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ABSTRACT

This work elaborates the procedure followed by the HIRUTEK
team to solve the data challenge proposed by the PHM 2021
organisation. This challenge deals with a manufacturing line
that continuously tests fuses and suffers from several mal-
functions. The solution addresses the diagnosis of the faults;
the efficiency of the diagnosis; the identification of the signals
related to each fault type; and, the identification of different
operation settings that occur during the non-faulty conditions.
This problem presents some difficulties that are common to
machine fault diagnosis or manufacturing line monitoring;
such as the class imbalance; the high amount of missing val-
ues; multicollinearity and high dimensionality; and, experi-
mental noise. Additionally, the evaluation criteria presents
further challenges such as the consideration of chronology
and the detection of operation states (also referred in the lit-
erature as context awareness). The consideration of all these
factors turns this exercise in a very representative and chal-
lenging problem. The solution here proposed, that obtained
the highest score in the contest, relies on the combination
of decision tree algorithms and a propagation system. The
trees provide observation-wise diagnoses while the propaga-
tion system deals with chronology by adding a Kalman style
filter that updates the probabilities, resulting in a more reli-
able result.

1. PROBLEM DESCRIPTION

1.1. Condition monitoring in manufacturing lines

The pursue of a more competitive manufacturing has led the
production equipment to be more flexible, sustainable and re-
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quire of less human supervision for its operation. Recent ad-
vances as the inclusion of sensors in the line have allowed
the use of operator inputs together with the sensor measure-
ments to determine the state of the manufacturing process
(Stavropoulos, Chantzis, Doukas, Papacharalampopoulos, &
Chryssolouris, 2013). This state or condition detection that
is provided by decision systems allows line operators to take
corrective actions which, in turn, improves the responsive-
ness in terms of the machine downtime reduction. However,
as the decisions depend on the data received, providing re-
liable data is critical in order to optimize the manufacturing
system (Assad et al., 2021)

Considering the previous, exploring decision-making algo-
rithms for manufacturing systems at testbed level is of great
interest, as it provides a better insight of the kind of problems
that can be faced at industrial level and fosters the adoption of
reliable decision-making algorithms in real industrial setups.

1.2. Experimental rig

The problem proposed by the 6th European Conference of
Prognostics and Health Management Society 2021 (PHM) re-
sembles a typical component of a large-scale quality-control
pipeline of a production line. The experimental bed, cour-
tesy of the Swiss Centre for Electronics and Microtechnol-
ogy (CSEM), generates data similar to a real-world industrial
manufacturing line.

The line consists of a 4-axis SCARA-robot with a vacuum
gripper that picks up fuses from a feeder to a fuse-test-bench.
On the test-bench, fuse current conductivity is measured, and,
if the conductivity is appropriate, heating is applied to the
fuse while a thermal camera measures during the heating pro-
cess. Once the fuse is tested, it is sent back to the feeder with
two conveyor belts.
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1.3. Data

The testbed had different sensors installed that captured 50
signals measuring different physical properties of the system,
such as pressure, vacuum, humidity, etc. Those signals were
continuously measured during the experiments. However,
some statistical descriptors were computed every 10 seconds
instead of storing raw measurements. Those signal features
were: counts (Cnt), frequency (Freq), maximum (Max), min-
imum (Min), standard deviation (Std), Trend and value, which
were not computed for every signal.

During each experiment, lasting between 1 and 3 hours, dis-
turbances were applied to some of them, simulating 8 differ-
ent system failure conditions, labelled 2, 3, 4, 5, 7, 9, 11 and
12. With a total of 9 different classes, including the healthy
class, labelled 0, in which no disturbances were introduced.

During the challenge the data was provided in two stages.
Firstly, 50 healthy experiments and 4 experiments with each
of the labels 2, 3, 5, 7 and 9 were released. Algorithm de-
velopment began with those data. Later, another 20 data sets
without failures and 3 of each of the 4, 11 and 12 faults were
made available.

