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ABSTRACT 

The analysis of the behaviour of complex mechanical 

components to identify relevant patterns for health 

monitoring and diagnostics is a complex task. One example 

of this complexity is the data workflow that can be 

generated for analysis purposes when a new prototype of an 

electro-mechanical actuator (EMA) is being designed and 

experimented. The most accurate way of getting valuable 

insights during this analysis is by running tests in a 

controlled environment. Depending on the number and 

nature of the parameters to be obtained, the prototype’s 

functionality under study, and the test frequencies and 

experiment duration, big data challenges may appear 

(volume, variety, and velocity). This work describes a data-

driven information system developed for an electro-

mechanical actuator on a test bench. It uses a multivariate 

statistical process control (MSPC) and a linear discriminant 

analysis (LDA) algorithm for detecting and evaluating the 

evolution of the actuator’s health. The information system 

runs an automated data pipeline on a cloud platform with 

signals obtained on the test bench, leveraging data 

operations (DataOps) and machine learning techniques for a 

flexible and scalable data management. 

1. INTRODUCTION 

An electro-mechanical actuator (EMA) is a “power-by-

wire” (PBW) device that uses an electrical source to 

generate mechanical motion (linear or rotary), instead of 

using hydraulic lines and pumps, or pneumatic circuits. The 

aircraft industry is pushing towards the use of these type of 

components as one of the aspects of the “More Electric 

Aircraft” (MEA) and “All Electric Aircraft” (AEA) 

paradigms. 

The use of EMA components on aircrafts can bring 

numerous benefits (Qiao, Liu, Shi, Wang, Ma, Teik, 2018), 

for example: 

• Weight savings, as the removal of hydraulic pumps 

means a reduction in weight. 

• Higher engine efficiency and a reduction in fuel 

consumption, due to the removal of non-propulsive 

bleed air off-takes in engines. 

• A better maintainability, because electrical systems are 

easier and faster to replace than most pneumatic and 

hydraulic systems. 

Despite the advantages of EMA technology, there are still 

some technical, economical and safety challenges, which 

have restricted its use in the aviation industry to non-critical 

applications, or as a backup solution for hydraulic actuation. 

There has been a great effort at research level (Li J., Yu, 

Huang, Li Z., 2016) (Mazzoleni, Previdi, Scandella, and 

Pispola, 2019) to tackle these challenges, especially the 

problem of mechanical jamming. There are some 

approaches that can be followed to mitigate this, including a 

fault tolerant design, improved maintenance, and fault 

diagnosis (Hussain, Burrow, Henson, Keogh, 2018). 

Fault diagnosis and condition monitoring techniques are 

widely spread in many industrial scenarios, but they are not 

a common practice in aeronautical actuators, where 

preventive maintenance is still a common practice (Zhang, 

Liu L., Peng, Liu D., 2018), and they are still in the early 

stages in EMA components (Ruiz-Carcel & Starr, 2018). 

Therefore, the use of health monitoring techniques can be a 

key strategy for improving the reliability of EMAs, thus 

moving from preventive to predictive maintenance 

(Todeschi & Baxerres, 2015). 

The use of a test bench for the accelerated degradation of 

EMA components can be an efficient strategy to develop 

health monitoring algorithms for failure anticipation. A set 

of tests can be applied in this controlled environment to 

simulate the loads experienced by the actuator during its 

operational lifetime. Data is obtained from internal 
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parameters in the control system and from sensors installed 

in the component (for example, accelerometers, or current 

sensors). This information can be taken through the whole 

life cycle of the actuator, and thus data driven algorithms 

can be developed. 

