the paper
and discusses the future research direction.

2. ABOUT PHME DATA CHALLENGE 2021

The dataset for PHME Data Challenge 2021 was generated
by the collaboration with Swiss Centre of Electronics and
Microtechnology (PHMEurope21, 2021). This dataset con-
sists of data points collected for the quality control of elec-
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trical fuses. All fuses on this system are assessed in a two-
stage quality control mechanism. The data has been acquired
from a real-world industrial test-bed that is used for a fuse
test bench.

The overall system is monitored via 50 signals, which con-
tain information about the environment, the system’s health
status, and some other factors. The dataset has been acquired
in different experimental sections. Each experiment is run
from 1 to 3 hours. During the data acquisition process, the
experimental data is gathered over a time window of 10 sec-
onds. While experimental data is acquired, features of each
signal are extracted automatically using statistical methods.
These features are shown in Table 1.

Table 1. Features and description

Features | Description

vCnt Number of samples recorded within time-window
vFreq Sampling frequency within time-window

vMax Maximum value recorded within the time-window
vMin Minimum value recorded within the time-window
vTrend Time series trend within the time-window

value Mean value recorded within the time-window

The experimental dataset has been collected under fault-free
operating conditions. However, with the help of domain ex-
perts, a variety of faults under controlled conditions were
created. 8 different fault labels were defined in total and
these faults were created with the help of one or more signals
in fault-free experiments using 2 operating conditions. The
training set consists of 5 faulty classes, each containing 4 ex-
periments, and faulty-free classes containing 50 experiments.
In addition, there is the model refinement set that consists of 3
faulty classes, each containing 3 experiments, and faulty-free
classes containing 20 experiments.

The first objective of PHME Data Challenge 2021 is to iden-
tify and classify faults by developing a model to predict pre-
defined faults in unlabeled test data. The second objective is
to rank the effect of input signals on identified fault occur-
rence. The third objective is to accomplish these 2 objectives
in the shortest time interval. Lastly, the fourth objective of
this challenge is to develop unsupervised solutions to identify
experiments with different system configurations. In this pa-
per, we propose an architecture to identify the related signals
for all fault types and detect them using LSTM networks.

3. PROPOSED METHOD

LSTM neural network architecture is utilized in feature se-
lection and fault detection. The input data should be prepro-
cessed appropriately to feed into the neural networks. In this
section, firstly the preprocessing procedure is described in de-
tail. Secondly, the LSTM network is briefly reviewed and
discussed. Then, the feature selection approach is presented.

Lastly, the section is ended with the fault detection model.

3.1. Preprocessing

The dataset includes two linearly dependent summary statis-
tical features, namely vCnt and vFreq, as seen in Table 1.
Therefore, vFreq is chosen and excluded to reduce the num-
ber of features. Furthermore, since all other features are miss-
ing when the value of vCnt is equal to 0, all missing data is
replaced by 0 to feed them into the neural networks in such
cases.

There are both nominal and ordinal categorical input features
in the dataset. However, the number of different values in or-
dinal categorical features is high, and so, it is assumed that all
features are nominal. Normalization/Standardization is an-
other critical preprocessing step that remarkably improves the
performance of neural networks (Goodfellow et al., 2016).
Min-max normalization is the most popular way of handling
nominal data in LSTM networks. However, in the provided
data described in Section 2, the input values have outliers. In
this case, min-max normalization confines most of the values
around a specific value (0.5 in case of [0, 1] normalization
and 0 in case of [—1, 1] normalization), which decreases the
information content of the features. Therefore, standardiza-
tion which is described in the following equation is preferred
instead of min-max normalization to overcome this problem:

$: = (177 - ,Ui)/ai (D

where xg, x; are standardized and original ith feature values,
1; and o; are mean and standard deviation of ith feature val-
ues, respectively.

Theoretically, the LSTM networks are capable of handling
streaming data of any length. However, the maximum length
of the input sequence should be limited for the training of
LSTM. Thus, the LSTM network is employed with a sliding
window approach. A time window of features that includes
the current and past measurements is fed into the LSTM model
at each step to detect the fault. These windows are created
from the input sequences in an overlapping manner in the last
stage of preprocessing in training.

3.2. Long short-term memory network architecture

LSTM network is a special type of recurrent neural network
to capture long short-term dependencies in time sequence data
(Hochreiter & Schmidhuber, 1997). The architecture of an
LSTM cell with a forget gate is illustrated in Figure 1.

