Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN — 978-1-936263-34-9

A Deep Learning First Approach to Remaining Useful Lifetime
Prediction of Filtration System With Improved Response to
Changing Operational Parameters Using Parameterized
Fully-Connected Layer

Con Tran Vu!, Ashok Chandra-Sekaran?, and Wilhelm Stork>

13 Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
con.vu@kit.edu

2 Helmut Fischer GmbH, 71069 Sindelfingen, Germany

ABSTRACT

For the remaining useful lifetime prediction, apart from the
normal sensor data which is updated regularly, there are also
operational parameters, which do not change during a cycle
of operation. Different sets of parameters result in essentially
different, but relevant systems and thus require the adapta-
tion from the statistical model for better prediction. We no-
ticed that neural networks could easily overfit into one set of
operational parameters and demonstrate constant bias in the
prediction for other sets (underfitting). An aspect of major
contribution from our work is the use of Parameterized Fully-
Connected Layer (PFL). The PFL builds the parameter de-
pendency right into each layer, in this way the parameters act
as “meta-inputs” which adapt the model of neural network
models to the different operating conditions. In another as-
pect of contribution, our work demonstrated that, instead of
using feature engineering, convolutional layers could be used
to automatically learn the features which are relevant for the
prediction. In this way, the deep learning architecture could
be reused for different problems or systems. We conduct ex-
periments on the filtration system datasets provided by the
Data Challenge 2020 and received results that compare fa-
vorably to the prize winners.

1. INTRODUCTION

Predictive Maintenance relies on the prediction about the health
condition of a system in order to optimize the maintenance
and inspection activities (Gouriveau, 2016). As maintenance
tasks are conducted when needed, not only a saving of time
and cost of services can be achieved, but unexpected down-
Con Tran Vu et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

time could be avoided (Mobley, 2002).

A common metric for the condition of a system is the Re-
maining Useful Lifetime (RUL), which shows the time re-
maining until system failure or defect (Vachtsevanos, 2006).
A variety of approaches could be used for the prediction of

the RUL. Model-based approaches rely on physical-mathematical

models or statistical models of the degradation phenomenon
(Walter & Flapper, 2017). Data-based approaches rely on
Conditional Monitoring, in which sensors and other data were
used as input into an algorithm that produced the output pre-
diction (Li et al., 2014).

Deep learning is a sub-field of machine learning, in which
deep neural networks are trained to learn from a large amount
of data the representations or patterns useful for tasks such as
classification or regression (LeCun, Bengio, & Hinton, 2015).
Deep Learning demonstrated superior performance in many
areas including image, video, and natural language process-
ing. Deep learning networks were also applied for the RUL
prediction with great success (Babu, Zhao, & Li, 2016).

In this paper, we presented a deep learning approach for RUL
prediction based on Convolutional Neural Network with two
architectural innovations. We proposed the novel Parameter-
ized Fully-Connected Layer, with which the deep learning
model can adapt the weights of neural networks to chang-
ing operational parameters. We also proposed the multi-head
predictor architecture, with each head adapting to a differ-
ent stage of the degradation process. We trained our model
with the data provided by the Prognostics and Health Man-
agement Society of Europe (PHME) Data Challenge 2020.
The model was evaluated according to the guideline provided
by the challenge and on the test set which was kindly pro-
vided by the challenge organizers. We saw a major improve-
ment in performance in comparison to the base model with-

Page 439

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN — 978-1-936263-34-9

out the innovations, and to the state-of-the-art models by the
challenge winners of 2020.

The paper was organized as follows. Section 2 introduces
the PHME dataset. Section 3 presents our approach for data
preparation, and more importantly, a detailed description of
the network architecture and the PFL. Section 4 recapitulates
the training and the experiments we did on the network, as
well as presents and discusses the results. Finally, section 5
concludes the paper and present future outlook.

2. DATA

For this research, we used the data set provided by the PHME
2020 Data Challenge. The data set was collected from an
experimental setup of a liquid filtration system. The filter gets
clogged over time by the suspension particle in the liquid.
This leads to a growing pressure drop across the filter.

