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ABSTRACT 

The health management of Rolling Element Bearings 

continues to be of increasing importance to industrial assets’ 

productivity, reliability, and cost reduction. Early fault 

detection is a key pillar of health management as part of the 

evolving prognostics and health management philosophy. 

This paper proposes a fault detection method that starts by 

segmenting the vibration signal(s) detected from the bearing 

into overlapping blocks. Principal Component Analysis is 

then applied to the segmented signal. The combination of 

data segmentation and Principal Component Analysis is a 

signal processing approach that captures the second-order 

structure of the vibration signal. The method proceeds by 

training a Hidden Markov Model with the processed signal 

where k-means clustering is applied for setting the Hidden 

Markov Model’s number of states parameter. Finally, the 

trained Hidden Markov Model is employed together with a 

goodness-of-fit test to assess the bearing health degradation 

by processing real-time vibration data. The method is tested 

on the bearing testbed dataset provided by the center for 

Intelligent Maintenance Systems, University of Cincinnati, 

OH. Experimental results show the proposed method 

outperforms state of the art and benchmark results of this 

dataset. 

1. INTRODUCTION 

Rolling Element Bearings (REB) are of great importance to 

all forms of rotating machinery and are among the most 

common machine elements. Consequently, REB failure is 

one of the leading causes of breakdowns in rotating 

machinery and can develop into a catastrophic failure if its 

deterioration is not detected and dealt with in time (H. Qiu et 

al., 2006). REBs are usually managed using a Condition-

Based Maintenance (CBM) strategy where vibration signals 

analysis is widely used for bearings’ Fault Detection and 

Diagnosis (FDD) (Liu et al., 2015; Yu, 2012a). 

It is established that CBM reduces downtime and 

maintenance costs while it increases systems’ reliability 

(Jardine et al., 2006; R Gopinath, CS Kumar, 2018). The 

evolving PHM philosophy extends CBM to optimize 

maintenance further; it is defined as an approach for the 

health management of systems based primarily on fault 

detection, diagnostics, prognostics, and maintenance 

decision-making (Soualhi et al., 2018; Vogl et al., 2019). 

PHM enhances CBM by further boosting detection of 

faults/degradation, reliability, life expectancy, and 

operational availability of systems while, at the same time, 

further decreasing Life-Cycle costs and downtime. 

Moreover, a key component of PHM is estimating the 

remaining useful life of systems. In order to realize its full 

potential, PHM utilizes available real-time sensory data 

obtained from machinery (Kalgren et al., 2006; Walker & 

Coble, 2018). 

Fault detection oversees the identification of whether the 

monitored component or process is properly working or not. 

It is the stepping-stone for diagnostics and prognostics. Data-

driven fault detection often requires gathering data for normal 

operating conditions to compare them with actual operation. 

Normal operating conditions data is often abundant; hence, 

fault detection using data-driven methods is usually within 

reach compared to diagnosis and prognosis that require 
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gathering faulty conditions data, which is difficult in highly 

reliable and critical systems (Arpaia et al., 2020). Semi-

supervised deep learning approaches are being investigated 

to overcome the issue of faults data scarcity in diagnosis as 

they allow for effective utilization of datasets when only a 

small subset of data has labels (Zhang et al., 2019). 

Historically, many data-driven methods have been proposed 

for FDD (Md Nor et al., 2020). Data-driven methods are 

usually trained on features extracted from the original data. 

For REBs, time and frequency domain features are usually 

obtained from the signals generated from the vibration 

sensors and are used to determine the REBs’ condition (Yu, 

2012a, 2012b). 

On the other hand, Deep Learning (DL) methods have been 

employed in FDD more recently (Khan & Yairi, 2018; Saufi 

et al., 2019). While DL largely automates feature extraction 

and offers potential benefits for FDD, the reviews in (Khan 

& Yairi, 2018; Saufi et al., 2019) argue that it is encumbered 

with a number of challenges that hinder its adoption as the 

modelling technique of choice for FDD in place of data-

driven methods. 

Subsequently, in this paper, we propose a data-driven method 

for the REBs fault detection. The method is based on a 

Hidden Markov Model (HMM) trained by principal 

component features. These principal components are 

generated by applying Principal Component Analysis (PCA) 

to the segmented vibration signal - a method originally 

proposed for processing Electroencephalogram (EEG) 

signals in the Brain-Computer Interface (BCI) domain (H. 

Lee & Choi, 2003). The performance evaluation presented in 

this paper shows that using Data Segmentation (DS) and PCA 

for vibration signal processing together with HMMs yields 

promising results and outperforms some state-of-the-art DL 

and data-driven methods used for fault detection/degradation 

propagation in an REB (Hasani et al., 2017; Yu, 2012a). 

The remainder of this paper is organized as follows: Section 

2 discusses deep learning  challenges leading to the decision 

of using established data-driven models; Section 3 presents 

the proposed fault detection approach and details the signal 

processing and training method; Section 4 presents the results 

of applying the proposed approach to the Intelligent 

Maintenance Systems’ (IMS) bearing dataset and compares 

it to state of the art methods; and finally, Section 5 concludes 

the paper and highlights potential future extensions to this 

work. 

2. STATE OF THE ART 

2.1. Deep learning 

Recently, Deep Learning (DL) has advanced to the point of 

being among the state of the art in Artificial Intelligence (AI). 

The DL potential benefits of ease of classification and 

unsupervised feature learning are among the main reasons 

behind this development. This advancement has led to 

studying the application of DL in the FDD domain in recent 

literature and reviews (Khan & Yairi, 2018; G. Qiu et al., 

2019; Saufi et al., 2019). 