The data management system needed to develop such data-

driven algorithms must face several challenges. First, large 

amounts of data have to be acquired to detect patterns in 

signals where the behaviour is different from normality, as 

this may lead to conclusions about the condition of the 

EMA under study. Next, end-to-end automation is very 

important to obtain repeatable and reliable results. This can 

be applied at different levels, such as infrastructure 

provisioning, release management, workflow processing, 

quality assessment, and monitoring. Also, adapting to 

change and flexibility are desirable, due to the experimental 

nature of test bench activities. Finally, close cooperation in a 

multidisciplinary team is essential to enhance productivity 

and come up with a useful solution. This is the kind of 

scenario where data operations (DataOps) techniques can 

deliver good results and bring the data analytics project to a 

successful end. 

DataOps is a methodology inspired in lean manufacturing, 

agile, and DevOps practices, that can be used to accelerate 

the development of data analytics solutions and ensure their 

quality (Ereth, 2018) (Munappy, Mattos, Bosch, Olsson, 

Dakkak, 2020). Putting the term "Ops" in the same level as 

"Data" emphasizes the importance of deploying data 

projects into production. The same way as lean principles 

can be applied to a production line, a data science project 

can take advantage of these methods to increase efficiency, 

provide consistent quality, foster collaboration between 

stakeholders, and continuously improve the processes. Agile 

practices, on the other hand, focus on adding business value 

to the outcome (Atwal, 2020). DevOps promotes more 

frequent software releases, automation strategies to ensure 

reproducibility of operations, and widespread testing to 

obtain reliable data insights (Capizzi, Distefano, Mazzara, 

2019). Thus, many industries (Sahoo, 2019) (Atwal, 2020) 

can leverage this approach to bring data projects beyond the 

implementation of local applications and prototypes. 

This paper presents a data management system that uses this 

methodology on a cloud platform for the analysis of the 

operational data coming from a fatigue test performed on an 

EMA prototype. The fatigue test has been conducted on a 

test bench designed and built specifically for this purpose at 

Tekniker research center. The system uses a data-driven 

multivariate statistical process control (MSPC) method for 

detecting anomalies during the EMA operation, and then 

executes a linear discriminant analysis (LDA) algorithm to 

identify the parameter that can lead to the source of the 

problem.  

Data-driven approaches with different techniques have been 

proposed in the literature in recent years to devise health 

monitoring methods for EMAs. Data-driven semi-

supervised algorithms have been used for anomaly detection 

to address the scarcity of anomalous data in this type of 

actuators. One example can be found in Pang, Liu, Peng Y., 

and Peng X. (2018) with the use of Gaussian process 

regression (GPR) and relevance vector machine (RVM) for 

anomaly detection in sensor data series. They developed a 

graphical indicator of the receiver operating characteristic 

curve of prediction interval (ROC-PI) to measure the model 

performance. Another example was presented by Zhang, 

Liu, Yu, Peng Y., and Peng X. (2017), where the estimation 

of the remaining useful life (RUL) was improved by 

ensemble learning with a weighted bagging Gaussian 

process regression (WB_GPR) method. 

Yang, Guo, and Zhao (2019) presented in their work a 

recurrent neural network to consider the time dimension of 

EMA sensor data for fault detection and isolation. They 

proposed some improvements in a standard long short-term 

memory (LSTM) network to achieve a better classification 

accuracy and training performance in the model, and to 

allow for correlation between sensors. 

Chirico and Kolodziej (2014) chose a data-driven fault 

classification technique based on frequency domain features 

extracted from EMA signals (motor current, position, and 

motor velocity data) and accelerometers (vibration data). 

PCA was used to choose the most effective features, which 

were the input for a Bayesian classifier, and the results were 

validated on an experimental setup. 

Mazzoleni et al. (2019), within the European H2020 

REPRISE project, obtained health monitoring indicators 

from the output of a Hotelling's mutivariate chart built with 

EMA controller signals (motor phase currents). Ruiz-Carcel 

and Starr (2018) generated a condition indicator based on 

features extracted from electric current and position 

measurement, and a comparison with normality was done 

through the Hotelling’s chart method. During the 

experiments, seeded faults were manually introduced in a 

test bench to simulate mechanical problems. 