A prognostic model should be constructed to predict the RUL
of the system. In the PHME 2020 Dataset, the failure condi-
tion was defined as the first point in time when the pressure
drop across the filter exceeds 20 psi.

2.1. Experiment Setup Description

The main components of the filtration system, in the order of
the flow of fluid, are:

* Source tank

* A peristaltic pump

* A pulsation damper

» Upstream pressure sensor

 Filter - the component whose defect should be predicted
» Downstream pressure sensor

* A flowmeter sensor

e Sink tank

The two pressure sensors and the flowmeter produced three
sensor data streams. Data were recorded at the rate of 10 Hz.

Throughout each run-to-failure experiment, one profile of sus-
pension (i.e. the particle in liquid) was used, which corre-
sponds to one operating condition of the filtration system.
The suspension profile defined the two operational parame-
ters:

» Solid Ratio (%): possible values are 0.4, 0.425, 0.45 and
0.475.

* Farticle Size (pum): this parameter were given as a range.
Possible values are 45-53, 53-63 and 63-75.

To simplify the calculation, Mean particle size was defined as
an operational parameter instead of a range. Possible values
for this parameter are 49, 58, and 69.

Table 1. Data samples in the Train and Validation Set.

Data Set Sample number Solid Ratio Particle Size
1,2,3,4 0.4 45-53
5,6,7,8 0.425 45-53
Train Set 9,10, 11,12 0.45 45-53
33,34, 35,36 0.4 63-75
37, 38, 39, 40 0.425 63-75
41, 42,43, 44 0.45 63-75
S 13, 14, 15, 16 0.475 45-53
Validation Set 457 46" 47,48 0475 63-75

Table 2. Data samples in the Test Set.

Data Set Sample number Solid Ratio Particle Size
17, 18, 19, 20 0.4 53-63

Test Set 21,22,23,24 0.425 53-63
25, 26, 27, 28 0.45 53-63
29, 30, 31, 32 0.475 53-63

2.2. Data Sets Description

The PHME 2020 Data Challenge provided the data set in mul-
tiple numbered .csv files. Each file contains the sensor data
of one experiment. The whole collected data was divided into
three sets. The Train Set was the first set to be published. The
Validation Set was published later. According to the proce-
dure of the Data Challenge, both sets can be used to train,
validate and refine the models. The models were tested on
a Test Set with different operating conditions than the other
two. The operating conditions of each file of the Train and
Validation Set were listed in Table 1 and of the Test Set in
Table 2.

2.3. Evaluation Metric

Four prognostics models should be trained using 100%, 75%,
50% and 25% of data from the combined Train and Validation
Set. Each model M, (i.e. model trained on 7% of data) was
then evaluated with using the Mean Absolute Error (MAE)
on:

* the whole Train and Validation Set (TV) yielding the val-
idation score

» the Test Set (TE) yielding the fest score

Those two scores (validation and test) will be used below (see
Tables 6 and 7) to evaluate and compare the performance of
different variations of neural network model architecture.

Moreover, those two scores of the four models (trained with
different percentage of total data - see Table 4) will be used to
calculate the final score. The final score is calculated as 1.5
times the total test score plus the total validation score.

Page 440

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN — 978-1-936263-34-9

> 1.5 x MAE(M;(TV)) + MAE(M;(TE))
1€100,75,50,25%

6]

As per the guidelines of Data Challenge 2020, this is used as
the basis for comparing the proposed model and other state-
of-the-art models in the literature (see Table 5).

3. APPROACH

The normal approach to construct a prediction system con-
sists of two steps. First, the data scientist examined the data
and used various methods to extract features such as mean,
slope, and so on. Then the features deemed relevant for the
prediction would be selected. A model was trained which
takes those features as input to produce RUL prediction.

With our approach, we argued that feature extraction could be
done automatically and the model could learn by itself which
features were the most relevant. This is possible in the Con-
volutional Neural Network (CNN) architecture (Szegedy et
al., 2014). In CNN, there are multiple convolution kernels.
They act like filters with learnable parameters. In tandem
with the kernels are the pooling layers, whose function is to
keep only the most salient parts from the filtered data. In a
normal CNN, there can be multiple kernels. The kernel count
is often referred to as “channels” and represents the number
of features extracted from the original data. When the model
is trained, the kernel will learn the best parameter to extract
the most relevant feature, all done automatically.

