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ABSTRACT

One of the major problems of model-based fault detection is
to account for model and measurement uncertainties in or-
der to robustly detect occurring faults. This paper presents
a method which utilizes Monte Carlo simulations to solve
this problem for hybrid nonlinear models. By sampling the
a-priori and statistically identified uncertainty distributions,
corresponding residual values are obtained. The distributions
of these residuals are analysed using highest density regions
to obtain information about the probability of receiving the
observed measurements given a fault-free model. In addition
to the basic method, an extended method utilizing explicit
fault models is presented. Both methods are implemented
in form of an algorithm and, in order to provide a proof of
concept, applied to the model of a cooling system for an un-
manned aerial vehicle.

1. INTRODUCTION

With the increasing complexity of technical systems the task
of fault detection and isolation (FDI) becomes more and more
difficult. While the need for sophisticated safety critical real-
time FDI is generally well covered due to government regu-
lations and safety concerns, the maintenance related FDI has
historically been less emphasized. This leads to increased
maintenance costs during the system’s life cycle caused by
false alarms and missed detections.

In order to improve the maintenance related FDI, the Institute
of Aircraft Systems Engineering at the Hamburg University
of Technology is working on SPYDER, a Software Package
for sYstem Diagnosis engineERing. SPYDER utilizes avail-
able knowledge about the behaviour of a system in terms of
physical models to design a diagnostic engine. The nonlin-
ear, hybrid dynamic models are converted into convenient,
overdetermined, steady state submodels which are employed
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for fault detection purposes.

The faults are detected by evaluating residuals derived from
the submodel’s equations. These residuals are ideally equal to
zero in the fault-free case and different from zero in the case
of a fault. In real world applications, however, these resid-
uals usually differ from zero even in the fault-free case due
to e.g. measurement errors and model uncertainties. This pa-
per presents a method which allows the evaluation of whether
an observed set of measurements could possibly stem from
a fault-free system by utilizing Monte Carlo Methods with
identified and a-priori uncertainty distributions.

The paper is structured as follows. Section 2 gives a short
overview over previous work in this field of study. Section
3 systematically defines the problem and some basic defini-
tions which are used to present the method in Section 4. After
the theoretical introduction of the concept, Section 5 presents
the implementation of the method in form of an algorithm.
This algorithm is applied in Section 6 to a model of a cooling
system for an unmanned aerial vehicle. The section discusses
the obtained results and insights gained from the application.
The paper closes with a conclusion and an outlook in Section
7.

2. LITERATURE REVIEW

There is an exhaustive literature available on the topic of ro-
bust fault detection, especially for model-based FDI. Gener-
ally, there are two approaches to handle uncertainties.

The first one, called active approach, relies on the design of
residuals which are decoupled from the uncertainties. This is
done by designing filters and observers, which decouple the
residual from the uncertainties while preserving sensitivity to
faults (Chen & Patton, 2012). This approach requires specific
model characteristics and structures to be applicable and is
far from the general approach envisaged here.

The second, called passive approach, accepts uncertainties in
the residuals and handles them after the evaluation by apply-
ing thresholds. These thresholds can be static values or, in
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more sophisticated methods, adaptive depending on the mea-
surements or system’s state. The simplest way to determine
thresholds is to record non-faulty residual signals as either ab-
solute values (Yu, Wang, Luo, & Huang, 2010), or as statis-
tical measures (Staroswiecki & Comtet-Varga, 2001; Svärd,
Nyberg, Frisk, & Krysander, 2011) and compare the residu-
als to the non faulty measures. This approach requires histor-
ical data and thus is not applicable to new systems or sensors.
Additionally, it neglects that there commonly is expert knowl-
edge available about the uncertainties of the system which can
be used to base the thresholds on.

The set-membership approach (Ingimundarson, Bravo, Puig,
Alamo, & Guerra, 2009) uses a-priori knowledge about the
uncertainties of the measurements and parameters as bounded
intervals in conjunction with a model of the system to calcu-
late the set of possible residual values (direct test) or possible
parameters (inverse test).

The inverse test relies on parameter estimation and system
identification techniques. These methods generally require
dedicated input signals in various system states to accurately
determine the model’s parameters. This usually involves a
great effort and is infeasible or impossible in a maintenance
context.

The direct test propagates uncertainties through the process
model or some kind of approximation and thusly determines
intervals of possible residuals of a fault-free model. This
propagation can be done by e.g. simple (Fagarasan, Ploix,
& Gentil, 2004) or complex (Armengol, Vehı́, Sainz, Her-
rero, & Gelso, 2008) interval arithmetic. Other methods rely
on numerical optimization techniques to find the residual’s
extrema. Most of these methods require the model to fulfil
certain characteristics like linearity or continuity with respect
to the uncertainties.