The approach followed in this work also uses a Hotelling's 

multivariate control chart for failure detection, using a 

higher number of signals due to the additional sensors added 

to the bench. In this respect, the approach of collecting and 

analysing data at large scale in a multisensor fusion 

environment, using the cloud as a supporting element, is 

what makes this proposal innovative. 

The remainder of this document is organised as follows. 

Section 2 describes the experimental environment, the data 

acquisition hardware and sensors, and the test strategy. 

Section 3 explains the general approach to the solution. 

Section 4 focuses on the design of the data management 

system. Section 5 presents the data analysis results. Finally, 

section 6 summarises conclusions and suggests future work. 
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2. EXPERIMENTAL SETUP AND TEST PROCEDURES 

2.1. Test Bench 

The testbed used for the experiments with the EMA is 

shown in Figure 1. The actuator is mounted inside a metal 

housing and placed at the same operational angle as on the 

aircraft. The hydraulic system simulates the load exerted by 

a primary flight control surface, and the EMA must in turn 

apply a force to move it. The test bench response time is 

lower than 1 second, and the maximum force that can be 

applied by the hydraulic system exceeds 35 KN. This means 

that the system can simulate the different forces encountered 

during flight. 

 

Figure 1. EMA test bench. 

2.2. Data Acquisition System 

The two acquisition devices used during the experiments are 

the following: 

• A National Instruments CompactDAC system (cDAQ-

9171 with a NI-9223 module), specifically aimed at 

reading data coming from acoustic sensors, due to the 

high frequency requirements for these readings. 

• An Ingesys IC3 device, which is a general-purpose 

control system in charge of gathering information other 

than acoustic emissions. 

The following sensors have been included on the bench: 

• Thermocouples for registering the temperature in the 

room and in different critical positions on the actuator. 

• A 3-axis high frequency accelerometer (CTC, AC230-

2D/006M-F3C) with an acquisition rate of 25 KHz, and 

a measurement range from 0.6 Hz to 10 KHz, enough to 

cover the entire frequency spectrum in the test rig. 

• An acoustic emission sensor (Kistler 8152B1), with an 

acquisition rate of 1 MHz, and a measurement range 

from 50 KHz to 400 KHz. 

• A current sensor (LEM HTA 100S) installed in the 

electric cabinet to measure motor current consumption. 

The acquisition rate for this sensor is 25 KHz. 

2.3. Test Procedures and Acquisition Process 

The goal of the fatigue test is to wear down the EMA in an 

accelerated manner through a series of continuous 

movements simulating operating conditions, until the EMA 

has mechanical fault, or else reaches a point where 

degradation can be detected. During this experiment, 

information related to the EMA operation (such as speeds, 

positions, number of cycles, etc.) is acquired periodically 

(every 10 minutes) for a few seconds. In addition to this, 

specific condition tests are executed once a day to obtain 

information that can be used for health assessment. The 

fatigue test must be stopped to perform these condition tests, 

and then resumed when they are finished. The focus of this 

work, however, is the analysis of the fatigue test 

exclusively. 

Figure 2 shows the acquisition steps and the main signals 

involved in the fatigue test (the acquisition frequencies can 

be seen in section 2.2). The configuration settings for the 

bench and the experiments are stored in a local database. 

Test results with electrical units are saved into MATLAB 

files, and metadata information is registered in database 

tables. 

 

Figure 2. Acquisition process and test signals. 

3. ANOMALY DETECTION AND DIAGNOSTICS STRATEGY 

Data obtained during the experiment is not labelled, which 

means that an approach for anomaly detection must be 

applied without using supervised methods. In this respect, a 

good strategy for this analysis can be found in the work of 

López de Calle, Ferreiro, Arnaiz and Sierra (2019), where a 

fault detection method is presented during the real-time 

monitoring of a machine based on dimensionality reduction 

and statistical process control techniques. 

This method assumes a monotonic degradation trend of the 

asset during the process, so that a health assessment can be 

made in the absence of previous experience in working 
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conditions, or in the event of a non-labelled dataset, as is the 

case of the scenario considered in this work. 