This approach brings several advantages. First, it may help
uncover features in the data which were otherwise unrecog-
nizable to human. Secondly, it also enables automatic ma-
chine learning in the sense that one type of model could be
used on a class of similar prediction problems.

3.1. Data Preparation

First, the data should be imported into the program and trans-
formed to the input form required by the model. The target
(i.e. true) RUL should also be assigned to each input sample.

It was observed that in the first few seconds after the system
started, the liquid flow had not yet been established (Lomowski
& Hummel, n.d.). The pressure sensors and the flow sen-
sor thus yielded non-sensible values. After that, the sensor
readings instantly returned to the normal operational level.
The data in these few seconds is not representative of the
health state of the system (filter) and was easily eliminated
by conventional methods. We calculated the sample-wise
first derivative. The first data point after the point of high-
est derivative was marked as the start of useful data. As per
the instruction by the Data Challenge, the first point when the
pressure difference reached 20psi was marked as the end of

useful data.

3.1.1. Labeling

As the data set only provides the sensor data and defines the
sensor value-based condition for a failure, each data point
must be labeled with the target (or true) RUL value. There are
multiple approaches for RUL labeling (Ince, Sirkeci, & Geng,
n.d.; Lomowski & Hummel, n.d.; Beirami et al., n.d.). We
used the Piece-wise Linear Fault (Pwl_Fault) as the RUL as-
signment strategy (Ince et al., n.d.). It could be observed that
the sensor values first changed slowly. After it approached
and passed a “turning point”, the sensor values decreased
sharply (bomowski & Hummel, n.d.). The Pwl_Fault strat-
egy mimics this behavior. The RUL after the turning point is
identical to the normal Linear RUL (i.e. the RUL decreases
at the same rate as time flow). Before the turning point, the
RUL decreases linearly from a known starting value. Further
discussion and visualization for this RUL assignment strategy
could be found in (Ince et al., n.d.).

The key part of this strategy is the identification of this turning
point in data. It was done by fitting a line between the 500th
and the 1000th sample of the pressure difference. The data
point at which the sensor value deviated by more than 1psi
from the fitted line was marked as the turning point.

3.1.2. De-noising

Data was de-noised to help the neural network model con-
verge easier and to eliminate high-frequency noise. We de-
noised the flow rate, upstream pressure, and downstream pres-
sure by convoluting them with a Hamming filter of window
size 30.

The denoising process was different for the training phase
and the testing phase. To yield the value for the current data
point, the zero-centered Hamming convolution window ex-
tends into future values. During training, we allowed this so
that the neural network model converges faster. For the vali-
dation and testing, we stopped the convolution when the edge
of the filter reached the current (present-time) data point. The
remaining data point was directly copied over from the orig-
inal data stream. In this way, we made sure that the current
prediction does not depend on future values.

3.1.3. Merging, Converting, Splitting

To create the input into the neural network model, we aggre-
gated 50 data points into one input sample. Thus each input
will be a tensor of the size 50x6 (current timestamp, up- and
downstream pressure, flowmeter, solid ratio and mean parti-
cle size). The true training output was taken from the RUL of
the last (i.e. present-time) data point.

The input samples were converted to PyTorch tensor. The
whole data was shuffled and split into 80% training and 20%

Page 441

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN — 978-1-936263-34-9

Input Convolution Pooling Layers Flatten, then PFL(s=SR) PFL(s=MPS) FL FL Gated
16 channels per kernel FL+ReLU +RelU +RelLU +ReLU +ReLU Decision
RUL1
Prediction Head 1 Output RUL
] 1 A
=] RUL2
//
| —
Max 1
/// poo || L L
1 ; Prediction Head 2
|1+ Avg. pool PFL(s=SR) PFL(s=MPS) eciction Hea
Max pool +RelLU + tanh
— Avg. pool —
L | size 5 .
| Current Time Stamp |:| Gate Value
size 5 Mean Particle Size
— (MPS)
size 3 Solid Ratio
(SR)
kernel size 3
Append values to the output
of ReLU

Figure 1. Architecture of the neural network model for RUL prediction. FLs are fully-connected layers. PFLs are parameterized
fully-connected layer with weights and bias adapted to the parameter s.

validation set.