DL models that have been used in FDD systems include 

Convolutional Neural Network (CNN), Stacked Auto-

Encoder (SAE), Restricted Boltzmann Machine (RBM), 

Deep Belief Network (DBN) and Deep Neural Network 

(DNN) (G. Qiu et al., 2019). For the advantages and 

disadvantages of DL models used in FDD, the reader is 

referred to (Khan & Yairi, 2018). The reviews reveal that, 

regardless of the DL model used, while DL demonstrates 

plausible benefits for FDD, it faces several challenges that 

impede its mass application (Khan & Yairi, 2018). These 

challenges are linked mainly to the DL architecture and 

training process and include the choice of hyperparameters, 

availability of large datasets, input size dimensionality, and 

data cleanliness (Saufi et al., 2019). 

For the last few decades, the deep architecture of the DL 

models has been difficult to train. This difficulty is attributed 

partially to the DL hyperparameters. Manual selection of 

hyperparameters is difficult, and determining optimal 

hyperparameters’ values is time-intensive and complex (Ma 

et al., 2018; Saufi et al., 2018). 

Another challenge to DL adoption in FDD is the need for 

large datasets to train the DL models, as the capability of 

these models to perform FDD with a small number of 

samples has not been determined. Moreover, DL models’ 

ability to handle more testing than training samples is 

doubtful. Conversely, most DL models have been trained 

with 50% more training than testing samples. In addition, 

obtaining enough data samples in industrial environments is 

often difficult to achieve, especially for highly reliable and 

critical systems (Arpaia et al., 2020; Chen et al., 2018; 

Shriram Ramanathan, 2018). 

One more challenge that should be considered is the input 

dimension size. As per (Shao et al., 2016), the training time 

of a DL model significantly increases with an increase in 

input dimensions. Sometimes, the signal length, segmented 

or raw, equals the input dimension as several DL models are 

directly fed with a segmented signal in the raw time domain. 

Furthermore, data cleaning is critical to ensuring good 

performance of DL models in practical conditions (Gheisari 

et al., 2017) as noise in the input signal reduces the accuracy 

of DL models (Zhong et al., 2019). This reduction in accuracy 

was observed by (Saidi et al., 2017; Teng et al., 2017) while 

performing fault diagnosis on real-world wind turbine 

gearboxes, and it was concluded that it is difficult for DL to 

achieve satisfactory diagnosis performance in real-world 

applications. 

All the above implies that although DL is advantageous for 

unsupervised feature-learning, it still needs more 

development to usurp the more common and established 
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data-driven models like Random Forest, Support Vector 

Machine (SVM), Bayesian networks, and HMMs for 

machinery health monitoring. These more established models 

are very good at generalization and produce high accuracy 

classification and regression for FDD (Khan & Yairi, 2018). 

2.2. Established data-driven models 

Data-driven approaches usually apply feature extraction 

and/or signal processing right after data acquisition. For 

REBs, the four stages of REB failure are defined by 

frequency features in the frequency domain processed from 

vibration signals (Bently Nevada, 2019; Berry, 1996). 

Frequency domain features attempt to find the characteristic 

frequencies related to the rotation of REBs like the Ball-Pass 

Frequency of Outer ring (BPFO) and the Ball-Pass Frequency 

of Inner ring (BPFI) for REB health degradation monitoring. 

The frequency domain analysis shows what frequencies are 

present in a signal, but it would not show when the 

frequencies have occurred if this signal was changing with 

time. Hence, the time-frequency domain analysis is used to 

resolve this issue and show how frequency changes with 

time. Wavelet transform is usually the tool of choice for time-

frequency domain analysis. Vibration signals are also 

processed in the time domain. Time domain features are 

usually sensitive to impulsive oscillations (Yu, 2012a, 

2012b). 

The feature extraction and signal processing options are 

plenty, and choosing proper statistical features containing 

useful information is challenging (Hasani et al., 2017). Many 

health monitoring methods attempted to address this 

challenge (Yu, 2012a, 2012b). Furthermore, techniques like 

PCA-based methods followed by a post-processing stage 

such as HMM for health degradation monitoring provided a 

reasonable prediction and an attractive accuracy on the 

system’s status (Hasani et al., 2017; Yu, 2012a). HMM based 

methods could be generalized, albeit only after subjecting 

them to modifications, to other test cases (Hasani et al., 2017; 

Tobon-Mejia et al., 2012). 

A review of data-driven FDD methods is provided in (Khan 

& Yairi, 2018; Md Nor et al., 2020; Saufi et al., 2019), 

covering the different data-driven FDD frameworks, 

including machine learning, signal-based, and knowledge-

based methods. The review also summarizes the benefits and 

challenges of data-driven FDD implementations. The review 

highlights HMMs power in handling sequential data, 

scalability, ability to model highly non-linear problems, high 

classification accuracy, and HMMs being one of the 

modelling approaches adopted for multimode process 

monitoring due to their robust stochastic and inferential 

features. Moreover, in (Arpaia et al., 2020), HMMs are 

considered a promising trend for research in the field of PHM 

and are exploited for fault detection in real-world conditions 

where readings of multiple physical measurements available 

are sparse and asynchronous. 

PCA can be used in several ways for feature extraction in 

combination with HMM. Recent work on HMM-based fault 

detection (Arpaia et al., 2020) employed PCA for dimension 

reduction by projecting the variables in a new space and using 

the principal components to train the HMM. (Yu, 2012a) 

applied Dynamic PCA (DPCA), an extension of PCA, to 

apply dimensionality reduction to the processed features and 

at the same time consider serial correlations in the processed 

signal. 