The direct and inverse tests are concepts also found in a ded-
icated research field called uncertainty quantification (UQ)
(Sullivan, 2015). ”UQ is the end-to-end study of the reli-
ability of scientific interferences” (U.S. Deptartment of En-
ergy, 2009) and thus the broader approach to handle uncer-
tainties in interference in fields like economics, meteorology
and general risk assessment. In UQ the direct test is often
approached in a probabilistic way, specifying the output in
a statistical sense rather than strict intervals as in the set-
membership approach explained above. One of the simplest
yet most powerful tools for UQ are Monte Carlo Simulations
(MCS) (Rubinstein & Kroese, 2016). MCS utilizes samples
of the input distributions of a model to sample the output dis-
tribution. Due to this black-box approach there are no restric-
tions posed upon the structure or characteristics of the model.
This fact in conjunction with the additional information about
the probability of output values is the reason MCS is chosen
to increase the robustness of model-based FDI.

The concept of using MCS for FDI purposes is not new. E.g.
particle filters or Sequential Monte Carlo methods can be
used to estimate internal states and parameters of dynamic
models to detect faulty states of a system (Li & Kadirka-
manathan, 2004). As mentioned in Section 1 the aim of this
paper is to detect faults through steady state residuals which
means the updating nature of a filter is not needed in this con-
text. In (Wang & Haves, 2014) MCS is used to generate di-
agnostic results for samples of possible measurements and to
a limited extent parameter ranges. The approach diagnoses
faults only if a majority of the diagnostic results do so and is
therefore prone to missed detections. A similar approach is
chosen here with the difference that only the detection prob-
lem is solved using a statistical hypothesis test. This should
reduce the missed detection rate and allow the usual separa-
tion of detection and diagnosis.

3. PROBLEM FORMULATION

Consider a model M of a physical process P

P ∼M = {e, x, y, θ, f}, (1)

where

e(x, y, θ, f) =




e1(x, y, θ, f)
. . .

ene(x, y, θ, f)


 (2)

are potentially nonlinear, static equations e, unknown inter-
nal states x ∈ Rnx , known measurements y ∈ Rny , model
parameters θ ∈ Rnθ and faults f ∈ Rnf . Note that the effect
of a fault fi on an equation ej does not have to be modelled
explicitly. A binary information that fi has an effect on ej
suffices for now.

Now consider a subsystem M∗ : {e∗, x∗, y∗, θ∗, f∗} of M
where card(x∗) < card(e∗) such that there are more equa-
tions in M∗ than needed to calculate the unknowns x∗. This
means there is at least one equation which contains redundant
information and can potentially be used to test the subsystem
for it’s integrity. Those equations are called analytical redun-
dancy relations (ARR). Thus, if card(e∗)−card(x∗) = 1 and
the system of equations {e∗ \ ei} can be algebraically solved
for all x∗, ei is an ARR. Constructing a residual r, which can
be used to test the consistency between a measurement and
the model, can be done by e.g. subtracting the left (LHS )
from the right-hand side (RHS ) of ei

r(y∗, θ∗) = RHS(ei)− LHS(ei)

=

{
= 0 if y∗ consistent with M∗

6= 0 otherwise .
(3)

Ideally an inconsistency and thus r 6= 0 only occurs if one of
the faults f∗ is present. In real world applications, however,
the residual’s values are almost always different from zero
even in the fault-free case. This is mainly due to the following
three effects:
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1. Modelling error: neglected effects in the modelling pro-
cess of M (note the ∼ in Eq. (1)).

2. Parameter uncertainties: exactly determining θ is practi-
cally impossible and the parameters might change over
time.

3. Measurements error: y cannot be measured exactly.

Which means rather than constant values for y and θ a set
of possible parameters Sθ and measurements Sy have to be
considered. Thus, the residual also equate to a set

Sr = {r(ỹ, θ̃)|ỹ ∈ Sy, θ̃ ∈ Sθ}. (4)

Assuming the modelling errors are negligible compared to the
other two effects the test for consistency in Eq. (3) becomes

0 ∈ Sr if y∗ consistent with M∗

0 /∈ Sr otherwise . (5)

Solving this problem for nonlinear, hybrid steady state resid-
uals is the main objective of this paper.

Note that for fault diagnosis and isolation purposes usually a
bank of residuals is used

R(y, θ) = [r1, ..., rnr ],

where each residual ri is sensitive to a different set of faults.
In this paper the problem is explicitly separated into nr sub-
problems, one for each residual. The alternative is to analyse
the multidimensional problem O ∈ R, where O is the ori-
gin of the nr-dimensional space. This formulation adds the
benefit of merging information from each dimension (Adrot
& Flaus, 2008). Interpreting the result of a multidimensional
analysis is a much more complex task and not the focus of
this work.

