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ABSTRACT 

Acoustic emission (AE) which describes the transient stress 

waves generated by the rapid release of energy from solid 

sources has been widely used in nondestructive testing 

(NDT) of materials and structures especially in health 

monitoring. As a class of deep neural networks, 

convolutional neural network (CNN) has applications in 

many fields. Several investigations have been conducted on 

the application of CNN in feature learning and fault 

diagnosis and prognosis. Metalworking fluids (MWF) play a 
significant role in manufacturing processes. By reducing 

friction between tool and workpiece, the heat generation in 

metalworking process is affected. Thread forming is a 

transformative manufacturing process for generating threads 

in ductile materials. As the thread geometry is manufactured 

by cold forming of the material, lubricating properties of the 

MWF strongly effect tool wear and workpiece quality. Up 

to now, there are only a few papers on MWF classification 

using the process variables like torque or released AE. In 

this contribution, a novel approach combining AE signals 

and CNN is raised for MWF classification. A tribometer is 
used to carry out thread forming trials under well-controlled 

experimental conditions. AE measurements are conducted in 

context of thread forming. The AE signals are divided into 

suitable samples and CNN is applied as classifier. The 

results of MWF classification show that the new approach 

could distinguish different types of MWF. 

1. INTRODUCTION 

Metalworking fluids (MWF) are used in many 

manufacturing processes such as milling, drilling, or 

threading to lubricate the contact zone between tool and 

work piece. Five different vegetable oils were applied for 45 

steel milling and the results shown that cottonseed and palm 

oils perform better than castor, soybean, and peanut oils by 

measuring temperature (Dong, Li, Zhou, Bai, Gao, Duan, 
Li, Lv, & Zhang, 2021). Modified vegetable oils were 

employed for turning and drilling of AA 6061 aluminum 

and AISI 304L stainless steel and their machinability and 

rheological properties were investigated (Jeevan, Jayaram, 

Afzal, Ashrith, Soudaga, & Mujtaba, 2021). Yeast-based 

MWF was used for milling process of Ti6Al4V titanium 

alloy and the results showed that it performed similar or 

better compared to a mineral oil-based reference MWF 

(Damm, Bezuidenhout, Uheida, Dicks, Hadasha, & Hassen, 

2021). In the process of tapping, the surfactant structure 

effect on film forming ability of emulsion was studied 

(Benedicto, Rubio, Carou, & Santacruz, 2020). A novel 
developed biodegradable MWF was designed and its 

performance was measured during turning of AISI 420 

material (Nune & Chaganti, 2020). In thread forming 

processes when threads are formed by taps into pilot holes, 

MWF prevent the tool from welding with the work piece 

material by reducing friction and temperature at the forming 

lobes. Types and different characteristics of MWF affect 

thread quality (Fromentin, Bierla, Minfray, & Poulachon, 

2020) and tool wear (Ghuge & Mahalle, 2016). Acoustic 

emission (AE) technique has already been used as a tool for 

condition monitoring during machining (Jemielniak & 
Arrazola, 2008; Bhuiyan, Choudhury, &. Nukman, 2012; 

Kosaraju, Anne, & Popuri, 2013; Srinivasan, Bhinge, & 

Dornfeld, 2016). Meanwhile, AE signals can also be 

applied for distinction of MWF during threading (Wirtz, 

Demmering, & Söffker, 2017) besides the well-known 

tapping torque test according to ASTM D5619 and 

advanced approaches (Demmerling & Söffker, 2020). K-

means clustering was applied to classify the AE energy in 

different frequency bands which was a feature to distinguish 

different MWF qualities (Wirtz et al. 2017). Convolutional 

neural network (CNN) is a neural network with a 

convolution operation instead of matrix multiplication in at 
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least one of the layers. Compare with other neural networks, 

the innovation of convolutional neural network is based on 

the ability to automatically learn a large number of filters in 

parallel to the trained model under the constraints of specific 

predictive modeling problem, such as image classification 
(Brownlee, 2018.). Convolutional neural network is well 

known and are applied on many fields, however, there are 

only a few references for distinguish MWF applying CNN 

as classifier.  

In this contribution, the second author serves as the domain 

expert from the MWF chemistry side, the other two authors 

apply and develop machine learning approaches. According 

to the authors knowledge this contribution is the first work 

combining the MWF classification task using AE signal and 

machine learning. Although many machine learning and 

deep learning approaches could be applied for MWF 

classification, in this contribution CNN is chosen to apply 
on AE signals. In the proposed approach, the complexity of 

the used example realizes a challenging diagnostic task 

within the prognostics and health management (PHM) 

framework. The hope is in the long run to distinguish aging 

processes within the metalworking fluid. 