1.4. Evaluation

The data challenge organising committee proposed the fol-
lowing 4 criteria in order to assess the goodness of each ap-
proach to the problem.

• Identification and classification of faults: Determining
which experiments are faulty and identifying which type
of fault it is. That is, a fault diagnosis system that pro-
vides the class when given an experiment. This is tested
by providing unseen experiments to the solution and check-
ing how many of them are classified correctly.

• Root cause analysis: The solution had to provide a rank-
ing of the signals in descending order of importance that
could be causing each of the 8 failures. The appropriate
signal should be among the top four signals, assigning
a proportional score to the position of that signal in the
ranking.

• Prediction in the shortest time: Algorithms are forced to
consider the chronology of the experiments when pro-
viding the class. The solution is run twice to validate
this assumption. In each run, the time required to reach a
definitive diagnosis is provided. Later, this time is used
to cut the experiment, repeat the process and ensure, this
way, that the diagnostic system is robust (it returns the
same diagnostic in the second run).

• System operation parameter identification: Apparently,
the test rig can operate with two different operation pa-
rameter configurations that provide different sensors read-
ings but are not causing faulty operation of the line. The
solution should be able to identify the point where taken

in one or the other condition, without having any la-
belling related to the different conditions as they are all
labelled as healthy experiments.

2. SOLUTION

2.1. Evaluation Related Inference

• The fourth evaluation criterion implied the existence of
two data groups within the same label 0 (healthy). Hence,
developing algorithms without considering this fact would
lead to a worse diagnosis capability. For that reason, in-
stead of considering this aspect as an optional bonus, it
was decided to start tackling this point first.

• The challenge had an interesting system that validated
the time allegedly spent by the algorithm to reach a solu-
tion. For that validation, the experiment was cat follow-
ing the indicated time and it was fed back to the algo-
rithm, ensuring that the class provided by the algorithm
in the second attempt coincided with the one previously
obtained. This evaluation system was designed to avoid
data leaking from one run to the next, as the algorithm
could not know whether it was being ran in the first (with
the full experiment) or the second (with the reduced ex-
periment) time. However, it was not perfect, as during
the first run the algorithm could see the full experiment.

2.2. Issues

On the top of the previous observations, the first exploratory
analyses unveiled some additional aspects that needed to be
considered to properly tackle the problem:

1. Missing Values: Data values that are not properly stored
or are missing can have a significant impact on the anal-
ysis and further conclusions. The complete data set con-
tained 10% of missing values not identically distributed
by the variables.

2. Class imbalance: Class imbalance occurs in classifica-
tion predictive modelling when there is an unequal dis-
tribution of classes in the training set. Typically this kind
of problem hinders the obtaining of reliable diagnosis al-
gorithms since the traditional models and performance
metrics (such as accuracy) assume a balanced class dis-
tribution. In a first analysis of the available data, clear
imbalance was identified as there were only 4 experi-
ments for each 2, 3, 5, 7 and 9 classes; 3 experiments
for classes 4, 11 and 12; whereas there were 70 experi-
ments belonging to class 0 (healthy).

3. Multicolinearity: Multicolinearity occurs typically in highly
sensed environments where the same signal is described
with various statistical descriptors. As different descrip-
tors belonged to the same signal, and some signals were
measuring similar effects, many of the resulting variables
were highly correlated, which can be very harmful, par-
ticularly in linear models.
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4. High dimensionality: A total of 248 variables were ob-
tained in each test, with a number of observations rang-
ing from 357 to 1081 per experiment. Comparatively,
this amount of variables was high, making us aware of
potential downsides of employing distance based tech-
niques (due to the curse of dimensionality) or a high
chance of facing overfitting if the algorithms used noisy
signals when no relevant signal was found.