4. METHODOLOGY

The problem formulated above can be split into two sub-
problems:

1. calculating the set of possible residual values Sr and
2. determining whether 0 ∈ Sr.
If the set Sr can be calculated exactly, the second step be-
comes trivial. As stated in Section 2 there is no method which
is capable of this calculation for arbitrary models which is
why a MCS based approach is chosen here. MCS uses sam-
ples of the input sets of a model to generate samples of the
output set. For the problem described above this means gen-
erating a set

Sr,MC = {r(ỹ1, θ̃1), ..., r(ỹns , θ̃ns)|ỹi ∈ Sy, θ̃i ∈ Sθ}

of ns samples by evaluating r ns times. Since Sr,MC consists
of discrete samples of the otherwise piecewise-continuous Sr,
the sub-problem 2 becomes more difficult. This comes with
the benefit that the resulting distribution contains information
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Figure 1. Basic method overview (including the respective
sections)

not only about the range of possible values in Sr, but also
about the probability of occurrence. This probability is only
useful if the sampling of y and θ is based on reliable proba-
bility distributions. Determining these distributions poses an
additional challenge.

Each of the following subsections deals with a different as-
pect of the presented method depicted in Figure 1. Section 4.1
discusses the modelling of uncertainty for the measurements
and parameters, Section 4.2 covers the sampling method and
Section 4.3 describes the method used to analyse the results
and solve the second sub-problem stated above. An exten-
sion to the presented method in case of available explicit fault
models is presented in Section 4.4.

4.1. Modelling Measurement and Parameter Uncertainty

As stated above, the modelling of the parameter and measure-
ment uncertainty in terms of probability distributions is cru-
cial for the usability of the result. Too wide distributions lead
to missed detections of faults, while too narrow distributions
can lead to false alarms. As depicted in Figure 1, the distribu-
tions are modelled in terms of probability density functions
(PDFs) fY,i and fθ,i. PDFs specify the relative probability of
each possible value of a continuous random variable e.g. Y
such that

Pr[a ≤ Y ≤ b] =

∫ b

a

fY (y)dy

is the probability of a sample y falling into the range [a, b]. In
the following, the process of determining the PDFs fY,i and
fΘ,i for the measurements and the parameters respectively is
discussed.

Modelling Measurement Uncertainty

Measurement errors, which are the reason for measurement
uncertainties, are usually split up into a random and a sys-
tematic component. Since the latter part is systematic it can
be compensated via calibration of the respective sensor. For
the sake of simplicity, it is assumed that all sensors are exactly
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calibrated such that only random errors occur. This means the
measurement results ym are randomly distributed around the
real value y according to PDFs [fY,1, ..., fY,ny ]. Modelling
fY,i, to obtain a sampling distribution for the MCS, can be
done in different ways depending on the number of samples
and the knowledge about the sensor’s accuracy.

If only a single measurement is taken, no information about
the variability of the measurement in form of data is avail-
able. In this case, the only way to model the PDF is knowl-
edge about the sensor given by the manufacturer of that sen-
sor or obtained from previous measurements. In most cases,
the manufacturer specifies intervals for a sensor’s accuracy.
If no further information about the form of the PDF – i.e. in
terms of a standard deviation σy,i – is given, a uniform distri-
bution

U(ymin, ymax)

with equal probabilities for every value in the interval can be
used.

Since the aim of this method is to detect faults in steady state,
usually a couple of measurements from the same state and
thus the same real value are available. This means that statis-
tics can be applied to narrow the uncertainty of the measure-
ment.

For nm > 1 measured values ym,i, which are randomly dis-
tributed around a constant value yi, the best estimate of this
value is the arithmetic mean of the measurements

E[Yi] = ȳm,i =
1

nm

nm∑

j=1

ym,i,j . (6)

If the standard deviation of the sensor is known, the distribu-
tion of this estimate can be modelled as

fȲi = N
(
ȳm,i, σȳi =

σyi√
nm

)
.

If no a-priori information about the distribution is available,
the sample standard deviation of the mean

σ̂ȳi =

√∑nm
j=1(ym,i,j − ȳm,i)2

nm(nm − 1)
(7)

can be used in conjunction with either the normal distribution

fȲi = N (ȳm,i, σ̂ȳi) (8)

or, to account for small sample sizes, the scaled and shifted
t-distribution

fȲi = T (ȳm,i, σ̂ȳi , nm),

such that (Y − ȳm,i)/σ̂ȳi follows a standard t-distribution
with nm − 1 degrees of freedom. Since these are the ap-
proximate distributions of the best estimate of yi, they can be
used to sample possible values of yi as long as the assump-

tions above hold. According to the central limit theorem the
statistical approach applies for arbitrary noise distributions as
long as they are centred around the real value.

Modelling of Parameter Uncertainty

The modelling of parameter uncertainties has to be based on
a-priori knowledge about the parameters. Possible sources
for this knowledge are:

• physical limitations,
• parameter identification,
• measurements,
• expert knowledge.

Physical limitations is the the most straight forward source. It
is based on the fact that for some parameters a certain range
of values is physically impossible. For example, the air den-
sity is known to be in a specific interval if an interval for the
operating temperature of the system is given. On the one hand
these intervals are reliable, but on the other they tend to intro-
duce a rather high level of uncertainty. The process of tying
a PDF to these intervals is not straight forward and must be
chosen carefully by the designing expert. In case of no addi-
tional information about the probability of operating ranges, a
uniform distribution over the possible interval should be used.