The structure of this paper is organized as follows. A brief 

introduction of CNN is given in section 2. In section 3, the 

experimental process is presented. Data processing, CNN 

architecture, and related hyperparameters tuning process 

applied for MWF classification as well as results are shown 

in section 4. In section 5, the findings are summarized and a 

conclusion is given. 

2. CONVOLUTIONAL NEURAL NETWORK 

In the early 1960s, David Hubel and Torsten Wiesel 

improved the concept of receptive fields. In 1975 and 1980, 

Kunihiko Fukushima furthered the theory basis by raising 

the concept of ‘cognitron’ and ‘neocognitron’ which are the 

biological theory of CNN. In 1986, Rumelhart et al. raised 

back propagation (BP). Yann Lecun et al. applied the BP 

algorithm to train neural network and proposed LeNet-5 

(Lecun, Bottou, Bengio & Haffner, 1998) which is the 

prototype of contemporary convolutional neural network. In 

2012, Alex raised the new deep structure and dropout 

method in CNN (Krizhevsky, Sutskever & Hinton, 2012) by 
which they raised the test accuracy to 84.6 %, which 

aroused people’s interest and started a new epoch of CNN. 

From 2012, many CNN models were developed, such as 

LeNet, AlexNet, VGG, GoogLeNet, ResNet which are 

widely applied in many fields. 

Convolutional neural network is a type of deep learning 

model for processing data that has a grid pattern and it is 

designed to automatically and adaptively learn spatial 

hierarchies for features, from low-to high-level patterns. It is 

suitable for inputs that are locally or temporally correlated 

such as time-series (1D structure), images (2D structure), or 
videos (3D structure) (Schielke, 2018). In the proposed 

approach, the time domain AE signals are applied as CNN 

input. 

The classic building blocks for CNN are: convolution, 

pooling, and fully connected (FC) layers. The convolution 

and pooling layers perform feature extraction, whereas the 
fully connected layer maps the extracted features into final 

output (Yamashita, Nishio, Do & Togashi, 2018).   

The fundamental block for CNN is convolution layer which 

is composed of a stack of mathematical operation called 

convolution. In convolution operation, the element-wise 

product between each element of the kernel and the input 

tensor is calculated and summed to obtain feature map. In 

convolution layer, the convolution operation is repeated, 

applying multiple kernels to form an arbitrary numbers of 

feature maps which represent different characteristics of the 

input tensors (Brownlee, 2019). 

Usually, the output of the convolution layer is then passed 
through a nonlinear activation function which is used to 

increase the expression ability of neural network model. 

There are several common nonlinear activation functions 

like sigmoid, tanh, rectified linear unit (ReLU) etc.  

After multiple stages of convolutional and nonlinear layers 

to reduce the computational requirements progressively 

through the network as well as minimizing the likelihood of 

overfitting, pooling layers are used. There are 4 types of 

pooling: max pooling, average pooling, global max pooling, 

and global average pooling. 

The output feature maps of the final convolution or pooling 
layer are transformed into a one-dimensional (1D) array of 

numbers (or vector) and connected to one or more fully 

connected layers, in which every input is connected to every 

output by a learnable weight. The features generated by the 

final convolutional and pooling layer correspond to a 

portion of the input image as its receptive field does not 

cover the entire spatial dimension of the image, thus, fully 

connected layer is mandatory in CNN (Basha, Pulabaigari, 

& Mukherje, 2020). 

Besides the classic building blocks in CNN, according to the 

task, another activation function would be applied to the last 

FC layer. For classification task, softmax would be used to 

normalize output values to target class probabilities. 

3. DESIGN OF EXPERIMENT 

Thread forming trials are carried out on a tribometer 

Tauro®120 (Taurox e. K., Germany, Figure). The test rig 

for threading consists of a test platform made of a carbon 

steel (1.1191) with drilled pilot holes of 5.6H7 mm, a 

titanium nitride coated tapping tool for thread forming 

(Emuge M6-6HX InnoForm1-Z HSSE-TiN-T1) and 

different test fluids. The active tap length is 8 mm with an 

entry taper of approximately 2 to 3 mm. In the present tests, 
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no rigid tapping is used. The spindle is fixed at a weight 

compensated suspension. During threading, the spindle is 

turned into the nut blank through the thread flanks of the 

tap. The axial force only works at the entry taper until the 

first thread flanks have caught material.  