PCA is also used in the context of other domains like Brain-

Computer Interface (BCI). (Ozg, 2010) generated 

autoregressive (AR) parameters from Electroencephalogram 

(EEG) data and used PCA for dimension reduction before 

training the HMM. (H. Lee & Choi, 2003) applied EEG DS 

and PCA to find principal component features that capture 

the second-order statistical structure of the data. The 

proposed method in (H. Lee & Choi, 2003) does not require 

the manual selection of statistical features, overcoming a key 

drawback of data-driven approaches compared to DL. While 

the method still has hyperparameters needing to be set, they 

are arguably fewer than other DL methods. Furthermore, 

combining this signal processing method with HMM allows 

for greater generalization potential and benefits from the 

HMM scalability and decreases the needed training data 

compared to DL. 

3. PROPOSED APPROACH 

This paper proposes a fault detection method based on DS, 

PCA, and HMM (DS-PCA-HMM). First, the vibration signal 

is segmented into overlapping blocks, and PCA is applied to 

the segmented signal for the purpose of signal processing and 

selecting the principal components. Next, the principal 

components are clustered using k-means clustering to set the 

parameter of the HMM number of states. After this, the 

Baum-Welch algorithm is applied to train the HMM and 

specify the HMM parameters λ. Finally, the trained HMM is 

employed for fault detection through a goodness-of-fit test. 

The test utilizes the forward-backward procedure to estimate 

the online/test sample Log-Likelihood (LL) and then 

compare it to the training samples LL distribution. The 

proposed method is sketched in Figure 1. 

3.1. Signal processing 

The DS-PCA-HMM approach is initiated by applying a data 

segmentation procedure followed by PCA for signal 

processing, a method originally developed for EEG signals in 

the BCI domain (H. Lee & Choi, 2003). Since PCA retains 

maximum variance, the method is expected to provide 

features that are robust to noise. Additionally, (H. Lee & 

Choi, 2003) noted that the PCA, when applied to the 

segmented data, learns basis functions that look similar to 

wavelet basis functions. 
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3.1.1. Data segmentation 

The vibration signal is decomposed into N overlapping 

blocks where principal components are extracted from each 

block. The blocks are used to construct an M x N data matrix 

(where M is the data block/window time length). The block 

window length and the overlap length are parameters to be 

optimized in the model. The DS procedure is sketched in 

Figure 2. 

 
Figure 2 Overlapping windows grouped in matrix U 

3.1.2. PCA 

PCA is mainly a dimensionality-reduction method. It applies 

orthogonal linear transform to map the data to a new 

eigenspace, such that maximum variance is retained in the 

main components (Jollife & Cadima, 2016; Jolliffe, 2002). 

Eigen decomposition is used to calculate eigenvalues and 

eigenvectors. Letting u be the observation vector and the data 

covariance matrix be Ru in which 

Ru = Uu Du Uu
T  (1) 

Where Uu is the eigenvector matrix of Ru and Du is the 

corresponding diagonal matrix of eigenvalues. Hence, letting 

W = Uu
T, the orthogonal linear transform, v, of u is achieved 

by 

v = W u   (2) 

Dimension reduction is achieved by ordering eigenvalues and 

selecting the corresponding p columns of Uu where p < M. W 

is reconstructed to the p x M matrix of the p dominant column 

vectors in Uu. 

PCA is applied to the decomposed time series matrix U = M 

x N (see Figure 2) and is used to find a smaller p by M matrix 

W for PCA. In the case of this study, W matrix is calculated 

for each of the directions where vibration is measured, i.e., 

Wx and Wy. (X and Y denoting vibration measurement 

directions) for the tests conducted with measurements in X 

and Y directions. The principal component features vector for 

the vibration signal in each direction is then computed by vn 

= WVn.un (where n stands for X or Y directions). Principal 

component features extracted from each direction are then 

concatenated (H. Lee & Choi, 2003). 

3.2. Offline training 

The concatenated principal component features generated 

from the signal processing step are utilized in training the 

HMM. HMMs are used for sequential data in various fields, 

most notably in speech recognition (Bishop, 2006; Rabiner, 

1989). HMMs are constituted of a defined number of states; 

the state the model is in at a specific point of time generates 

an observation. The sequence of states of an HMM is not 

observable directly, i.e., hidden. Five elements characterize 

an HMM: 

1- S, A defined number of states; 

2- A, the state transition probability matrix; 

3- O, the number of distinct observation symbols per 

state; 

4- B, the observation symbol probability matrix; 

5- π, the initial state distribution. 

Figure 1 REB Fault detection proposed approach 
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Given an observation sequences O = {O1, O2, O3…OT}, a 

complete specification of an HMM requires specifying the 

model parameters λ = {A, B, π}, state sequence S = {S1, S2, 

S3…ST}, and the likelihood of the observation sequence given 

a model P(O| λ). 

Before specifying the HMM model parameters λ, the number 

of hidden states in an HMM should be decided first. There is 

no straightforward method to optimize the HMM number of 

states choice (Zec et al., 2018). The traditional model 

selection methods like the Akaike Information Criterion 

(AIC) or the Bayesian Information Criterion (BIC) have their 

drawbacks as they often recommend complex models with a 

large number of states (Pohle et al., 2017). (Zec et al., 2018) 

used empirical analysis to overcome the challenge of 

determining the proper number of states. In this paper, k-

means clustering is applied to the concatenated principal 

component features generated from the signal processing 

step, and the optimum number of clusters is set to be the 

number of states of the HMM. 

3.2.1. K-means clustering 

One of the most prevalent clustering methods is the k-means. 