Parameter identification is the process of fitting model pa-
rameters using real world data. This is a sound source of
knowledge but might be a time consuming task or infeasible
due to unavailable data at the development stage. Note that
parameters might change over time and once estimated pa-
rameters possibly become outdated somewhere in a system’s
life. Some parameter identification techniques come with er-
ror bands or uncertainty models for the estimated parameters.
These values can be used directly to model the corresponding
PDF.

Measurements are also a sound source of knowledge. If it
is possible to measure a parameter, e.g. a geometric length,
directly, the same procedures described for the modelling of
measurement uncertainties above can be applied. Similar to
identified parameters, the measurements can become obsolete
and might have to be updated during the system’s life.

Expert knowledge is a rather fuzzy source of knowledge but
nevertheless valuable. The modelling expert has potentially
worked on similar models in the past and gathered knowl-
edge about possible parameter ranges, which can be utilized.
Usually it is difficult for a human to comprehend complex
distributions such as the normal or beta distribution. For this
reason simple distributions like the triangle or uniform should
be used to model expert knowledge.

Up until now, each PDF has been regarded as independent
of each other. This holds for the sensor uncertainties, since
it is assumed that the errors are essentially random and thus
independent. This might not be the case for the parameters.
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Consider for example the viscosity and density of air. Both
of these quantities are dependent on air temperature and thus
correlated. These correlations need to be addressed in the
uncertainty modelling phase due to their potentially immense
impact on the output distribution.

One statistical way to tackle the problem of correlating pa-
rameters is the usage of multivariate joint distributions e.g.
multivariate Gaussian. Choosing the parameters for these
models for physical relations is not straight forward. A more
natural way is to model the correlations directly. Most of the
correlated parameters are due to physical coupling as in the
example above. By modelling this coupling directly and sam-
pling the underlying inputs, the correlation is modelled im-
plicitly. For the viscosity and density of air this means, spec-
ifying the range and distribution of possible operating tem-
peratures and calculating the dependent parameters based on
the sampled temperature. If the air temperature is measured
and thus part of y, it can be used as an input directly. Note
that this is essentially an extension of the underlying model
and might introduce new parameter and model uncertainties.
Similar to the regular process of physical modelling, the level
of detail for the application has to be assessed carefully.

4.2. Sampling

Sampling from fY and fΘ can be done using a pseudo ran-
dom number generator. These generators mimic randomness
by calculating deterministic sequences of numbers which pass
specified tests for randomness. They are deterministic in a
sense that given the same initial input - a so called seed - they
produce the exact same sequence of random numbers. These
generators are part of every statistical software suite and can
be used to sample from arbitrary distributions.

There are different techniques to reduce the variance of the
sampling process and consequently the number of samples
needed. The most basic one is latin hypercube sampling,
which splits the sample space into equally probable inter-
vals and takes the same amount of samples from each of
those intervals. This method preserves the shape of the PDF
and simultaneously ensures a uniform coverage of the sam-
ple space. This results in the need of less samples for the
same amount of coverage and thus reduces computational
load. This approach is applied here.

4.3. Analysis of MCS Output

As stated in the introduction of this section, the output set not
only contains information about the range of possible values,
but also about their probability of occurrence. This allows ty-
ing a level of confidence to Eq. (5) in order to potentially im-
prove the missed detection rate and compare the consistency
of different models. Thus, the detection problem becomes a
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Figure 2. PDF and HDR for a multimodal distribution

statistical hypothesis test, where the null-hypothesis

H0 : y∗ consistent with M∗

is rejected when r = 0 is sufficiently unlikely. Since the
residuals are continuous, the probability of r = 0 is practi-
cally zero. This is a common phenomenon in the domain of
hypothesis testing and is usually approached by using a prob-
ability of observing a result more unlikely than the current
one. The calculation of this probability is straight forward
when the observed outcome is normally distributed. Since the
residuals are potentially nonlinear and discontinuous, their
probability distribution is generally not normal and might be
multi-modal and discontinuous as well.

To solve this problem, highest density regions (HDRs) are
used (Hyndman, 1996). These regions are defined as the sub-
set Sr,α of the sample space Sr such that

Sr,α = {r|fR(r) ≥ tα}, (9)

where fR is the PDF of r and tα is a constant probability
density such that Pr(r ∈ Sr,α) ≥ 1 − α. This means Sr,α

includes the most probable 100(1− α) % of values. Figure 2
shows the 20, 75 and 95 % HDRs for a given distribution. The
t0.8, t0.25 and t0.05 are marked as dashed lines and the corre-
sponding HDRs as shaded areas below the PDF in the upper
panel. The lower panel depicts the HDRs without overlays.
Note that Sr,α can include multiple intervals for multi-modal
distributions.