5. Bias in experiments/Experimental noise: In relation to
the previous point, an additional source of noise in con-
dition monitoring is the experimental noise. For any rea-
son, exact replications of experiments in the same testbeds
lead to have different signal values. In that regard, con-
sidering each observation as purely independent (as in
most machine learning problems) is risky, as the inertia
the systems have tends to be used by the algorithms to be
capable of detecting the experiment in contrast to gener-
alising the class value. For that reason, using standard
randomly created train/test splits needed to be avoided.

6. Chronology in diagnosis: Considering chronology can
be beneficial and detrimental at the same time. On the
one hand, considering chronology could ease the identi-
fication of some faults that were not present on the com-
plete signal due to their intermittent behaviour. On the
other, considering chronology needed of tools that were
not of-the-shelf, hence requiring to build ad-hoc designed
algorithms to benefit from it.

2.3. Algorithm Development

Bearing in mind all the previously presented issues, an algo-
rithm was developed by combining the techniques explained
throughout this section. On the one hand, the statistical soft-
ware R was used for the exploratory analyses. The libraries
used to preprocess the data were dplyr (Wickham, François,
Henry, & Müller, 2019), imputeTS (Moritz & Bartz-Beielstein,
2017) and cluster (Maechler, Rousseeuw, Struyf, Hubert,
& Hornik, 2021). On the other hand, the development of
the final algorithm was programmed in Python. sklearn
library was used to train and validate the models and also
to perform Principal component Analysis (Pedregosa et al.,
2011) and imblearn to manage the imbalanced data (Lemaı̂tre,
Nogueira, & Aridas, 2017).

2.3.1. Missing Value Handling

After a completeness analysis was carried out variable-wise,
a relationship was identified between the appearance of miss-
ing values in some features. In many cases, when the feature
Cnt (Counter) of a variable took a value of 0, the Freq fea-
ture is also 0 and the rest of the features (Max, Min, Std,
Trend, value) did not have any value. For that reason, it
was decided to eliminate from the study those variables that
contained more than 80% of missing values in some tests.
For the remaining variables, in each test the missing values

were imputed using the LOCF (Last Observation Carried For-
ward) (Barnes, Lindborg, & Seaman, 2006) method followed
by a backward fill. This way the amount of information brought
from ”the future” was minimised as most of the values were
imputed by the first forward imputation pass.

2.3.2. Validation of the Performance in Classifications

The effectiveness of the classification models was validated
by comparing the results of metrics extracted from the confu-
sion matrix. It was decided to use Recall because this metric
penalises false positives (Ting, 2010). Therefore, Recall val-
ues close to 1 were desired, minimising the cases in which
failed experiments were classified as healthy.

2.3.3. Identification of the Two System Parameter Con-
figurations

For the identification of the two parameters sets under the
healthy cases CLARA clustering algorithm was used forcing
the algorithm to identify two clusters (Kaufman & Rousseeuw,
1986). This algorithm applies the Partition Around Medoids
(PAM) in different samples of the dataset to obtain an optimal
set of medoids. It was implemented using Manhattan distance
for 50 samples with 500 observations each. The high dimen-
sionality of the problem hindered the obtaining clear clusters,
as, inside the same experiment, CLARA assigned very dif-
ferent proportions of class values. This was assumed to be
incorrect, because according to the problem statement, each
experiment could only contain a single set of configuration
parameters.

Therefore, the experiments that were clustered clearly (with
all the observations belonging to either cluster 0 or 1) were
taken and a supervised decision tree was used to identify which
rules were critical in their identification. This same model
was applied to the rest of experiments (the ambiguous ones
in the clustering) and the supervised model proved to be a
perfect cluster classifier with only a single feature.

As a consequence, considering the inherent difficulties of train-
ing a model that had sub-classes inside a class, an additional
label was created. From this point on, experiments with 0
label were split into two different classes according to the re-
sults of the decision tree.