The cell state ¢; and hidden state h; is computed in recurrent
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Table 2. Priority order of classifiers and selected features

Priority | Class | Sequence
Order | id Length Feature 1 Feature 2 Feature 3 Feature 4
| 11 5 SmartPosition- DurationRobotFrom-
Error FeederToTestBench
2 3 10 FeederBackground- | VacuumValve-
[lluminationIntensity | Closed
Vacuum Valve- NumberFuse-
3 > 15 Closed Vacuum Detected
4 12 15 DurationRobotFrom- | SmartMotor-
FeederToTestBench | Speed
5 9 15 SmartMotor- SmartMotor-
Speed PositionError
. VacuumFuse- Temperature-
6 2 25 FeederAction2 Picked Vacuum ThermoCam
7 7 60 FusePicked FuselntoFeeder Fuse01_1t51de—
OperationalSpace
LightBarrierActive- .o LightBarrierPassive- | IntensityTotal-
8 4 40 TaskDuration1 EPOSPosition TaskDuration1 Thermolmage
7 defined as:
(t)
1 x
1+e* er 41
@) P (c) sinhz e*—e™® ¥ -1
tanhz = = =
coshz e +e® 2741
Tanb> W', Us and bs are trainable weight parameters of input and
recurrent connections and bias vectors, respectively. The train-
able parameters in the LSTM network are trained using gra-

h(»71>

manner with the following equations:

where x;, hy, and c¢; are input, hidden state and cell state
vectors at time instance ¢, respectively. o() and tanh() are

Figure 1. A single LSTM cell
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dient descent methods. However, as opposed to other feed-
forward neural networks, a special type of backpropagation,
namely Backpropagation Through Time (BPTT), is employed
in parameter training (Werbos, 1990).

3.3. Feature selection using regularized LSTM networks

If a system is composed of multiple subsystems, its health is

monitored via multi-sensors.

These sensors’ measurements

or features may lead to a curse of dimensionality for ma-
chine learning models if the number of collected samples
from some classes (notably for faulty cases) is low. A ma-
chine learning model, especially a neural network designed
to detect a specific fault, might overfit the training samples
and fail to detect the fault in the test. LSTM networks also
suffer from such a curse of dimensionality.

A regularized LSTM architecture to select the prominent fea-

tures related to the faults may overcome the high dimension-
ality of input data. An LSTM cell with 16 hidden and cell

states and with a maximum sequence length of 15 is designed
for this task. A fully connected layer with only one hid-
den neuron and sigmoid activation is added to the end of the

sigmoid and hyperbolic tangent activation functions that are
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ing and validation sets. The samples with the shortest length
from the faulty classes are left for the validation set to in-
crease training data size. 4 random samples from the fault-
free class are put into the validation set. The training and
validation datasets are preprocessed by following the proce-
dure defined in Section 3.1 with a sliding window length of
15 and a sliding step of 1.

In an ordinary classification problem, the model parameters
can be trained using the binary cross-entropy loss (cost) de-
scribed as follows:

N
N 1 . N
Ly, ¥) = N Zyz log §i + (1 —y;) - log (1= 4;) (5)
i=1

where ¢; and y; are the model’s prediction and the actual label
for the ith sample. ¢; norm of the Ws in (2) is added to loss
function as follows:

Liotar = L(y, §) + AW |y ©)

Penalization of ¢; norm of W, which are the weight coeffi-
cients that are related to inputs, enforces several near 0 values
in W (Tibshirani, 1996). It is assumed that if all of the weight
coefficients related to an input feature are close to 0, then the
feature is not important for this fault. Therefore, the selection
of the prominent features is achieved via the penalization of
the input weight coefficients. The number of near zero values
in W is controlled by the constant A.

A separate binary LSTM classifier with the same hyperpa-
rameters is trained for each type of fault by using the regular-
ized loss (6). The binary cross-entropy part in the regularized
loss (6) is calculated by weighting the different classes in-
versely proportional to the number of samples in each class
since there is a considerable class imbalance between the faulty
and faultless classes. BPTT is employed with Adam opti-
mizer (Kingma & Ba, 2014). Different As from the candidate
values {0.05,0.01, 0.005, 0.001, 0.0005,0.0001} are used in
training, the best performing ones in the validation set are se-
lected for each class. If the performance is similar for more
than one ) value, a higher one is preferred. Because the high
A values provide more near 0 values in Ws. All of the weight
coefficients for each feature are added for each classifier, and
the ones that are smaller than 1% of the maximum are approx-
imated as 0. As a result, the features that are corresponding
to the nonzero W values in the best performing classifiers are
selected as the prominent features for the related faults. Ta-
ble 2 demonstrates the features that are selected for each fault

type.

3.4. Fault detection model

The fault detection model consists of 8 independent fault-
specific binary LSTM classifiers. Each classifier takes only
fault-related features as input. For instance, a binary LSTM

classifier for fault number 11 is designed to operate with the
measurements only from the sensors, SmartMotorPosition-
Error and DurationRobotFromFeederToTestBench, as seen in
Table 2.

The number of hidden and cell states is fixed to 16. A fully
connected layer, with a single hidden neuron and sigmoid ac-
tivation, follows the LSTM layer. Sequence lengths of LSTM
classifiers are optimized by starting at a high value (80) and
gradually decreasing by 5 to a point where the performance
reduces drastically. The shortest sequence length with the
best performance is selected as sequence length for each bi-
nary LSTM classifier as illustrated in Table 2. The fault alarms
are counted, and the fault decision is taken when the number
of fault alarms reaches the window length of the classifier to
increase the accuracy further.