The k-means algorithm works as follows: 

1. Initialize the algorithm by selecting initial centroids 

for each cluster; 

2. Given an initial clustering of the data, relocate each 

point to its new nearest center;  

3. Update the clustering centers by calculating the 

mean of the member points;  

4. The relocating-and-updating procedure is repeated 

until a convergence criterion is met (such as there is 

no further change in the assignments, or a 

predefined number of iterations is reached). 

An example of k-means clustering with K = 2 is shown in 

Figure 3 and for more details, the interested reader is referred 

to (Bishop, 2006; Mannor et al., 2011). 

 
Figure 3 K-means example (K = 2) (Mannor et al., 2011) 

The k-means algorithm assumes that the number of clusters 

K is known/given. This assumption does not hold in this 

study, and hence a K-value selection algorithm, namely the 

Elbow Method, is utilized to find the optimum number of K 

clusters (Thorndike, 1953; Yuan & Yang, 2019). The main 

idea behind the Elbow Method is to use the square of the 

distance between the sample points in each cluster and the 

centroid of the cluster. The squared distances are summed for 

each K to give a series of Sum of Squared Errors (SSE) that 

is used as a performance indicator for each K. Iterating over 

the K-value and the corresponding SSE, smaller values 

indicate that each cluster is more convergent (Yuan & Yang, 

2019). 

The SSE rapidly declines when the number of clusters K 

approaches the real number of clusters in the data while 

opposite behaviour occurs when K begins to exceed the real 

number of clusters in the data. SSE will continue to decline 

but at decreasing pace. The K value can be better determined 

by plotting the K-SSE curve and finding the inflexion point 

(Yuan & Yang, 2019). 

3.2.2. HMM training (Baum-Welch) 

After determining the number of clusters of the principal 

component features, the HMM parameters λ are specified 

using the Baum-Welch algorithm, a special case of the 

Expectation-Maximization (EM) algorithm. The Baum-

Welch algorithm solves the problem of HMM training. It is 

used to find the HMM parameters λ = {A, B, π} that 

maximize the likelihood P(O| λ) (Bishop, 2006; Munro et al., 

2011). 

Once the model is trained with the training samples and λ is 

specified, the likelihood of each training sample given the 

trained model is obtained using the forward procedure, a 

special form of the forward-backward procedure. Given an 

HMM model λ = {A, B, π} and input observation sequence 

O = {O1, O2, O3…OT}, the forward-backward procedure 

computes the sequence’s likelihood given the model P(O| λ). 

The forward-only variant sums the forward recursion 

algorithm run on the entire sample observation sequence for 

all states and returns the likelihood of the monitored sample 

(Bishop, 2006). 

The likelihoods of the training samples are then subjected to 

standardization through calculating their Z-Scores. 

3.3. Online monitoring 

The online/test samples are subjected to the same signal 

processing procedure that the training samples went through: 

DS followed by PCA. Then the sample’s likelihood with 

respect to the trained model P(O| λ) is obtained by applying 

the forward procedure to the processed signal. The Z-score of 

the online/test sample likelihood is calculated next with 

respect to the same distribution of the training samples. 

3.3.1. Goodness-of-fit test 

The Z-score of the online/test sample is compared to the 

training samples distribution. This comparison is employed 

to decide if the sample indicates the REB is still operating in 

normal condition. Assuming the training samples are 
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independent and are (approximately) normally distributed, 

then 99.73% of the training samples should have a Z-score 

between +/- 3. Hence, the online/test sample Z-score 

threshold is set to -3. A threshold of a +3 Z-score is not set as 

it indicates an improvement of LL. When the online/test 

samples start to score a Z-score < -3, the sample is considered 

anomalous and deviating from the training samples 

distribution. The REB is then considered to be entering into 

a faulty mode and experiencing health degradation (Arpaia et 

al., 2020). 

4. EXPERIMENTAL RESULTS 

This section of the paper evaluates the performance of the 

DS-PCA-HMM method by employing it in several run-to-

failure bearing experiments. The IMS Bearing dataset 

contents and objective are introduced first. Then the dataset 

is subjected to signal processing, training, and online 

monitoring as per the proposed approach. The performance 

of DS-PCA-HMM is illustrated in various tests, and finally, 

the results are benchmarked with state of the art fault 

detection methods applied to the IMS Bearing dataset. 

4.1. IMS Bearing dataset 

The dataset provided by the center for IMS, University of 

Cincinnati, OH (J. Lee et al., 2007) is used in this paper. The 

bearing test rig having four double row bearings mounted on 

one shaft is sketched in Figure 4. The rotation speed is 

constant at 2000 RPM, and the shaft is rotated by an AC 

motor coupled to the shaft through rub belts. A radial load of 

6000 lbs. is applied onto the shaft and bearing by a spring 

mechanism. All bearings are force lubricated. 

 
Figure 4 Bearing test rig and sensors placement (J. Lee et 

al., 2007) 

A High Sensitivity Accelerometer is installed on each bearing 

housing and vibration data have been collected every 10 

minutes by a data acquisition card with a data sampling rate 

of 20 kHz and data length of 20480 points per sample. The 

Prognostics Center of Excellence (PCoE) of NASA shared 

through their prognostic data repository the data of three test-

to-failure experiments performed independently (H. Qiu et 

al., 2006). 

The first experiment utilized two accelerometers for each 

bearing, while the second and third experiments utilized only 

one accelerometer. Table 1 summarizes the properties of the 

collected data in each experiment. 

Table 1 Specification of the IMS Bearing data 

Experiment # of 

Samples 

Sample 

Size 

Faulty 

Bearing(s) 

T1 2156 4 X 20480 B3 and B4 

T2 984 4 X 20480 B1 

T3 6324 4 X 20480 B3 

The proposed approach is only trained on the faulty bearings. 