 

Figure 3. Anomaly detection and diagnosis. 

Figure 3 shows that statistical thresholds representing 

normality are calculated from a set of features when the 

actuator is in a non-degraded state. These thresholds are 

compared with a single-dimensional parameter obtained in 

the section of the features where the EMA could be in a 

degraded condition. Thus, deviations from normality can be 

detected when the parameter goes beyond the limits. After 

this, a diagnosis is made to determine which feature has 

changed the most with the respect to normality, as this could 

provide clues for explaining the change in the EMA state. 

This strategy is implemented as a pipeline in the data 

management system, which can be seen in Figure 4. 

 

Figure 4. Steps of the data pipeline. 

This pipeline is executed periodically as a batch process 

once a day with all the accumulated test results gathered 

during the experiment on that day. The details of every step 

of the pipeline are provided in the following sections. 

3.1. Signal Preprocessing 

Data acquired from the bench is stored in MATLAB (MAT) 

files in electrical units, and they must be converted to 

physical units. In addition to this, samples taken with the 

same trigger signal in both acquisition devices must be 

synchronised to a common time base. The metadata for this 

conversion can be read from the test bench database and 

from the MAT files. 

3.2. Feature Extraction 

During this step, a set of statistical features in the time 

domain are obtained for every cycle in the fatigue test (a 

cycle is each of the iterations which are repeated over and 

over, simulating the EMA operating conditions). These 

features are aggregations and calculations aimed at detecting 

problems from different perspectives. Some typical features 

in the time domain are described below (Lei, 2016): 

• Mean value, root mean square (RMS), peak value. 

These values can be good fault indicators as they can be 

amplified by the presence of a mechanical fault in the 

EMA, and this change in the amplitude and energy can 

be proportional to the severity of the fault. 

• Kurtosis value, crest factor, clearance factor, impulse 

factor. These calculations could be used for detecting 

the beginning of a fault, as they are more sensitive to 

peaks in the signal. 

3.3. Anomaly Detection 

Once the features are obtained from the signals, a 

multivariate statistical control chart is developed. A 

multivariate technique is preferred over univariate 

procedures (where variables are monitored individually) as 

we want to account for correlation between features. Among 

the different multivariate techniques, the Hotelling’s control 

chart is a classic method (Montgomery, 2013), allowing 

observations to be plotted as a single statistical calculation 

(Q value) on a chart, together with two control limits. The 

application of this technique involves two phases: 

• Phase I: a control chart is used to check the stability of 

the segment of the features taken as a reference for 

normality. 

• Phase-II: another control chart is used to check if the 

process under test is in statistical control, using 

threshold limits created with the dataset used in Phase I. 

To avoid potential computation overflows in chart 

calculations and decrease the influence of irrelevant data, a 

previous step of feature dimensionality reduction is applied 

with principal component analysis (PCA). 

3.4. Anomaly Diagnosis 

To determine which feature changes the most between the 

“non-degraded” state (normality) and the “degraded” state, a 

linear discriminant analysis (LDA) algorithm is used. As 

can be seen in Figure 5, the goal is to obtain a linear 

projection (LD1) maximising the separation between the 

groups of features representing the two states. 

The samples with the “non-degraded” label are taken from 

the dataset created during phase I of the Hotelling’s method. 

The samples with the “degraded” label are obtained from 

the first point in the chart where the process is considered 

out of control (and the number of elements is the same). The 

feature having the largest absolute coefficients in LD1 could 

provide clues for explaining the change in the EMA state. 
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Figure 5: LDA analysis for diagnosis. 

3.5. Analytical Visualization 

An analytical dashboard is the last stage in the pipeline to 

get useful insights and metrics. The dashboard can be easily 

updated without requiring programmatic skills. 

4. DATA MANAGEMENT SYSTEM 

4.1. Design Principles 

Several DataOps principles (The DataOps Manifesto) have 

been considered to implement the software platform: 

• Reproducibility. All the steps are automated and 

orchestrated, which brings reproducibility and 

reliability to the results. 