Binary LSTM classifiers are ordered according to their vali-
dation data set accuracy as shown in Table 2. It is assumed
that the classifier’s decision with the highest precision in the
validation set is more reliable than the others. Thus, it is
preferable to the others in case of multiple fault alarms. This
priority-based ensemble of binary classifier models is sum-
marized in Figure 2.

The importance order of the fault-related features is also of
interest to identify the root cause of the fault. The sensor
measurement whose absence decreases the classification per-
formance at most is selected as the most critical signal. The
features are given according to their importance order in Ta-
ble 2.

4. RESULTS
4.1. Validation performance

In the experiments, leave-one-out-cross-validation is used as
stated in Section 3.4. The samples with the shortest time peri-
ods are left for the validation from each faulty class, and four
healthy samples are chosen among the faultless class. The
other samples are used for training to maximize the training
size.

The model is implemented using the Keras library in Python
on Jupyter Notebook (Chollet et al., 2015). Scikit-learn API’s
K-means clustering algorithm is directly used for the bonus
part instead of designing a custom clustering model (Pedregosa
et al., 2011; Hartigan & Wong, 1979).

The validation performance is evaluated in terms of single-
point accuracy and presented with the confusion matrix in
Table 3. However, a fusion of fault alarms is used for giving
a fault decision. Multiple fault alarms are waited to be caught
as mentioned in Section 3.4 to increase the accuracy further.
With this strategy, 100% accuracy is achieved in classifica-
tion, but the required time for the fault decision is increased.
Table 4 shows the fault decision time for each class on vali-
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Table 3. Single point classification performance of the proposed model on validation data.

\ Faultless | Fault2 | Fault3 | Fault4 | Fault5 | Fault 7 | Fault9 | Fault 11 | Fault 12
Faultless | 0.97 0 0 0.01 0 0.02 0 0 0
Fault 2 0.02 0.98 0 0 0 0 0 0 0
Fault 3 0 0 1 0 0 0 0 0 0
Fault 4 0.08 0 0 0.90 0 0.02 0 0 0
Fault 5 0 0 0 0 1 0 0 0 0
Fault 7 0.12 0 0 0.06 0 0.82 0 0 0
Fault 9 0 0 0 0 0 0 1 0 0
Fault11 | O 0 0 0 0 0 0 1 0
Fault12 | O 0 0 0 0 0 0 0 1
fI;STFI;ilCtj l%isll){zei L1 Yes Alarm Fault Type 1
No

Date LSTM Classifier L2
ata for Fault Type 2

LSTM Classifier | L8
for Fault Type 8

If L1=No

& L2 Yes? Alarm Fault Type 2
=Yes?

Yes

L1,L2,....L7=No Alarm Fault Type 8

Fault Free Sample

Figure 2. LSTM ensemble classifier

dation data.

4.2. Test performance

Three main performance indexes are given to assess the per-
formance of the fault detection models, classification accu-
racy, identification of the signal related to the faults, and the
time required for detection. Identification of the fault-related
signal is assessed using the following criteria:

1—0.15(z — 1)

Ranking(z) = { 0.5 ifr <4

otherwise

@)

where x is the rank of the most important signal in the pro-
posed model. Time performance of the designed detection al-
gorithm is evaluated as the average relative time with respect
to the time of the model that detects the fault in the shortest
time as follows:

ST(e)
T(e,1)

Relative Time(e, i) = (8
where ST is the time of the fastest detection model among
the competitors and 7 is the proposed model’s first fault de-
tection time. A bonus point is provided for the clustering of
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Table 4. Detection time for each class in validation data.

Class Detection Time
Faultless | 120

Fault 2 50

Fault 3 20

Fault 4 80

Fault 5 30

Fault 7 120

Fault 9 30

Fault 11 10

Fault 12 | 30

the system configuration parameters. Bonus point is calcu-
lated using the adjusted rand index as follows:

1.3  if adjusted rand index > 0.8

1.2 if 0.7 < adjusted rand index < 0.8
1.1 if 0.5 < adjusted rand index < 0.7
1.0 otherwise

Bonus =

€))

Score = Accuracy * Ranking * Relative time « Bonus (10)

adjusted rand index The proposed model achieved an accu-
racy score of 0.8235, a ranking score of 0.7, a time score of
0.767, a clustering score of 1.0, an overall score of 0.4422
and lastly, ranked 2" in the data challenge.

5. CONCLUSION

This paper presents a model with an ensemble of LSTM net-
works for fault selection and fault detection on systems with
multiple subsystems. The efficiency of this model is veri-
fied on a benchmark dataset of PHME Data Challenge 2021.
Based on the obtained results, the proposed model provides a
satisfying performance in classification, timely detection, and
root cause analysis. However, the rough clustering method
fails to identify system configuration parameters properly. The
study shows that the developed methodology is an effective
tool for diagnostics and prognostics of industrial systems with
several subsystems. As future work, the performance of this
methodology can be verified using well-known diagnostics
and prognostics datasets. Moreover, the effect of the weight
penalization parameter A\ for feature selection performance
should be analyzed further.
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