 
Figure 1. Tribometer Tauro®120 and the experimental setup 

Before testing, platform and tap are cleaned in an ultrasonic 

bath for 15 min. using a cleaning solvent (1:1 mixture of 

naphta and isopropyl alcohol) and dried in a drying oven at 

50 °C for 15 min. During testing, the tap is cleaned in a 

cleaning station with brushes and air blow system to remove 

chips and fluid residues after every thread. Between 

different fluids the tap is manually cleaned with the cleaning 

solvent.  

The test rig for measuring AE during threading consists of a 

custom FPGA-based AE measurement system. A disc-

shaped broadband piezoelectric transducer (diameter 10 

mm, thickness 0.55 mm) with corresponding resonant 

frequency of 3.6 MHz is mounted on the workpiece using 

cyanoacrylic glue. The AE signals are continuously 

acquired during the forming of every thread at a sampling 

rate of 4 MHz. In total 112 threads of 28 mm depth are 
formed at a speed of 20 m/min using the reference fluid 

(ReF) and four different test fluids (Emulsion 1 and 2, Oil 1 

and 2). Besides the run-in of the tap at the beginning of the 

test procedure (32 threads with reference fluid), eight 

threads are tapped with each test fluid. The pilot holes are 

filled with fluid before starting the automatic test procedure 

of the tribometer. Between the test fluids, the tap is cleaned 

with solvent to remove the substances adhering on the 

forming lobes of the tap. The test order of the fluids is 

shown in Table 1. 

 

 

 

Table 1. Test order of MWF 

Series MWF Number of threads 

m1 Reference (run-in) 1-32 

m2 Emulsion 1 33-40 

m3 Emulsion 2 41-48 

m4 Oil 1 49-56 

m5 Oil 2 57-64 

m6 Reference 65-72 

m7 Oil 2 73-80 

m8 Oil 1 81-88 

m9 Emulsion 2 89-96 

m10 Emulsion 1 97-104 

m11 Reference 105-112 

The fluids differ in the concentration of phosphorus listed in 

Table 2. 

Table 2. Phosphorus contents in test MWF 

MWF Emulsion 1 Emulsion 2 Oil 1 Oil 2 

w-% 

[1e-3] 

316 5 8 160 

   

4. CNN APPLIED ON MWF CLASSIFICATION 

In the proposed approach, AE signals acquired during 

threading are classified by CNN to check the 

distinguishability of the test fluids. The flowchart of 

proposed approach is shown in Figure 2. 

 

Figure 2. Flowchart of proposed approach 

4.1. AE Signal Processing 

In calculation process, firstly all thread data of one series are 

applied as CNN input. To reduce the impact of hole location 

and calculation time, the middle threading AE signals of 

each series are used. For example, series m2 contains eight 

threads, namely, the position of the threads is from position 

33 to 40. For data processing, only the measurements from 
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position 35 to 38 are taken into account. In order to balance 

the samples’ number in every class, different numbers of 

threads are applied in m1. All these threads are chosen from 

the middle of series m1. 

The AE waveforms continuously are acquired at a sampling 
rate of 4 MHz. The forming of a single thread lasts about 5 

seconds and contains about 20 M data. The original signal 

of thread 35 is shown in Figure 3-a. The raw data of every 

thread is divided into different samples. To maintain the key 

points of each sample, data overlaps with neighboring 

samples. In this experiment, different data (3400, 6800, 

13600, and 27200 data for each sample) are used as CNN 

input. After comparing the results, 13600 as best 

data/sample combination is chosen as the CNN input. The 

overlap of adjacent samples is 0.5. One sample and AE 

event in thread 35 are shown in Figure 3-b and Figure 3-c 

separately. 

 

Figure 3-a. Original AE signal of thread no. 35 

 

Figure 3-b. One sample of thread no. 35 

 

Figure 3-c. One AE event in thread no. 35 

4.2. CNN Hyperparameters Tuning 

Hyperparameters which are set before training are variables 
determining the neural network structure and have to be 

defined by training. If hyperparameters are well tuned, the 

model could minimize a predefined loss function and give 

better results.  

For the proposed CNN model, a systematic approach for 

hyperparameter tuning is cross-validation between different 

sets of hyperparameters (Montavon, Orr, & Mueller, 2012). 

In detail, several CNNs are trained differing only in the 

value of one hyperparameter. After comparing the 
performance of these CNNs, the best setting for this 

hyperparameter can be chosen. This optimized value is used 

for every future CNN. Afterwards, another hyperparameter 

is examined. In this way, the set of hyperparameters are 

tuned and optimized step by step. Since there are many 

tunable hyperparameters, only those are examined that yield 

the best performance improvement. 

According to the contribution of Montavon et al. (2012), 

L2-normazation and dropout layer are added in the proposed 

CNN model and the detailed hyperparameters value of 

proposed CNN model are shown in Table 3. 