• Flexibility and collaboration. The core of the platform 

is a data lake where authorised stakeholders can access 

the data. This facilitates analytics, software 

engineering, and IT operations. 

• Agility and speed. DevOps practices like infrastructure 

as code (IaC), continuous integration (CI), and 

continuous deployment (CD) facilitates integration of 

changes into production, as well as the quality of the 

process through testing. 

• Adaptability and reusability. The platform can be 

adjusted and reused for new types of tests, or different 

versions of the EMA. 

The cloud is a suitable option to meet these requirements, 

offering infrastructure, platform, and function as a service 

options (IaaS, PaaS, and FaaS), which can provide 

scalability for computation and storage, data governance, 

orchestration tools, and infrastructure provisioning 

resources. Leveraging these capabilities, the platform has 

been built using Azure cloud services. 

4.2. Platform Implementation 

Figure 6 shows the high-level architecture of the data 

management system. Data coming from the test bench is 

loaded periodically into the system through a scheduled task 

created with an Azure WebJob and an Azure Data Factory 

pipeline. An Azure Blob Storage account stores the raw 

information coming from ingestion, including the files 

generated during the analysis. Metadata is kept on an Azure 

SQL Database instance. This metadata is used in the 

preprocessing stage to parse the raw MAT files and generate 

the features for the analysis. 

 

Figure 6: Implementation of the data processing pipeline. 

Using a schema-on-read approach, an ELT (extract, load, 

transform) data pipeline is run periodically for data 

extraction, preparation, and analysis. These steps are 

executed as microservices inside their own docker 

container, and the output of each module is the input of the 

next. The intermediate results are stored in the Azure Blob 

Storage account. This strategy ensures decoupling of the 

modules, which improves the flexibility and adaptability of 

the system. The whole process is orchestrated so that the 

tasks are triggered sequentially at the right time. The 

workflow is efficient as it processes data incrementally 

(only new data is read in each execution). The dashboard is 

implemented with Power BI, and it is updated periodically 

with the results stored in the Azure Blob Storage account. 

An infrastructure-as-code (IaC) template created with Azure 

Resource Manager (ARM) is used to define the platform 

resources in a declarative manner, and to create both a 

development and a production environment. The template is 

executed as part of an Azure Pipeline service for CI/CD. 

5. RESULTS AND DISCUSSION 

During the execution of the fatigue experiment, a test bench 

component in the hydraulic system had to be changed. This 

component was causing the system not to work properly, 

and this incorrect behaviour was detected by the 

multivariate chart, as it is explained in the next section.  

Given that a new component was introduced at some point 

in the system, it was considered that two independent 

analyses had to be performed on the data: the first one with 

samples before the test bench refurbishment, and the second 

one with samples after the component was replaced. 

The following sections present the results of both analyses. 
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5.1. Analysis before the Test Bench Refurbishment 

Figure 7 shows the multivariate control chart corresponding 

to the samples collected until the test bench component was 

replaced. 

 

Figure 7: Chart before the test bench refurbishment. 

The upper and lower control limits are situated very close to 

each other due to the comparatively higher values projected 

on the y axis. There is an initial period of stability in the 

chart, followed by a section with an increasing number of 

peaks above the upper limit, until reaching a point where the 

process went out of control. After doing some research, the 

cause of the problem was determined to be a faulty 

mechanical component in the hydraulic system of the test 

bench, which needed to be changed. 

To confirm this diagnosis, a LDA algorithm was run to 

determine which features changed the most with respect to 

normality. The accuracy of the model for this analysis was 

81,02%, which can be considered a good result in this 

scenario. The highest absolute coefficients in the linear 

discriminant (LD1) corresponded to features obtained from 

signal "Cylinder_force_filtered”, which is the force applied 

by the hydraulic cylinder. This means that the algorithm was 

pointing to the right direction.  