Using HDRs the hypothesis test can be stated as

H0 :
accepted if 0 ∈ Sr,αcl

rejected if else (10)

whereαcl is chosen according to the required confidence level.
Note that this approach is equal to the set membership prob-
lem for αcl = 0.
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In practice, the PDF fR of the residual is not known and only
the sample set Sr,MC is available. The most common tech-
nique to calculate an estimate of the PDF of a population
given samples from that population, is the kernel density esti-
mation (KDE). KDE approximates the PDF via a sum of ker-
nel functions at each sample point multiplied by a smoothing
factor called bandwidth. The bandwidth has a large impact on
the resulting PDF and there is no general correct choice for
it. For HDR estimation (Samworth, Wand, & others, 2010)
proposed an optimal bandwidth selection algorithm which
is applied here. This technique finds a bandwidth such that
(1−α)100% of the samples are inside the HDRs. This means
that enough samples have to be generated to accurately cap-
ture the real distribution. The process of choosing the needed
sample size ns is described in Section 5.

4.4. Extension using Explicit Fault Models

The analysis method presented above uses arbitrary thresh-
olds to improve the fault sensitivity by rejecting H0 if r = 0
is sufficiently unlikely. This is based on the assumption that
every combination of parameters and measurements which
is less likely than the specified threshold is due to a fault.
This dismissing of every unlikely residual can lead to reduced
missed detection rates, but can also lead to higher false alarm
rates depending on the fault modes and their behaviour. A
solution to this is to include faulty behaviour models into the
residuals and compare the probabilities of r = 0 of the faulty
and the fault-free model.

Including information about faults into the model is done by
modelling the effect of f on e in Eq. (2) explicitly such that f
are input variables into the model, which are zero in the fault-
free case. Thus, the diagnosable subsystemM∗ and the resid-
ual r also depend on f∗ as inputs. Note that the modelling of
faults generally requires additional identification and valida-
tion of the models and might even be infeasible for complex
faults. If the modelling can be done reliably, however, it pro-
vides an immense benefit to the model-based fault detection.

When also including the modelled faulty behaviour the null-
hypothesis becomes

H0 : y∗ consistens with M∗ given f∗ = 0

and an alternate hypothesis can be formulated

H1 : y∗ consistens with M∗ given f∗ ≥ tf ,

where tf is an nf∗ -dimensional value specifying thresholds,
above which the fault levels are considered unacceptable. It
is assumed that the faults are monotonic in the sense that a
higher value of f∗ is more severe. Both hypotheses can be
tested according to the basic method presented above. For the
faulty-model the fault variables are sampled uniformly from

a specified interval according to

U(tf , f
∗
max).

The resulting sets Sr,f∗=0 and Sr,f∗≥tf for the fault-free and
faulty case respectively are then used to calculate the HDRs.
This leads to the new hypothesis test

H0 :
accepted if ∃αcl : 0 ∈ Sr,f∗=0,αcl

∧
0 /∈ Sr,f∗≥tf ,αcl

rejected if else
.

By comparing both confidence levels, a more sound guess
can be made in accordance to the actual expected faulty be-
haviour.

5. IMPLEMENTATION

The previously described methods are concepts for the detec-
tion of discrepancies between a model and a series of mea-
surements. The actual implementation of these methods raises
additional points like: points in time of execution, necessary
number of samples and which calculations have to be per-
formed continuously. This section deals with these points and
describes a way of implementing the presented methods.

Since the aim of this method is to detect faults with no im-
mediate safety effect, the execution of the algorithms is not
time critical. The algorithms do not even have to run in paral-
lel to the monitored process and can be applied subsequently
to recorded measurements of the system. To have an up-to-
date information about the system’s health status, however,
a periodic execution of the algorithms during regular opera-
tion is advised. For mobile applications in e.g. planes or cars
this could mean executing the algorithms on-board, which is
why one of the implementation’s aims is to keep the execu-
tion time at a required minimum.

The main part of the presented method is to generate samples
and use these to calculate the HDRs. The implementation of
these two steps is shown as a flow chart in Figure 3. The first
step is to detect whether the system is in steady state. This
is due to the fact that the considered residuals are based on
steady state equations and thus invalid during transients. If
the model is in steady state, the measured values can be used
to estimate the statistical measures of the measurement un-
certainty distributions. As soon as the model leaves a steady
state, the collected statistics can be used to detect potential
faults of the system. This has to be done only once at the
end of every steady state period, since the parameter distribu-
tions are considered constant and the measurement distribu-
tions become narrower with every new measured value. This
leads to a more precise detection result at every new time step
and thus only the point in time containing the most informa-
tion and least uncertainties is analysed. To ensure this only
happens once, the ssEval -flag – a variable – is initially set to
0 and subsequently to 1 after the last steady state period has
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Figure 3. Implementation flowchart

been analysed.