3.2. Setup Of Neural Network Model

The model for neural network can be described as compos-
ing of three stages. The first stage consists of four arrays
of convolution kernels and pooling layers. Each array has
cnn_channels number of channels. Two kernel sizes of 3
and 5 were used. Two types of pooling layers were applied:
the MaxPool and AvgPool, which takes the max and aver-
age value from the output of the kernels.

The second stage consists of a series of FL and PFL and
serves to aggregate and preprocess the data. A flatten layer
then combines all the outputs of the pooling layers into one
vector. This vector, which can have thousands of values were
then condensed again using a fully-connected layer into a
much shorter vector of size D_aftercnn, which represents
all the information extracted from the sensor. The result is

then appended with information necessary for prediction, namely

the time stamp, the solid ratio, and the mean particle size.
This vector is the input into two consecutive PFL layers. Each
of them also has an additional input for the operational pa-
rameters, which adapts the weights and biases of the layer
according to the parameter value.

The third stage are two parallel neural networks, each com-
posed from hidden_count fully connected layers of size
D_hidden and drop-out layers with probability dropout.
Each of them gives an estimation of the RUL and thus can be
considered as a prediction head. A third sub-neural network

from PFLs acts as a gate, deciding which output value of the
heads to be “’selected” as the final result.

3.2.1. Parameterized Fully-connected Layer

A simple Fully-connected layer can be represented by the
equation (Paszke et al., 2019):

y=aW?l +b 2)

where x is the input activation, y is the output, W is a matrix
of weights and b is a vector of bias values. One can consider
that W and b together is ’the model” which will be “’trained”
to become corresponding to the physical system.

A special feature of the PHME 20 Dataset is the availability
of system-wide parameters such as solid ratio or mean parti-
cle size. They are constant in each run-to-failure experiment,
but changed between experiments. Not only are those param-
eters a part of the input data stream, but they also essentially
change the system, resulting in a completely different, but re-
lated system. If the neural network for prediction would like
to model the system exactly, it would have to have a new set
of weights for every different set of operational parameters.
This is intractable as the parameters are continuous valued,
which would require an infinite number of neural networks.

To deal with this problem, we “programmed” the network so
that the weights can changed itself adapting to the different
operational parameters. In effect, the resulting model is not
a neural network, but is a prototype for a family of neural

Page 442

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN — 978-1-936263-34-9

networks, whose weights are related by a rule. From the pro-
gramming point of view, the weight matrix and bias vector
should be a function of the operational parameters s.

=W(s)

3
b=10b(s)

In this data set, the operational parameters s are the solid ratio
and the mean particle size. The function form of W (s) and
b(s) can be any type (polynomial, exponential etc.) which is
suitable for the problem. In this paper, we model this depen-
dency using simple linear function:

W = chnter + SWslope

)
b = beenter + Sbslope
where Weenter, Waiopes beenter and bgjope are learnable pa-
rameters so that the model could create a brand new neural
networks depending on the value of the operational parame-
ter s.

Thus instead of having an unlimited number of weight sets for
all the operational parameters, what the model learned is actu-
ally a ”rule” for calculating the neural network weights. One
key consideration here is the complexity of the rule. A sim-
ple linear PFL with one operational parameter has double the
number of learnable parameters as compared to an FL. The
amount of learnable parameters increase by another-fold for
each additional operational parameter and for an additional
order of the polynomial function. A large size model will
negatively impact the training time and resources, and will
not likely achieve the best fit for the data.

In this data set, the two operational parameters are the solid
ratio and the mean particle size. In our model, we modeled
their influence by using two consecutive PFL, each with a
single operational parameter. This setup allowed us to train
the model in a reasonable amount of time and allow a good
fit to data, while still be able to model complex non-linear
interactions between sensor data and those parameters.