 

 

Figure 8: Density plot for LD1 highest coefficient feature. 

Figure 8 shows the density plot for the feature with the 

highest absolute coefficient in LD1. As can be seen, the two 

sample types ("non-degraded" and "degraded") follow a 

normal distribution. 

5.2. Analysis after the Test Bench Refurbishment 

The second multivariate control chart presented in Figure 9 

shows the evolution of the Q statistical values with the new 

mechanical component installed in the system. 

 

Figure 9: Chart after the test bench refurbishment. 

The chart shows a raising trend in the Q statistical parameter 

towards the upper control limit, until a first critical point 

was reached. After this, the value went up and down around 

the limit, until it was decided to stop the experiment to 

check if the actuator was damaged (as it was confirmed 

later). As in the case of the first analysis, a LDA algorithm 

is executed to try to explain what happened. Here, the 

accuracy of the model was 48,09%. The accuracy is low, 

meaning that LDA cannot distinguish both classes, probably 

due to a lack of normality in the features. As can be seen in 

Figure 10, the two distributions in the density plot for the 

feature with the highest absolute coefficient in LD1 are non-

normal. 

 

Figure 10: Density plot for LD1 highest coefficient feature. 
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6. CONCLUSIONS AND FUTURE WORK 

6.1. Analysis Conclusions 

The multivariate control chart worked well for both 

analyses, detecting that something wrong was happening in 

the system, and this was confirmed by the alarms raised in 

the test bench itself. Therefore, this automated platform 

provided useful information about the EMA state, helping in 

making decisions to prevent any problem that might occur 

to the EMA during the experiment. This is something 

important since the EMA prototype is an expensive system. 

Regarding the explanation of the anomalies, the LDA 

algorithm worked well in the first analysis, pointing to the 

component in the hydraulic system as the cause of the 

problem. However, it could not explain the source of the 

failure during the second analysis. Therefore, it would be 

interesting to use other types of algorithms that do not rely 

on the normality assumption of the data to get a better 

result. 

6.2. Data Management System Conclusions 

The cloud has proven to be a very convenient environment 

to deploy this platform, providing the necessary processing 

and analytical infrastructure for a big data pipeline, without 

having to use the scarce resources of on-premises servers. 

The use of DataOps principles facilitated the integration and 

orchestration of the activities: 

• Changes in the data pipeline were deployed in 

production more rapidly through CI/CD practices. 

• Data insights were automated and delivered 

periodically without the intervention of a software 

engineer. 

• The platform was the central hub for collaboration 

between every role involved in the project (data analyst, 

software engineer, mechanical engineer). 

Thanks to process decoupling, the data pipeline could 

quickly be readapted to perform a second analysis. 

Likewise, it could be extended for processing the condition 

tests, o for new versions of the EMA. 

6.3. Future Work 

As previously stated, a better alternative to the LDA 

algorithm for diagnosis should be found. Also, the analysis 

of EMA operational data can be complemented with the 

study of the condition tests performed in the same test 

bench. The goal would be to generate health features 

associated with specific functionalities in the actuator. Each 

of these tests is executed under the same conditions, so it 

would be possible to compare the features over time to 

make some conclusions about the EMA's health evolution. 

These features would have limits where the EMA health is 

considered safe, and these limits would be obtained through 

the analysis of the experiments similarly to other works in 

the literature (Ferreiro, Konde, Fernández, Prado, 2016). 

NOMENCLATURE 

AEA  all electric aircraft 

CD  continuous deployment 

CI  continuous integration 

DataOps  data operations 

DevOps  development and operations 

ELT  extract, load, transform 

EMA  electro-mechanical actuator 

FaaS  function as a service 

IaaS  infrastructure as a service 

IaC  infrastructure as code 

LDA  linear discriminant analysis 

MEA  more electric aircraft 

PaaS  platform as a service 

PCA  principal component analysis 

PBW  power by wire 

MSPC  multivariate statistical process control 
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