The calculation of the HDRs itself starts the same way as de-
scribed in Section 4 above. A latin hypercube sampling based
on the estimated distribution parameters is used to create a
specified number of samples. These samples together with
parameter samples are then plugged into the residual equa-
tions. Since it is assumed that the distributions of parame-
ters do not change during short term operation, they can be
sampled once and kept in a database until changes to those
distributions become necessary. This saves on-line computa-
tion time. Subsequently, the calculated residual samples r̃ are
checked on whether their range contains r = 0. This is done
by the simple test

0 ∈ [min(r̃),max(r̃)],

since this is a necessary condition for the existence of an HDR
which contains r = 0. If this test fails, the model is consid-
ered not consistent with the measurement and the algorithm
is stopped.

After the test for a general possibility of r = 0, two tasks will
be executed in parallel. The first one is the calculation of the
HDRs. This is done for different levels αcl,i to get a discrete
sampling of the probability space in contrast to just binary
information as proposed in Eq. (10). The second parallel
task is an additional sampling of values ỹval and correspond-
ing residual values r̃val. These additional samples are used as

validation data to test if the HDRs are accurate for data which
was not used to generate said HDRs. For this purpose a mean
error

1

nα

nα∑

i=1

∣∣∣∣
card({rval|rval ∈ Sr,αi})

nval
− (1− αi)

∣∣∣∣

is introduced, which measures the average difference between
the required and the actual fraction of validation data falling
into each interval. By comparing this error to a fixed thresh-
old, a test is introduced whether the calculated intervals are
accurate. A failed test indicates that the data set used to cal-
culate the HDRs does not contain enough information about
the actual probability distribution of r. To compute more ac-
curate HDRs the sample size ns is increased and another it-
eration of the calculation of HDRs is initiated. This iterative
procedure ensures that the number of samples is accurately
chosen for each case.

The described algorithm can also be applied to the residual
including faulty behaviour to get the corresponding HDRs.
The only difference is the use of uniformly sampled fault in-
puts on an expected value range for calculation of HDRs and
validation data.

The following and somewhat trivial interpretation of the HDRs
is not depicted, since it heavily depends on the chosen method
of subsequent fault diagnosis.

6. METHOD APPLICATION

The following section describes the application of the pro-
posed methods. The system and model to which the methods
are applied is presented in Section 6.1, Section 6.2 describes
the process of uncertainty modelling and the results of the
application are presented and discussed in Section 6.3.

6.1. System and Model Description

The model, to which the presented method is applied, is one
of an air cooling system for an unmanned aerial vehicle (UAV)
with vertical take-off and landing capabilities. The UAV it-
self is based on an existing Vehicle and the modelled aero-
dynamics and flight mechanics are validated using the real
aircraft. The systems inside the UAV, namely the fuel cell
and the cooling system, are not part of the real vehicle. They
were chosen, designed and implemented virtually to test and
develop different health monitoring algorithms in an ongoing
national research project called Real Time Analysis Predic-
tive Health Monitoring (RTAPHM).

The modelled cooling system uses ambient air to cool the fuel
cell (FC) and motor power electronics (PE) on board of the
UAV. A basic schematic of the main components is depicted
in Figure 4.

The air enters the system through a ram air intake, which uses
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Figure 4. Cooling system schematic

dynamic pressure in flight to increase the static pressure in-
side the duct. Driven by the resulting difference in pressure
the air flows through a filter, which protects downstream com-
ponents from unwanted solid particles, before diverging into
two parallel sections. The first section cools the FC through a
heat exchanger. The second section also incorporates a simi-
lar but smaller heat exchanger for the PE. Due to the fact that
the heat flow emitted by the PE is much less than the flow
emitted by the FC the PE needs less cooling air. To set the
flow split accordingly an orifice is part of the PE section. Af-
ter cooling both the PE and FC the air flows through a fan
which pulls air through the system when there is no dynamic
pressure provided by a forward movement of the UAV – i.e.
in ground or hover/take-off operation. The schematic only
shows the main components of the system and not the shape
and or length of the connecting ducts.

The fan control is based on the component temperatures TFC
and TPE. The purpose of all other sensors si depicted in Fig-
ure 4 is the detection and isolation of occurring faults in the
components.

The model of the described system is implemented in Matlab
Simscape based on dynamic pneumatic and thermal compo-
nents. Some of the equations are highly nonlinear and contain
multiple modes of operations. The sensor models include a
relative and absolute accuracy as well as white noise, which
is added onto the real measurement, to incorporate measure-
ment uncertainties. In addition to the nominal behaviour each
of the depicted components incorporates one fault mode with
maintenance relevance. The implemented fault modes are:

• clogging of the filter,
• clogging of the orifice,
• fouling of both heat exchangers,
• reduced fan efficiency.

Table 1. Residual overview

Comp. ri nθ y

Filter rfilter 2 ṁs1, dps2
Orifice rorifice 2 Ts1, ṁs1, ps5, ps6
Fan rfan 4 ṁs1, dps9, Ctl fan, Pel,fan
FC rFE 9 Ts1, ṁs3, ps3, ps4
PE rPE 9 Ts1, ṁs1, ṁs3, ps7, ps8

Each of these faults is modelled as a continuous change of
behaviour with a normalized input controlling its severity.