2.3.4. Root Cause Analysis

The detection of important signals related to each fault was
carried out with a PCA (Principal Component Analysis), as
it is well suited for high dimensionality and multicolinearity
scenarios. From the whole dataset (with all the available ex-
periments), subsets containing the observations of the healthy
class and the observations of each faulty class were created.
In each subset, PCA was applied separately for the features
coming from each signal, thus, as many PCAs as the number
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of signals were computed. For each PCA, the number of com-
ponents to be kept was optimised according to f1-score and
a Classification Tree, in that way, the information of signal
(from three to seven features) was condensed in a reduced set
of principal components. This procedure was done for each
data subset containing the observations of the healthy class
and the observations of each faulty class. Once the signals
were reduced with PCA, the decreasing impurity of a Clas-
sification Tree was used to identify the signals which might
have caused the faults. The approach here was validated us-
ing LeaveOneGroupOut cross validation for each data subset
with the healthy observations and faulty observations, leav-
ing out a different faulty experiment in each iteration. Note
that the results obtained in this process were used for the sole
purpose of answering the root cause analysis task of the chal-
lenge. The knowledge gathered at this stage was used only as
a notion of which features could be of interest for the diagno-
sis algorithm, as using the same signals was expected.

2.3.5. Diagnosis models

Fault identification process was split into two layers. In the
first layer, algorithms were developed to provide the probabil-
ity of a single observation (data from 10 second window) of
belonging to the different classes. In the second layer or the
propagation, the observation-wise probabilities were used by
another algorithm to identify the underlying signal, the true
class of the experiment, that was obtained by considering the
chronological information.

The following key aspects were considered during the devel-
opment of the diagnosis algorithms:

• In order to avoid experimental noise, instead of carrying
out random training/testing partitions, LeaveOneGroupOut
cross validation paradigms were favoured, as they did not
leak data from the same experiment to the testing set re-
sulting in a more reliable estimation of the error. Data
from one experiment of each class was left out of the
training phase and all of them were used to validate at
each iteration.

• Imbalance was tackled by combining the SMOTE (Syn-
thetic Minority Oversampling Technique) method (Chawla,
Bowyer, Hall, & Kegelmeyer, 2002) followed by the Tomek
Links method for undersampling (Tomek, 1976). This
way the number of observations belonging to each of the
classes was equalized.

• Tree-like algorithms were preferred due to their simplic-
ity (explainability) and capability to handle multiconlin-
earity. Additionally, seeking for robustness in the devel-
opment of the trees, the tree depth was set to 5 to avoid
overfitting and make the tree use only those signals that
were significant. The minimum number of observations
per leaf was set at 450. This decision was made to force
the trees to contain more than one complete experiment

on the final leaf, since the shortest experiment contains
360 observations. These values were established in order
to generalise the solution as much as possible. However,
other values were tested for these parameters, obtaining
similar results. Gini impurity function was used for the
measure of the quality of a split.

As some faults required of less effort than others to be di-
agnosed, several diagnosis models were stacked. Each time
some faults were identified as similar and difficult to distin-
guish from each other, another model was created for those
specific faults trying additional and more complex approaches.

2.3.6. Propagation of probabilities

The diagnosis models explained in the previous section pro-
vided a observation-wise or instant-wise class probability ar-
ray as shown in Figure 1 Left). In order to improve the over-
all accuracy of the model, a Kalman filter like algorithm was
used (Kalman, 1960). Starting from a scenario of equally
probable class state, the algorithm kept updating the states
(probability of having a certain class fault) with each new ob-
servation (a vector of probabilities provided by the diagnosis
model). This way, the algorithm filtered the intermittence of
the diagnosis layer by providing clearer trends as in the ex-
ample of Figure 1 Rigth).