3.2.2. Multi Prediction Heads Architecture

Our neural network model with two prediction heads is a
modification of the Multi-task architecture (Caruana, 1997).
In this kind of network, each prediction head is specialized
in one task, such as predicting the failure probability in one
failure mode.

Upon examination of the data set, it can be observed that the
sensor readings have different behaviors during the two dif-
ferent stages of the lifetime. The beginning stage takes up
a major duration of the lifetime. In this stage, the sensor

data changes very slowly with small dynamics. In the sec-
ond stage, the sensor data changes very quickly leading to
final malfunction.

In our model, each of the two prediction heads is responsible
for the RUL prediction of each stage. In another word, one
head gives the RUL prediction for the slow-degradation stage
and the other predicts the RUL of the fast-degradation stage.
The final RUL is decided by a gate function.

RUL inar = o((gate — thresholdgqie) %

threshold,) x (RULy — RULy) + RU Lo ©)
where o(x) = # is the sigmoid function, RUL; and
RU L are the predictions of the two heads and thresholdgqz.
is a learnable parameter. threshold, is a hyper-parameter
that determines the width of the sigmoid shape. Most impor-
tantly, the gate value controls the gate function so that it picks
RU L4 or RU L, or some value in between as the final output
RUL. This gate value is produced by a separate sub-network
consisting of two PFL layers.

The sigmoid function is essentially a ’softened” step func-
tion. This function was used for two reasons. First, the func-
tion is smoothly differentiable, allowing back-propagation to
work. The model (including the gate function, the sub-network
calculating gate value, and both prediction heads) was trained
in one go and only the final output value was used for the loss
function. As a result the head-selecting mechanism must al-
low back-propagation backwards to the weights and the nor-
mal if..else for selecting between heads simply won’t
work. Secondly, in comparison to Heaviside step function as
an alternate, the sigmoid allows a smooth transition of RUL
prediction from the slow- to the fast-degradation stage. Oth-
erwise, the predicted RUL in this transition stage would be
very noisy.

4. EXPERIMENTS AND RESULTS

A number of experiments have been carried out to examine
the performance of the architecture. The first experiment fol-
lowed the PHME2020 Data Challenge procedure and yielded
the score for comparison with other state-of-the-art predic-
tion models. In the second experiment, variations of the stan-
dard architecture were evaluated and compared to examine
the relative performance gain resulting from each architec-
tural innovation. The third experiment examined closely the
performance gain due to the PFL, which gave an intuition in
understanding its advantage.

4.1. Model Training and Overall Benchmark

Four models were trained from 25%, 50%, 75%, and 100%
of the train and validation data set. The prototype for the

Page 443

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN — 978-1-936263-34-9

Table 3. Hyper-parameters used for the training of the neural
network model

Table 4. Results of the model when trained with different
percentage of train and validation set.

Hyper-parameter Value Description
learning rate 0.000375 Starting value for learning rate
scheduler
hidden_count 2 Number of hidden layers per
prediction head
D_hidden 20 Number of nodes per hidden
layer in each prediction head
dropout 0.002 Probability of dropout in each
Dropout layer
D_aftercnn 18 Width of the condensed vector
after the pooling layer
cnn_channels 16 Number of CNN channels per
CNN array
threshold, 10 Width of the sigmoid function

models was constructed using the PyTorch library in Python.
The data for training and validation was selected according
to heuristics so that every operating condition was equally
represented.

Two evaluation metrics were calculated for each model. The
“validation” score is the MAE when the models were tested
against 100% of the training and validation set. The “test”
score is the performance of the models with the test set. The
“validation” score was always better because the model has
”seen” at least a part of the data it was scored against. In
contrast, each model ”saw” the test set only once during the
final evaluation.