It is worth noting that T3 number of samples in the 

downloaded dataset (J. Lee et al., 2007) is found to be 

differing from that of other benchmark studies and the 

readme file provided with the datasets (Hasani et al., 2017; J. 

Lee et al., 2007), and hence the proposed approach 

performance will not be applied to the T3B3 bearing. This 

study has three different simulated experiment cases as 

follows: 

1- Dataset 1 bearing 3 (T1B3) 

2- Dataset 1 bearing 4 (T1B4) 

3- Dataset 2 bearing 1 (T2B1) 

4.2. Signal processing 

The DS-PCA-HMM approach is initiated by applying signal 

processing to each bearing. Starting with DS, the window size 

and overlap are optimizable parameters that need to be set. In 

this study, a window size of 512 readings and overlap every 

32 readings is set. The window size and overlap were chosen 

as factors of the 20480 data length to avoid having 

overlapping windows that are partially filled with data at the 

end of the sample. The PCA is run next, and the first ten 

eigenvectors corresponding to the largest ten eigenvalues, 

i.e., setting p = 10, are kept. It is worth noting that the first 

two Eigenvalues were always retaining more variance, but 

due to the large size of variables, ten principal components 

have been chosen to represent each window. The ten main 

components retain about 20% of the vibration signal variance 

in each direction and compress the original vibration signal 

at the same time. More options and permutations are possible 

for the number of eigenvalues p, window size, and overlap, 

and their optimization could be the subject of a follow-on 

study. 

4.3. Offline training 

Transitioning to the HMM training, the first one-third of the 

bearing’s whole life is chosen as the healthy dataset used for 

training. It is further assumed that the first one fifth of this 

portion of data to be early-stage operation and is excluded 

from the training data. Healthy state readings from T1B3, 
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T1B4, and T2B1 selected for training are further detailed in 

Table 2. 

Table 2 Healthy state readings used for training 

 T1B3 T1B4 T2B1 

Readings 2156 2156 984 

1/3rd the readings Readings 

1-719 

1-719 1-328 

Omit early 20% Readings 

144-719 

144-719 65-328 

An HMM is then trained for each bearing experiment on its 

selected main components. The training data is clustered, and 

the HMM number of states is set to equal the number of 

clusters. Figure 5, Figure 6, and Figure 7 show the elbow 

graph used to determine the optimum number of clusters for 

T1B3, T1B4, and T2B1, respectively. 

 
Figure 5 T1B3 SSE-K circling optimal k at 3 clusters 

 
Figure 6 T1B4 SSE-K circling optimal K at 3 clusters 

 
Figure 7 T2B1 SSE-K circling at 3 clusters 

The Baum-Welch algorithm is initialized for each bearing, 

and the model parameters λ are specified after determining 

the optimum number of clusters for each bearing dataset. 

4.4. Online degradation monitoring 

Fault detection follows the training of the model. The Z-score 

is calculated for the samples representing the entire life of the 

bearing to assess each sample’s goodness-of-fit compared to 

the training samples distribution. The Z-score online 

monitoring results based on the DS-PCA-HMM method are 

illustrated in Figure 8, Figure 9, and Figure 10 for T1B3, 

T1B4, and T2B1 runs to failure, respectively. 

 
Figure 8 Health monitoring for the full lifetime of T1B3 

(fault incipience at 2120) 

The T1B3 bearing starts in an abnormal behaviour which 

could be attributed to the early-stage operation. Then it 

operates almost smoothly except for one outlier sample at the 

reading 1747 before returning to normal Z-Scores. The 

degradation of the bearing starts to occur at the reading 2120 

and continues till its failure. 
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Figure 9 Health monitoring for the full lifetime of T1B4 

(Fault incipience at 1508) 

T1B4, on the other hand, does not show abnormal startup 

behaviour. However, the bearing Z-Scores show a 

cyclic/seasonal behaviour that does not appear in the other 

experiments. Bearing T1B4 also has more outliers, like the 

readings 862, 1326, 1360, 1379, 1494, and 1395-1453 before 

the degradation of the bearing starts at 1508. The bearing then 

goes back to a suspicious state from 1609-1860 before 

experiencing a second fault/degradation, which could be 

related to the cyclic behaviour of the bearing. 

 
Figure 10 Health monitoring for the full lifetime of T2B1 

(Fault incipience at 533) 

T2B1 Shows smooth startup and operation behaviour. Its 

degradation starts at the reading 533. Its degradation 

behaviour could also be of interest in a fault diagnosis study. 

4.5. Results evaluation 

The DS-PCA-HMM proposed approach signalled the 

incipience of degradation and its gradual propagation. 

Detection performance is determined by the sample 

time/number at which the method detects the initiation of 

degradation. Therefore, early fault detection is an indication 

of better performance. DS-PCA-HMM’s performance is 

compared to benchmark methods performance, including the 

HMM with DPCA (DPCA-HMM), PCA-HMM, and 

Variable Replacing Contribution Analysis (VRCA) methods 

proposed in (Yu, 2012a), an automated Auto-Encoder (AEC) 

method proposed in (Hasani et al., 2017), and others. Table 3 

summarizes the comparison between the DS-PCA-HMM’s 

detection performance and other benchmark health 

monitoring approaches from the literature for the IMS 

dataset. 

Table 3 Detection performance. DPCA-HMM, PCA -HMM, 

VRCA (Yu, 2012a). AEC (Hasani et al., 2017). MAS-

Kurtosis: Moving average spectral kurtosis (Kim et al., 

2016). 