2.3.7. Feature engineering

As detecting some classes was non trivial from the raw data,
feature engineering was used to create more meaningfull fea-
tures that could help to disambiguate. This feature engineer-
ing consisted on the use of certain thresholds to detect the
amount of data surpassing this value from the total number
of measurements at that time, that is, creating a ratio. This
ratio variables were done in an on-line trend without vio-
lating any time series constraints. The meaningfull features
detected were VacuumValveClosedvStd for class 5 and Du-
rationPickToPickvStd for class 7. If V is the ordered set
containing chronologically ordered observations of Vacuum-
ValveClosedvStd, and D the ordered set containing chrono-
logically ordered observations of DurationPickToPickvStd, the
new variables ratioV and ratioD are defined for i-th observa-
tion as follow:

ratioVi =
|NV,i|
i

,

ratioDi =
|MD,i|
i

,

(1)

where the sets NV,i and MD,i are defined by,

NV,i = {v ∈ {vk}ik=1 ⊆ V | v > 0.2},
MD,i = {d ∈ {dk}ik=1 ⊆ D| 0.26 < d < 0.45}.

(2)
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Figure 1. Diagnosis and propagated diagnosis of test 2 of class 2. Left) Diagnosis probabilities as provided by the diagnosis
model. Right) Kalman filtered diagnosis probabilities.

Table 1. Glimpse of feature creation on test 5.0

Observation V ratioV
...

...
...

2 0.0498 0/2 = 0
3 0.2519 1/3 = 0.3333
4 0.0946 1/4 = 0.25
5 0.0944 1/5 = 0.2
6 0.2045 2/6 = 0.3333

Table 2. Glimpse of ratio feature creation for test 7.0

Observation D ratioD
...

...
...

11 0.2135 0/11 = 0
12 0.4209 1/12 = 0.0833
13 0.0169 1/13 = 0.0769
14 0.4373 2/14 = 0.1429
15 0.0290 2/15 = 0.1333

Examples of the creation of the these new features for tests
5.0 and 7.0 are shown in Table 1 and Table 2, respectively.

2.3.8. Shortest answer time

There where several aspects to consider in order to determine
the shortest required time:

Firstly, as some imputation was carried out, it was necessary
to consider that the within the elapsed time, at least a single
non-empty observation of the employed variables should ex-
ists. This instant was named TNA.

Secondly, the minimum time necessary to classify the exper-
iment in the two system parameter classifications (SPC1 and
SPC2) needed to be computed, which was named as TO.

Finally, for the diagnosis, as mentioned in Section 2.1, the
evaluation method could not avoid the algorithm having a full
picture of the experiment on the first run. However, there was
no a direct way to transfer information regarding the run to
the algorithm. Consequently, it was decided to assume that,
regardless of the run, the most probable real class was iden-
tified at the end of the experiment. By doing so, the cutting
point/instant became the first point of time where the most
probable class was the same as the most probable class at the
end of the input test. This assumption ensured consistent re-
sults and allowed the algorithm to benefit from the full picture
it had on the first run, this time was called TD. Note that, as
many diagnostic models are present in the algorithm, TD rep-
resents the longest time required by the diagnostic algorithms
of the current test. Therefore, TD = max(TD′ , TD′′) and
TD′′ = 0 in case the class was different to 0, 5 and 7.

In summary, the minimum number of time windows required
by algorithm to classify the input experiment, was calculated
as Tc = max{TNA, TO, TD}.

3. RESULTS

The final algorithm consisted of a combination of sub-models
which were assembled as shown in the diagram in Figure 2.

The divide, propagate, and conquer strategy allowed to split
the initial big problem (classification of 9 classes) into smaller
classification problems, in which robustness of the final algo-
rithm was always sought. One of the major worries during the
development of the algorithm was incurring in overfitting, as
the classes were really imbalanced and not considering that
could lead to bad results on the testing. At the same time, due
to the small amount of the faulty class tests, it was not possi-
ble to totally exclude some data to validate later our methods.
Efforts were made to withdraw strong rules that fitted well
the data and did not provide false positives nor overfit the
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Figure 2. Execution Flow of the Classification Algorithm.

data and provide overoptimistic results.