The models were trained with a custom training loop with
automatic learning rate scheduling for better convergence. In
each training epoch, the root-mean-square error was used for
training so that the model will converge faster. At the end
of each epoch, validation was done using MAE. Xavier ini-
tialization was used for the weights and the biases were set
to zero (Glorot & Bengio, 2010). For training, we used the
Adam optimizer (Kingma & Ba, 2014). The hyper-parameters
required for training of the model are listed in Table 3

The starting value in our RUL assignment scheme (PwL_Fault)
has a considerable impact on the prediction performance. A
higher RUL start value means the RUL curve approach that of
linearly decreasing RUL, and gives useful information earlier
to the user regarding the actual time point of defect. On the
other hand, a lower RUL value means that in the first stage,
RUL decreases slowly (slower than the flow of time), and
then in the second stage it decreases with the flow of time
approaching the actual defect. In the second case, the actual
time point of defect could still be identified albeit a little bit
later in the system lifetime. In our experiment, we trained
two sets of models corresponding to the starting RUL value

Models RUL Start = 150 RUL Start = 100

validation 1.660 1.169

25% test 3.925 2,408
50% validation 1.264 0.956
° test 3.708 2.394
validation 0.974 1.080

7% test 3717 2.131
validation 1.124 0.863

100%™ et 3.153 2.491
Final score 26.777 18.204

Table 5. Comprison with other state-of-the-art algorithms.
The scores are from the prize winners of the PHM Data Chal-
lenge 2020.

Algorithm Score
O s
Our Neural Network Model 5 777
o gy 9

(Bgﬁgﬁ Ie\ieg,or%.) 7
Gradient Boosting 86.74

(Ince et al., n.d.)

of 150 and 100 seconds.

The results and the final score were given in the table 4. The
performance of the model is better with a lower starting RUL
value. It is easily explainable given the discussion so far.
Lower starting RUL means the RUL value decreases slowly
in the beginning and then faster later. The sensor data also
show similar behavior: they changed relatively little in the
first stage and then evolved very quickly towards the defect
time. The similarity means the model can achieve better fit-
ting without going too much into the highly nonlinear map-
ping region, which improved both the validation and test score.

Regardless of the starting RUL value, the model architecture
was able to demonstrate stellar performance. Table 5 shows
the comparison with other approaches of the prize winners
of the Data Challenge. All the models here was trained with
the same training set and tested with the same test set pro-
vided by and following the rule of the PHM Data Challenge
2020. The other authors do the feature extraction and selec-
tion manually, before feeding those features into a prediction
model. With our approach, we simply feed the (denoised)
sensor data stream to the model and rely on CNN kernels to

Page 444

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN — 978-1-936263-34-9

Table 6. Results of Model Variations when trained with 100%
of Train and Validation Set

RUL Start = 150, 100% data With PFL Without PFL

. validation 1.124 2.352
2 prediction heads test 3.153 3184
. validation 0.925 2.471
I prediction head o 3.873 4021

RUL Start = 100, 100% data With PFL Without PFL

- validation 0.863 1.422
2 prediction heads test 2.491 2’847
- validation 0.959 1.603
I prediction head ¢ 3.009 3.444

learn to extract the relevant features. As would be shown in
the next subsection, even without PFL and two-head archi-
tecture, the results are already very good. Nevertheless, those
two innovations are the origin of the performance gain.

4.2. Evaluation of Variations of Model Architecture

To examine the specific performance gain contributed to the
architectural innovations, we trained additional models with
and without the architectural changes. For the first innova-
tion with PFL, we created models in which the PFLs were
replaced by the normal fully-connected layer. For the sec-
ond innovation, we create models with only one prediction
head instead of two and consequently eliminated the gate sub-
network. In combination, it gave rise to four architecture vari-
ations.

We trained the models exactly as earlier, with the same hyper-
parameters. And similar to the first experiment, we also con-
sidered the two cases of starting RUL values of 150 and 100
seconds. Regarding the amount of training data, we also ex-
perimented with the case when only 25% of the whole data
was provided, so that we can have an evaluation for the adapt-
ability of the models.

The results for the case of 100% data were given in table 6
and for the case of 25% of data in table 7. From the results,
three main aspects could be pointed out.

First, the variations with PFL always performed better than
their normal counterpart. We would examine this improve-
ment in closer detail in the next sub-section.

Secondly, the normal “’baseline” variation (i.e. without PFL,
one prediction head) performs on a similar level as the vari-
ations with innovations, albeit being the one with the worst
performance. This demonstrated the learning power of the
neural network and the ability of convolutional kernels to
learn to extract the necessary features without explicit human
intervention.