Fault Detection

The detection of faults of the above described system is done
by using one residual for each of the faulty components. These
residuals were generated based on the model equations in
steady state. Table 1 lists all of the residuals including their
name, the specific component, the number of uncertain pa-
rameters as well as the input signals. The input signals are:
the pressures p, the differential pressures dp, temperatures T
and mass flows ṁ with their respective measurement point
given as an index. Ctl fan and Pel,fan are the control signal and
the electrical power drawn by the fan respectively.

6.2. Uncertainty Modelling

The uncertainty distributions for the parameters have been
chosen according to Section 4.1. Since the system only exists
virtually, a parameter identification was not possible. Thus,
the boundaries of the parameters are based on physical limita-
tions and probable measurement uncertainties where applica-
ble. The remaining distributions were estimated heuristically
and the boundaries of the parameters converted to distribu-
tions by using uniform distributions.

The sensor uncertainties are assumed to be completely un-
known and estimated online according to Eq. 6 and 7. This
is feasible due to the relatively high sample rate which is also
the reason for using the normal distribution in Eq. 8 instead
of the T-distribution to model the measurement uncertainties.

The faulty residual distributions are generated by sampling
the fault inputs uniformly from the interval [0.25, 1].

6.3. Simulation results

In order to test the methods, a 15 minute flight mission is
simulated. The height (H) profile for this scenario is shown in
the upper panel of Figure 5 and comprises a preflight, flight,
idle and a battery recharge phase. To test the fault detection
capabilities, two faults in terms of a reduced fan efficiency
and a partially clogged filter (ffan = ffilter = 0.3) are injected.
All other components are simulated fault-freely.

The residuals during each of the steady state periods for three
components are depicted in the subsequent panels of Figure
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5. There are a total of five steady state periods:

• one in the preflight phase,
• two in the flight phase, where the second and shorter one

occurs during the vertical descent,
• one in the idle phase,
• two in the battery recharge phase, where the interruption

is due to a fan ramp up at 655 s.

During flight the fan residual is not evaluated, since the fan
is switched off. Each residual has been evaluated with dif-
ferent y and θ values. The dashed lines show the residuals
evaluated with the ideal sensor and parameter values without
any uncertainty. Looking at these values it is obvious that
the fan and the filter are degraded since the signal is clearly
different from zero while the fuel cell is consistent with the
nominal model. In practice, however, measurement noise and
parameter uncertainties are present. These effects are shown
by the gray lines. Especially the measurement noise impedes
the interpretation of the residuals. But even when eliminating
the measurement noise, by using the average of each sensor
signal for this specific steady state, shown by the solid black
lines, all three residual values are different from zero. The
parameters θest were taken as the most probable value of each
parameter’s distribution.

To test whether the observed deviation from zero in the resid-
uals could be due to parameter and measurement uncertain-
ties, the proposed methods are applied. In Figure 6 the de-
tailed analyses of the second steady state period at the end of
the battery recharge phase is depicted. Each panel shows the
estimated probability densities for one of the residuals for the
fault-free and faulty case. The densities were calculated us-
ing the bandwidth algorithms by Samworth and Wand. The
HDRs which include r = 0 are given in terms of an interval
for the corresponding α value in the title of each panel. If
r = 0 is not part of the data, only the area between the min-
imum and maximum of r is shaded in the specific color. In
this case, α = 1 is given, since no HDRs were computed.

The uppermost panel in Figure 6 shows the possible resid-
ual values for the fan. It can be seen that with the given
parameter range a value of r = 0 is impossible and none
of the residual samples came close to zero. Thus, the fault
can be detected using only information about the nominal be-
haviour. When also using the faulty model, this assumption
is confirmed since r = 0 lies in between the most probable
85 and 90 % of all data. The low probability of observing
a, in this case, correct result is remarkable and needs to be
explained. The reason for this is the same reason for why
all of the shown faulty residual distributions in Figure 6 are
wide spread. The faults are continuous inputs into these mod-
els and are assumed to be uniformly distributed according to
U(tf , fmax). If these intervals cover a wide range of opera-
tional modes, the residuals are widespread as seen here. This
has two downsides. The first one is slower convergence of
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Figure 5. Flight mission height profile and residuals for the
fan, fuel cell and filter for a basic flight mission. The legend
shown only applies to the last three panels.

the HDR algorithm since small deviations in samples have
large impact on the intervals. The second one is that the rel-
ative probabilities get lower compared to the nominal model
or one with a fixed fault parameters. This is the effect ob-
served here and can lead to misleading results when com-
paring the probabilities of the nominal and the faulty residu-
als. This effect can be mitigated by splitting the fault model
into multiple smaller intervals of fault values. When splitting
the fault sample interval for the fan residual from the initial
[0.25, 1] into [0.25, 0.625] and [0.625, 1], the result becomes
0.25 < αrf ≤ 0.3 for the first interval, while the latter does
not contain r = 0. As expected, further splitting increases
the possibility of r = 0 for the interval in which the real
value lies even more. Consequently, it can be beneficial to
divide the faulty residuals when facing continuous fault in-
puts for the cost of more computing effort. This needs to be
considered when using the extended method.