Method T1B3 T1B4 T2B1 T3B3 

 Degradation starting point 

DS-PCA-

HMM 

2120 1508 533 Not tested 

AEC 2027 1641 547 2367 

DPCA-

HMM 

2120 1760 539 Not tested 

PCA-

HMM 

Not 

tested 

1780 538 Not tested 

RMS 2094 1730 539 No detection 

Kurtosis-

MAS 

1910 1650 710 No detection 

VRCA Not 

tested 

1727 Not 

tested 

No detection 

It is observed that the proposed approach is on par with the 

DPCA-HMM approach in T1B3 while it performs better than 

all other approaches, including the AEC approach, in T1B4 

and T3B3. 

5. CONCLUSION 

The health monitoring method, DS-PCA-HMM, jointly 

employing PCA to REB segmented vibration data for signal 

processing and HMM for degradation monitoring was 

presented. The DS and PCA procedure demonstrated to be an 

effective automated signal processing technique. It 

eliminated the need to manually select signal processing 

features to represent the vibration signal, yet it utilizes the 

established DS and PCA data-driven methods. The HMM 

showed strong performance albeit it was trained with a 

relatively small dataset. 

When tested on the IMS Bearing dataset and compared to 

fault detection benchmark methods, DS-PCA-HMM 

outperformed state-of-the-art methods from the literature, 

including the AEC approach. However, the method’s 

expansion to perform diagnosis with limited datasets needs to 

be further investigated in a follow-up study. 

ACKNOWLEDGEMENT 

Thanks are due to Prof. M. A. Younes (Faculty of 

Engineering, Alexandria University, Alexandria, Egypt) for 

his valuable inputs on handling experiment results. 

This work was supported by computational resources 

provided by the Bibliotheca Alexandrina (hpc.bibalex.org) 

on its High-Performance Computing (HPC) infrastructure. 

-9

-7

-5

-3

-1

1

3

5
Z

-S
co

re

Time (Time unit 10 minutes)

-36

-31

-26

-21

-16

-11

-6

-1

4

0 100 200 300 400 500 600 700 800 900

Z
-S

co
re

Time (Time unit 10 minutes)

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN – 978-1-936263-34-9

Page 368



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021 

9 

REFERENCES 

Arpaia, P., Cesaro, U., Chadli, M., Coppier, H., De Vito, L., 

Esposito, A., Gargiulo, F., & Pezzetti, M. (2020). Fault 

detection on fluid machinery using Hidden Markov 

Models. Measurement: Journal of the International 

Measurement Confederation, 151, 107126. 

https://doi.org/10.1016/j.measurement.2019.107126 

Bently Nevada. (2019). Rolling Element Bearing 

Methodology - Application Guide. 

Berry, J. E. (1996). High-Frequency Enveloping and 

Demodulation Techniques. Technical Associates of 

Charlotte, PC Charlotte, NC, 28204. 

https://scholar.google.com/scholar?hl=en&as_sdt=0%

2C5&q=“High-

Frequency+Enveloping+and+Demodulation+Techniq

ues&btnG= 

Bishop, C. (2006). Pattern Recognition and Machine 

Learning. In Journal of Organic Chemistry. 

https://doi.org/10.1021/jo01026a014 

Chen, Y., Peng, G., Xie, C., Zhang, W., Li, C., & Liu, 

S. (2018). ACDIN: Bridging the gap between 

artificial and real bearing damages for bearing 

fault diagnosis. Neurocomputing, 294, 61–71. 

https://doi.org/10.1016/j.neucom.2018.03.014 

Gheisari, M., Wang, G., & Bhuiyan, M. Z. A. (2017). A 

Survey on Deep Learning in Big Data. Proceedings - 

2017 IEEE International Conference on 

Computational Science and Engineering and 

IEEE/IFIP International Conference on Embedded and 

Ubiquitous Computing, CSE and EUC 2017, 2, 173–

180. https://doi.org/10.1109/CSE-EUC.2017.215 

Hasani, R. M., Wang, G., & Grosu, R. (2017). An Automated 

Auto-encoder Correlation-based Health-Monitoring 

and Prognostic Method for Machine Bearings. In 

arXiv. http://arxiv.org/abs/1703.06272 

Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review 

on machinery diagnostics and prognostics 

implementing condition-based maintenance. 

Mechanical Systems and Signal Processing, 20(7), 

1483–1510. 

https://doi.org/10.1016/j.ymssp.2005.09.012 

Jollife, I. T., & Cadima, J. (2016). Principal component 

analysis: A review and recent developments. In 

Philosophical Transactions of the Royal Society A: 

Mathematical, Physical and Engineering Sciences 

(Vol. 374, Issue 2065). Royal Society of London. 

https://doi.org/10.1098/rsta.2015.0202 

Jolliffe, I. T. (2002). Principal Component Analysis, 

Second Edition. In Encyclopedia of Statistics in 

Behavioral Science (Vol. 30, Issue 3). 

https://doi.org/10.2307/1270093 

Kalgren, P. W., Byington, C. S., Roemer, M. J., & 

Watson, M. J. (2006). Defining PHM, a lexical 

evolution of maintenance and logistics. 