Table 7. Results of model variations when trained with 25%
of train and validation set. For the validation score, the model
was benchmarked against 100% of train+validation set.

RUL Start = 150, 25% data With PFL Without PFL

- validation 1.660 3.556
2 prediction heads test 3.925 4579
- validation 1.374 3.219
1 prediction head test 4124 5.062

RUL Start = 100, 25% data With PFL Without PFL

- _validation 1.169 1.976

2 prediction heads test 2.408 2718
. validation 1.211 2.133

1 prediction head test 3,320 3.879

Thirdly, for the case of RUL start value of 150 and with PFL,
the variation with one prediction head performed better in the
validation than the two-head counterpart. With the test set,
the variation with full architecture still performed better. One
possible explanation could be given to this unexpected result.
With a high RUL start value, the model must conduct map-
ping from slow-changing sensor data to fast-decreasing RUL
in the first stage during the system’s lifetime and from fast-
changing data to fast-decreasing RUL in the second stage.
This operation is highly non-linear. A model with two predic-
tion heads and a gate would strive towards linear mapping in
each stage using a separate prediction head and then blending
with sigmoid function. Its ability to fit non-linear function
could then be worse than that in which the non-linearity is
built into the weights of the one prediction head. However,
this non-linearity also has downsides. A highly non-linear
model tends to overfit and perform worse with unforeseen
data.

4.3. Specific Performance Improvement From Parame-
terized Fully-connected Layer

We conducted a close-up examination on the performance im-
provement provided by the PFL. Two model variations with
and without PFL were compared. Both of them have two pre-
diction heads, were trained with 100% of data whose RUL
label starting from the value of 150.

For the experiment, we used four sets of input data with vary-
ing solid ratios of 0.4, 0.425, 0.45, and 0.475. The other pa-
rameter, namely mean particle size, was kept the same in the
four sets. The error terms (not the absolute value) of every
single prediction were recorded. We then calculated the mean
and standard deviation of the error terms for each of the four
input sets.

Results for the non-PFL model were shown in Figure 2. Two
observations could be made here. First, there is a constant

Page 445

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN — 978-1-936263-34-9

3,392

= | 0,972

1 arnd 5t
f Predi
&

M

0.4 0425 0.45% 0475

Figure 2. Prediction error statistics in model without PFL.
Solid ratio is the changing operational parameter.

bias in the error term. The distribution of error is not zero-
centered for the solid ratios of 0.4 and 0.475. This means
the network was not able to fit at these parameter values (i.e.
underfit). Secondly, the means of the distribution varies in a
quasi-linear manner with changing solid ratio. This suggested
that if the model itself could adapt linearly to this parameter,
then the error terms would be “canceled”.

| -0,03 0,467 -0,262 0.661

e

Figure 3. Prediction error statistics in network model with
PFL with changing solid ratio.

Results for the model architecture with PFL were shown in
Figure 3. As the model create essentially a different neural
network for each solid ratio”, a better adaptation and thus
clear improvement could be seen. The error distribution is
now zero-centered. Furthermore, except for the solid ratio of
0.45, the standard deviation of error is also greatly reduced.
Without inherent error bias, the model managed to fit better
and thus the MAE was reduced.

It should be reminded that the model has never seen the data
with solid ratio of 0.45 but still perform very well. This il-
lustrates a huge advantage of PFL regarding unseen test data.
Due to the fact that not the exact weights but the rule for cal-

culating weights are learn, the model could calculate a whole
new network, adapting to a completely new set of operating
conditions. In another words, the trained model could in ef-
fect “extrapolate” the neural network.

5. CONCLUSION AND OUTLOOK

We presented a deep-learning first approach for the RUL pre-
diction of the filtration system. Instead of manual feature
engineering, automatic feature extraction was deployed us-
ing the convolutional neural network. The resulting ’base-
line” deep network already performed very well. Additional
performance gain was possible with two architectural inno-
vations. The Parameterized Fully-connected Layer gave the
network the possibility to adapt itself to the operational pa-
rameter and resulting in a performance boost in both vali-
dation and test. The architecture with two prediction heads
and a blending gate helped the model to adapt to different
stages of system lifetime and improved model linearity. The
final model with all improvements shown stellar performance
in validation and testing in comparison with state-of-the-art
models.