The second panel in Figure 6 shows the residuals for the fil-
ter. The overall result is similar to the ones obtained for the
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Figure 6. Probability densities of the faulty and fault-free
residuals for the steady state interval ending at 900 s.

fan. The probability of consistency between the model and
the observed measurements is basically zero and the faulty
model matches the data well.

For the fuel cell residuals depicted in the third and last panel
the opposite is the case. Only the nominal model is consistent
with the measured values. However, the probability of ob-
serving these values is relatively small with only 85 to 90 %
of the most probable residual values containing r = 0. This
is a case where the extended method is useful since it pro-
vides the additional information that the observations are not
consistent with a faulty model. Thus, even with a small prob-
ability H0 can be accepted.

Receiving improbable results for the nominal model with-
out any information about the faulty behaviour of the sys-
tem should lead to further investigations of the uncertainty
assumptions. In this case, the steady state interval is rela-
tively long and thus the measurement uncertainties only have
a minor impact on the resulting distribution. When revisiting
the parameter distributions and e.g. halving their width, the
interval in which αr for the fuel cell residual lies is more than

Table 2. Results as lower and upper bounds for αr and αrf at
the end of each steady state phase

Time in s 110 471 530 578 646 900

Fan
αr 1 n/a 1 1 1 1

αrf
0.1 n/a 0.1 0.15 0.1 0.1
0.15 0.15 0.20 0.15 0.15

Filter
αr 1 1 1 1 1 1

αrf
0.7 0.7 0.7 0.7 0.7 0.7
0.75 0.75 0.75 0.75 0.75 0.75

FC
αr

0.05 0.05 0.0 0.1 0.0 0.1
0.1 0.1 0.05 0.15 0.05 0.15

αrf 1 1 1 1 1 1

doubled to [0.25, 0.3]. This shows the immense impact of the
a-priori distributions on the result.

The analysis results for all steady state phases are listed in Ta-
ble 2. While the results for the other points in time are mostly
consistent with the ones shown above, there are minor differ-
ences for the residual of the fuel cell. After ruling out conver-
gence issues as well as the sensor uncertainties, it was found
that this is due to the fact that the same parameter uncertain-
ties can act differently on the residual distribution depending
on the point of operation. Therefore, several operating points
should always be considered before drawing conclusions.

As stated above, the measurement uncertainties have only a
minor impact on the shown residual distributions. This holds
even for the short steady state periods where less measure-
ments are available. Thus, when considering refining the dis-
tributions the parameters should always be the starting point.

Convergence and Computation Time

Analysing the faulty and nominal residuals for all three shown
residuals in the six steady state phases takes about 45 s on a
desktop PC1. This includes an average sample size of 4.2e4
for each MCS. Since this is a relatively short time an appli-
cation on on-board hardware seems possible. For residuals
including more sensor signals and equations this time will
rise and the point needs to be revisited.

The creation of the parameter database takes less than half
a second and the database itself takes up 160 MB of mem-
ory. This is due to the fact that the parameter samples are
generated beforehand for each sample size that might oc-
cur. This means, permanently storing 1e6 parameter values
even though only 4.2e4 are used on average. Considering
the discrepancy between computing time and memory us-
age, it might be beneficial to create the parameter samples as

1Intel i5 at 4.10GHz
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needed, depending on the availability of memory and com-
puting power.

During the analyses no convergence issues were encountered.
The rate at which the solutions converged was slow and scaled
roughly with

√
ns as reported in literature. It is advised to

choose an initial sampling size which is large (about 1000)
enough to avoid triggering one of the stopping criteria by
chance.

7. CONCLUSION

This paper presents a fault detection method based on the
Monte Carlo simulation of analytical redundancy relations.
The inputs to the simulations are a-priori parameter and sta-
tistical measurement distributions of the respective uncertain-
ties. This approach allows the handling of nonlinear, hybrid
models and provides probability distributions for the residu-
als. The resulting distributions allow for a formulation of the
fault detection problem in terms of hypothesis testing. The
analysis of the non-normal distributions is done by comput-
ing highest density regions and examining the relative prob-
ability of a fault-free model. In an extended version of the
method explicit fault models are used to improve the detec-
tion capabilities. Both methods are implemented in terms of
an algorithm which computes uncertainty distributions from
measurements and applies the described methods. The pre-
sented algorithm is applied to a model of a cooling system of
an unmanned aerial vehicle. The application shows a basic
proof of concept, the impact of the input distributions as well
as an improvement to the extended method.

Since this paper did show a proof of concept by applying the
methods to a model, the focus in future studies should be the
application to real world systems in order to further analyse
critical issues such as correlating input distributions and ac-
curacy of the model itself.
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