Initially, regarding the identification of operating conditions
in healthy tests, a single rule was required for their correct
identification as Figure 3 shows. This rule was capable of de-
tecting the different operating conditions without ambiguity,
except for a couple of outliers that appeared on the beginning
of some tests.

Due to the peculiarities of the dataset, more than a single di-
agnosis models were required to perform a full identification
of the faults. The first decision tree (DM1) separated the
healthy experiments that were done with the first parameter
configuration and class 11 failures. The remaining healthy
cases and the 8 faulty classes were disambiguated by another
decision tree (DM2) since those experiments were carried out
with the second parameter configuration. In addition, due to
the difficulties to discern between classes 0, 5 and 7, an ad-
ditional tree (DM3), with extra features (ratio variables for
VacuumValveClosed and DurationPickToPick) was needed.
Using this new approach, a diagnostic model was achieved
that correctly classified the two faults 5 and 7, obtaining an
average Recall in the training step of 0.9825 for class 5 and
0.9806 for class 7. In the validation step of the DM3 model,

Figure 3. Boxplots of healthy tests, red line represents the
operation configuration decision rule.

a mean value for Recall was obtained in the corresponding
iterations to leave out each of the experiments of 0.9625 for
class 5 and 0.94875 for class 7. Those results were consid-
ered successful and the DM3 diagnosis model was added to
the final algorithm.

Finally, regarding fault class 4, differences between the three
available tests of this type were observed. Some class 4 tests
had the same behaviour as some healthy tests whereas the re-
maining one had a similar behaviour as other healthy classes,
as shown in Figure 4. Hence, depending on the tests which
were selected for training and testing, the models were very
different without giving a chance to obtain robust solution for
the diagnosis of this class. Thus, although the mean value of
Recall metric in the training phase was 0.714, the diagnosis
model was not able to correctly classify the testing experi-
ments and the Recall value in the validation was 0 in all itera-
tions. Furthermore, the most important signals were different
in the three tests. For these reasons, it was assumed that the
testing set would have a similar distribution of the cardinality
as the one on the training, and the final algorithm labelled 4
class predictions as healthy. Additionally, to compare the re-
sults obtained for the diagnosis of faulty classes 5 and 7 with
the results obtained with faulty class 4, LeaveOneGroupOut
cross validation is used once again. Figure 5 shows the con-
fusion matrix of one of these iterations.

All in all, the final algorithm only required 10 features for the
diagnosis and propagation, which are shown in Table 3 .

Regarding the Root-cause-analysis, the signals that were iden-
tified as most important in relation to each fault class are
shown in Table 4. Finally, the propagation thought the Kalman
algorithm provided very interesting results. In the tests where
the class value was not clearly predominant according to the
diagnosis algorithm, the filter allowed to visualise a clearer
trend, as the Figure 1 shows, which improved the final diag-
nosis.

The solution dealt properly with the identification of the tests
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Table 3. Set of features used by the final algorithm.

Features
SmartMotorPositionErrorvMin VacuumValveClosedvStd
DurationPickToPickvStd DurationRobotFromFeederToTestBenchvalue
SharpnessImagevalue NumberFuseDetectedvMin
TotalCpuLoadNormalizedvStd SmartMotorSpeedvStd
Temperaturevalue DurationRobotFromTestBenchToFeedervalue

Table 4. Feature Importance for each class

Class Features

Class 2
FeederAction2
Humidity
NumberFuseDetected

Class 3 SharpnessImage
Class 5 VacuumValveClosed
Class 7 DurationPickToPick
Class 9 SmartMotorSpeed

Class 11

SmartMotorPositionError
DurationRobotFromFeederToTestBench
DurationRobotFromTestBenchToFeeder
DurationTestBenchClosed

Class 12 DurationRobotFromFeederToTestBench
DurationRobotFromTestBenchToFeeder

that were provided for the training, allowing a totally accurate
diagnosis of faults except for class 4 which was predicted as
0 on purpose (assuming the testing set would follow a simi-
lar distribution on the number of tests per class). Addition-
ally, the time required to determine the class was most of the
times very short, since 2 observations were enough to detect
the class in many of the tests. In average 18 observations were
required for all the tests in the train and only in 5 cases more
than 100 observations were necessary to classify the experi-
ment correctly. Finally, the features related to each class (or
root cause analysis) were visually validated.