In order to achieve automatic machine learning, all the stages
of the model building pipeline should be automated. Our ap-
proach has shown that the feature extraction stage could be re-
placed by automatic feature learning from the CNN. Another
approach for this could be the use of unsupervised learning.
The representations learned by unsupervised techniques (au-
toencoder, deep belief network etc.) could be used as the in-
put into a supervised network and trained to output the re-
quired e.g. RUL value. However, work still has to be done
to automate the data preparation and labeling, which still de-
pends heavily on human intervention. Some solutions are al-
ready available for text, image, and tabular data which could
be used as starting point for stream type data (Howard & Gug-
ger, 2020). Only then can an automatic end-to-end prediction
pipeline be realizable.

REFERENCES

Babu, G. S., Zhao, P., & Li, X.-L. (2016). Deep convolutional
neural network based regression approach for estima-
tion of remaining useful life. In Database systems for
advanced applications (pp. 214-228). Springer Inter-
national Publishing. doi: 10.1007/978-3-319-32025-
0.14

Beirami, H., Calza, D., Cimatti, A., Islam, M., Roveri,
M., & Svaizer, P. (n.d.). A data-driven approach
for rul prediction of an experimental filtration sys-
tem. PHM Society European Conference, 5(1). doi:
10.36001/phme.2020.v5i1.1318

Caruana, R. (1997). Multi-task learning. Machine Learning,
28(1), 41-75. doi: 10.1023/a:1007379606734

Glorot, X., & Bengio, Y. (2010). Understanding the diffi-

Page 446

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN — 978-1-936263-34-9

culty of training deep feedforward neural networks. In
Y. W. Teh & D. M. Titterington (Eds.), Aistats (Vol. 9,
p. 249-256). IMLR.org.

Gouriveau, R. (2016). From prognostics and health systems
management to predictive maintenance 1 : monitoring
and prognostics. Hoboken, NJ: Wiley.

Howard, J., & Gugger, S. (2020, February). Fastai: A layered
API for deep learning. Information, 11(2), 108. doi:
10.3390/info11020108

Ince, K., Sirkeci, E., & Geng, Y. (n.d.). Remaining useful life
prediction for experimental filtration system: A data
challenge. PHM Society European Conference, 5(1).
doi: 10.36001/phme.2020.v5i1.1317

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochas-
tic optimization.

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2017, May).
ImageNet classification with deep convolutional neural
networks. Communications of the ACM, 60(6), 84-90.
doi: 10.1145/3065386

LeCun, Y., Bengio, Y., & Hinton, G. (2015, May).
Deep learning. Nature, 521(7553), 436-444. doi:
10.1038/nature 14539

Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang,
D., & Hampapur, A. (2014, August). Improving
rail network velocity: A machine learning approach
to predictive maintenance. Transportation Research

Part C: Emerging Technologies, 45, 17-26. doi:
10.1016/j.trc.2014.04.013

Mobley, R. (2002). An introduction to predictive
maintenance. Amsterdam New York: Butterworth-
Heinemann.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., ... Chintala, S. (2019). Pytorch: An im-
perative style, high-performance deep learning library.
In Advances in neural information processing systems
32 (pp. 8024-8035). Curran Associates, Inc.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P, Reed, S.,
Anguelov, D., ... Rabinovich, A. (2014). Going
deeper with convolutions.

Vachtsevanos, G. (2006). Intelligent fault diagnosis and prog-
nosis for engineering systems. Hoboken, N.J: Wiley.

Walter, G., & Flapper, S. D. (2017, December).
Condition-based maintenance for complex systems
based on current component status and bayesian up-
dating of component reliability. Reliability En-
gineering & System Safety, 168, 227-239. doi:
10.1016/j.ress.2017.06.015

Lomowski, R., & Hummel, S. (n.d.). A method to estimate
the remaining useful life of a filter using a hybrid ap-
proach based on kernel regression and simple statis-
tics. PHM Society European Conference, 5(1). doi:
10.36001/phme.2020.v5i1.1316

Page 447