AUTOTESTCON (Proceedings), 353–358. 

https://doi.org/10.1109/AUTEST.2006.283685 

Khan, S., & Yairi, T. (2018). A review on the application of 

deep learning in system health management. In 

Mechanical Systems and Signal Processing (Vol. 107, 

pp. 241–265). Academic Press. 

https://doi.org/10.1016/j.ymssp.2017.11.024 

Kim, S., Park, S., Kim, J. W., Han, J., An, D., Kim, N. H., & 

Choi, J. H. (2016). A new prognostics approach for 

bearing based on entropy decrease and comparison 

with existing methods. Proceedings of the Annual 

Conference of the Prognostics and Health 

Management Society, PHM, 2016-Octob, 154–161. 

https://click.endnote.com/viewer?doi=10.36001/phmc

onf.2016.v8i1.2540&route=6 

Lee, H., & Choi, S. (2003). PCA+HMM+SVM for 

EEG pattern classification. Proceedings - 7th 

International Symposium on Signal Processing 

and Its Applications, ISSPA 2003, 1(2), 541–

544. 

https://doi.org/10.1109/ISSPA.2003.1224760 

Lee, J., Qiu, H., Yu, G., Lin, J., & Rexnord Technical 

Services. (2007). Bearing Data Set, IMS, University of 

Cincinnati. In NASA Ames Prognostics Data 

Repository (http://ti.arc.nasa.gov/project/prognostic-

data-repository). 

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognosti

c-data-repository/#bearing 

Liu, W. Y., Tang, B. P., Han, J. G., Lu, X. N., Hu, N. 

N., & He, Z. Z. (2015). The structure healthy 

condition monitoring and fault diagnosis 

methods in wind turbines: A review. Renewable 

and Sustainable Energy Reviews, 44, 466–472. 

https://doi.org/10.1016/j.rser.2014.12.005 

Ma, M., Sun, C., & Chen, X. (2018). Deep Coupling 

Autoencoder for Fault Diagnosis with 

Multimodal Sensory Data. IEEE Transactions 

on Industrial Informatics, 14(3), 1137–1145. 

https://doi.org/10.1109/TII.2018.2793246 

Mannor, S., Jin, X., Han, J., Jin, X., Han, J., Jin, X., Han, J., 

& Zhang, X. (2011). K-Means Clustering. In 

Encyclopedia of Machine Learning (pp. 563–564). 

Springer US. https://doi.org/10.1007/978-0-387-

30164-8_425 

Md Nor, N., Che Hassan, C. R., & Hussain, M. A. (2020). A 

review of data-driven fault detection and diagnosis 

methods: Applications in chemical process systems. In 

Reviews in Chemical Engineering (Vol. 36, Issue 4, pp. 

513–553). De Gruyter. https://doi.org/10.1515/revce-

2017-0069 

Munro, P., Toivonen, H., Webb, G. I., Buntine, W., Orbanz, 

P., Teh, Y. W., Poupart, P., Sammut, C., Sammut, C., 

Blockeel, H., Rajnarayan, D., Wolpert, D., Gerstner, 

W., Page, C. D., Natarajan, S., & Hinton, G. (2011). 

Baum-Welch Algorithm. In Encyclopedia of Machine 

Learning (pp. 74–74). Springer US. 

https://doi.org/10.1007/978-0-387-30164-8_59 

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN – 978-1-936263-34-9

Page 369



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021 

10 

Ozg, A. (2010). AR-PCA-HMM Approach for 

Sensorimotor Task Classification in EEG-

based Brain-Computer Interfaces. 113–

116. https://doi.org/10.1109/ICPR.2010.36 

Pohle, J., Langrock, R., van Beest, F. M., & Schmidt, 

N. M. (2017). Selecting the number of states in 

hidden markov models - Pitfalls, practical 

challenges and pragmatic solutions. In arXiv. 

https://click.endnote.com/viewer?doi=arxiv%3A

1701.08673&token=WzE3NDgyMDUsImFyeGl

2OjE3MDEuMDg2NzMiXQ.ZXTAwKkl1oGTf

Lo65edlV4RzOt8 

Qiu, G., Gu, Y., & Cai, Q. (2019). A deep convolutional 

neural networks model for intelligent fault diagnosis of 

a gearbox under different operational conditions. 

Measurement: Journal of the International 

Measurement Confederation, 145, 94–107. 

https://doi.org/10.1016/j.measurement.2019.05.057 

Qiu, H., Lee, J., Lin, J., & Yu, G. (2006). Wavelet filter-based 

weak signature detection method and its application on 

rolling element bearing prognostics. Journal of Sound 

and Vibration, 289(4–5), 1066–1090. 

https://doi.org/10.1016/j.jsv.2005.03.007 

R Gopinath, CS Kumar, K. R. (2018). Scalable fault models 

for diagnosis in a synchronous generator using feature 

mapping and transformation techniques. International 

Journal of Prognostics and Health Management, 9(2), 

11. 

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models 

and Selected Applications in Speech Recognition. 

Proceedings of the IEEE, 77(2), 257–286. 

https://doi.org/10.1109/5.18626 

Saidi, L., Ben Ali, J., Bechhoefer, E., & Benbouzid, M. 

(2017). Wind turbine high-speed shaft bearings health 

prognosis through a spectral Kurtosis-derived indices 

and SVR. Applied Acoustics, 120, 1–8. 

https://doi.org/10.1016/j.apacoust.2017.01.005 

Saufi, S. R., Ahmad, Z. A. Bin, Leong, M. S., & Lim, M. H. 

(2018). Differential evolution optimization for resilient 

stacked sparse autoencoder and its applications on 

bearing fault diagnosis. Measurement Science and 

Technology, 29(12). https://doi.org/10.1088/1361-

6501/aae5b2 

Saufi, S. R., Ahmad, Z. A. Bin, Leong, M. S., & Lim, M. H. 

(2019). Challenges and opportunities of deep learning 

models for machinery fault detection and diagnosis: A 

review. In IEEE Access (Vol. 7, pp. 122644–122662). 

Institute of Electrical and Electronics Engineers Inc. 

https://doi.org/10.1109/ACCESS.2019.2938227 

Shao, S., Sun, W., Wang, P., Gao, R. X., & Yan, R. (2016). 