In the context of the challenge, the solution has been proved
to be robust. It has obtained the highest Final score, obtaining

Figure 4. IntensityTotalThermoImagevalue boxplots per test
for class 0 and 4.

the highest scores amongst the participants for accuracy and
required time, a full score in clustering and a more modest
score in root cause identification.

These results demonstrate that the algorithm has been able to
generalise well, in sight of the accuracy score; and, that the
policy developed for minimising the time required has also
behaved correctly according to the timing score. In addition,
the clustering rule has shown very robust results.

Regarding the root-cause-analysis, the main differences be-
tween our solution and the official solution are found in fault
classes 7 and 11. For fault class 7, the important features
according to the official solution are FusePicked and Vacu-
umFusePicked, instead of DurationPickToPick, which is our
choice. In a scenario with highly colinear features, it is prob-
able that all the mentioned features could be valid. Further-
more, for faulty class 11, the official solution has only con-
sidered the features corresponding to the separation between
the two operation configurations, but features that separate
the faulty class 11 with its operation’s healthy class are also
considered in this work.

4. FINAL REMARKS

The solution presented in this paper must be considered in the
context of a challenge, with limited access to relevant infor-
mation and, at the same time, a considerably short time to de-
velop a proposal. This approach is based on the need to split
a big problem into smaller and simpler parts that could be
solved independently from the each other. This was achieved
by: employing decision trees and similar structures that al-
lowed to identify certain classes at a time and leaving less
uncertainty to the next layer of the algorithm; a separate fea-
ture selection methodology that helped in the development of
diagnosis algorithms; the propagation of the observation-wise
diagnosis of the algorithms; and, a backwards identification
of the required computation time.

Overall, the solution has yielded satisfactory results, obtain-
ing the highest score in the competition and showing great
generalisation capability by only failing to detect the class 4
tests, as expected by design. This has been achieved by stack-
ing a rater simple algorithm: The decision tree, which has the
added advantage of being understandable. Additional inter-
esting findings are the appropriateness of feature engineer-
ing approaches, that have helped in the diagnosis of difficult
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(a) Train Confusion Matrix

(b) Test Confusion Matrix

Figure 5. Confusion Matrix of an iteration of LeaveOne-
GroupOut Classes 0,4,5 & 7. Test used for validation: 10
random tests of class 0, and test 4.1, 5.4 and 7.5 for other
classes.

classes; the propagation with Kalman filter, that allows the
identification of trends in noisy tests; and the strategy used
for the detection of required time, which helps the solution to
make very precise adjustment of the required time.

This approach has, however, some limitations. Firstly, regard-
ing the strategy used to detect the shortest time required for
the classification, it needs to be mentioned that this approach
fits well inside the challenge context, but it is not applicable
in a real scenario, as there is no first and second run for each
test. Secondly, it has not being possible to detect all the faults,
which makes this solution incomplete.

Team HIRUTEK is aware of the limitations of this work, but,
at the same time, some interesting techniques are presented
and could be further studied. In that sense, we consider of
great interest working on the identification of fault 4, which
has been left aside in this work, but that we believe that could

be tackled by using frequency or other time/frequency tech-
niques. Also, it might be interesting to study the missing val-
ues and their correct imputation, as they could be a source
of interesting information even if they have been overlooked
in this work. Finally, the use of Kalman filters to visualise
trends of probabilities could be further extended and studied
including more realistic strategies to identify at which point
is the class probability stable enough to provide a label for
the test.
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