Table 3. Hyperparameters for proposed CNN model 

Hyperparameters Value  

Initial learning rate 0.01 

Batch size 1380 

Maximal number of epochs 40 

L2-regularization factor 0.001 

Drop probability 0.5 

Receptive input size conv1 1 x 109 x 1 

conv2 1 x 67 x 1 

conv3 1 x 29 x 1 

conv4 1 x 15 x 1 

 

For the activation function layer, ReLU function is chosen 

as the non-linear activation function. For the pooling layer, 

max pooling function is selected. A deep neural network is 

constructed in Matlab by concatenating its layers into a 

‘layer’-object which describes the network’s architecture. In 
Figure 4, the ‘layer’-graph of the proposed approach is 

shown. It can be described as a 4-layer CNN with one FC 

layer as it is composed of 4 convolutional layers and one FC 

layer. Additionally, batch-normalization layers, ReLU non-

linearities, max-pooling layers, and a dropout layer are used. 
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Figure 4. Architecture overview of CNN 

4.3. Classification and Results  

In the experiment, five different types of MWF are applied 

for thread forming: reference, emulsion 1, emulsion 2, oil 1, 

oil 2. For reference, AE signals’ data are taken from 3 

series: m1, m6, and m11. For the other 4 MWF, AE signals’ 

data come from 2 series as shown in Table 1.  

The MWF classification process is divided into 3 steps. For 

the first step: samples are divided into reference, emulsion-

based (emulsion 1 and 2), oil-based (oil 1 and 2) roughly. 

For the second step: divide emulsion-based samples into 
two classes: emulsion 1 and emulsion 2. For the third step: 

divide oil-based samples into two classes: oil 1 and oil 2. 

For each step, the proportion between training data and test 

data is the same. In order to verify the robustness of the 

model, the same data in each step is calculated 5 times.  

Step 1: These five kinds of MWF are divided into 3 classes: 

reference, emulsion-based, and oil-based. For reference, 

data from m1 is employed. For the emulsion-based dataset, 

AE signal data in m2, m3, m9, and m10 is categorized into 

one class. For oil-based MWFs, the AE data in m4, m5, m7, 

and m8 is categorized in one class.  

Step 2: To distinguish emulsion 1 (E1) and emulsion 2 (E2) 

in detail, samples acquired from m2 and m10 is mixed as 

one class. Samples gotten from m3 and m9 is put into the 

second class.  

Step 3: To distinguish oil 1 (O1) and oil 2 (O2), samples 

obtained from m4 and m8 is mixed as class 1, samples 

gotten from m5 and m7 is blended as class 2.  

Table 4: Results of MWF classification process 

Step  MWF 

type 

Test accuracy (%) 

1 2 3 4 5 

1 Ref./Oil/ 

Emulsion 

70.17 71.20 71.84 70.18 72.95 

2 E1/ E2 80.71 78.47 79.09 81.00 79.87 

3 O1/ O2 70.21 73.87 61.71 70.48 67.54 

 

From Table 4, the following conclusion could be drawn: 

1. Comparing the results of 5 times, the test accuracy 

of step 1 and step 2 are similar to each other. 

However, the results in step 3 are more different 

for each time, especially, in third time the test 

accuracy is much low than other times. 

2. The average test accuracy for step 1, step 2, and 

step 3 are 71.27 %, 79.83 % and 68.76 %. This 

means, the result in step 2 is better than in other 

steps. Test accuracy in step 3 is the worst. 

3. From the results of step 2 and step 3, the following 

assumption can be drawn: compared with oil-based 

MWF, emulsion-based MWF are easier to 

distinguish by the proposed CNN model. 

The following additional observation can be stated: 

1. The length of the data sample affects the results. 

2. Hyperparameters tuning is required to improve 

results. 

3. Additional to the dependencies to be classified, it 

could be overserved that also the thread’s position 

effect the results. 

5. CONCLUSION 

In this contribution, an experiment is designed for acquiring 

the AE signals in the process of thread forming in which 

five different types of MWFs are applied in the blank thread 

holes. AE signals in time domain are divided into different 

samples and the overlap of adjacent samples are applied to 

maintain the key points of each sample. These samples’ 
features are extracted and classified by CNN in which the 

hyperparameters are tuned by cross-validation. The 

proposed approach in this contribution is a combination of 

AE signals and CNN for MWF classification.  

The process of MWF classification is separated from rough 

to detailed. For MWF rough classification, the test accuracy 

is medium. However, the proposed approach performs well 

in emulsion-based MWF distinction, but it is not so good for 

the distinction of oil-based MWF. 
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