Learning features from vibration signals for induction 

motor fault diagnosis. International Symposium on 

Flexible Automation, ISFA 2016, 71–76. 

https://doi.org/10.1109/ISFA.2016.7790138 

Shriram Ramanathan. (2018). 5 Challenges for Deep 

Learning. EE Times. https://www.eetimes.com/5-

challenges-for-deep-learning/ 

Soualhi, A., Hawwari, Y., Medjaher, K., Clerc, G., Hubert, 

R., & Guillet, F. (2018). PHM survey: Implementation 

of signal processing methods for monitoring bearings 

and gearboxes. International Journal of Prognostics 

and Health Management, 9(2), 1–14. 

Teng, W., Zhang, X., Liu, Y., Kusiak, A., & Ma, Z. 

(2017). Prognosis of the remaining useful life of 

bearings in a wind turbine gearbox. Energies, 

10(1). https://doi.org/10.3390/en10010032 

Thorndike, R. L. (1953). Who belongs in the 

family? Psychometrika, 18(4), 267–276. 

https://doi.org/10.1007/BF02289263 

Tobon-Mejia, D. A., Medjaher, K., Zerhouni, N., & Tripot, 

G. (2012). A data-driven failure prognostics method 

based on mixture of gaussians hidden markov models. 

IEEE Transactions on Reliability, 61(2), 491–503. 

https://doi.org/10.1109/TR.2012.2194177 

Vogl, G. W., Weiss, B. A., & Helu, M. (2019). A 

review of diagnostic and prognostic capabilities 

and best practices for manufacturing. Journal of 

Intelligent Manufacturing, 30(1), 79–95. 

https://doi.org/10.1007/s10845-016-1228-8 

Walker, C., & Coble, J. (2018). Wind turbine bearing fault 

detection using adaptive resampling and order tracking. 

International Journal of Prognostics and Health 

Management, 9(2). 

Yu, J. (2012a). Health condition monitoring of 

machines based on hidden markov model and 

contribution analysis. IEEE Transactions on 

Instrumentation and Measurement, 61(8), 2200-

2211. 

https://doi.org/10.1109/TIM.2012.2184015 

Yu, J. (2012b). Local and nonlocal preserving 

projection for bearing defect classification and 

performance assessment. IEEE Transactions on 

Industrial Electronics, 59(5), 2363–2376. 

https://doi.org/10.1109/TIE.2011.2167893 

Yuan, C., & Yang, H. (2019). Research on K-Value Selection 

Method of K-Means Clustering Algorithm. J, 2(2), 

226–235. https://doi.org/10.3390/j2020016 

Zec, E. L., Mohammadiha, N., & Schliep, A. (2018). 

Statistical Sensor Modelling for Autonomous Driving 

Using Autoregressive Input-Output HMMs. IEEE 

Conference on Intelligent Transportation Systems, 

Proceedings, ITSC, 2018-November, 1331–1336. 

https://doi.org/10.1109/ITSC.2018.8569592 

Zhang, S., Ye, F., Wang, B., & Habetler, T. G. (2019). Semi-

supervised learning of bearing anomaly detection via 

deep variational autoencoders. In arXiv. 

http://www.merl.com 

Zhong, J. H., Zhang, J., Liang, J., & Wang, H. (2019). 

Multi-Fault Rapid Diagnosis for Wind Turbine 

Gearbox Using Sparse Bayesian Extreme 

Learning Machine. IEEE Access, 7, 773–781. 

https://doi.org/10.1109/ACCESS.2018.2885816 

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN – 978-1-936263-34-9

Page 370



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021 

11 

 

Akthem Rehab is a seasoned management 

consultant with solid experience in 

operations and maintenance strategy and 

transformation. He is now concentrating on 

industry 4.0 and its applications. Akthem 

holds a BSc. in Industrial Engineering, 

Alexandria University, Egypt and is 

pursuing his MSc. in Industrial 

Engineering, Alexandria University. His research is focused 

on AI and digital twin practical applications in predictive 

maintenance. 

Islam Ali, PhD. Assistant Professor, 

Industrial and Manufacturing Engineering 

Department, School of Innovative Design 

Engineering, E-JUST, Egypt. He holds PhD 

degree in Industrial Engineering from 

Purdue University, USA. He has written and 

co-authored research papers and articles on 

systems optimization and digital twin 

applications. 

Walid Gomaa, PhD. Professor of 

Computer Science and Engineering, E-

JUST, Egypt. He holds PhD degree in 

Computer Science from University of 

Maryland College Park, USA. He directs the 

Cyber Physical lab in E-JUST and leads 

Machine Learning research and its 

applications. He has written and co-

authored research papers and articles on numerous AI 

applications. 

M. Nashat Fors, PhD. Professor Emeritus of Industrial 

Engineering, Faculty of Engineering, Alexandria University, 

Egypt. He has written and co-authored research papers and 

articles on Mathematical Programming & Simulation 

Techniques Applications, Supply Chain Management, 

Operations Management, Maintenance Planning, Water 

Management, and Facilities Layout. He has many joint 

projects, consultations, and training programs with the 

industry and other universities in the areas of Operations 

Planning & Scheduling, Maintenance Planning, and Water 

Management. Dr. Fors is the advisor or co-advisor of more 

than 50 earned M.Sc. and 10 Ph.D. in the different areas of 

Industrial Engineering. He participated and advised in 

designing, innovation, and development of educational 

programs and curricula at graduate and undergraduate levels 

at Alexandria University, Cairo University, Ain Shams 

University, E-Just University, and AAST&MT. 

 

 

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN – 978-1-936263-34-9

Page 371


