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ABSTRACT

Currently, large amounts of smart meter data are mainly used
for billing purposes only, although they could also be valu-
able for decision support and business process optimization
in customer service and maintenance. Therefore, this paper
presents several relevant use cases for prognostics and health
management based on a case study of a real meter data set of
a medium-sized geothermal district heating network in south-
ern Germany. First, we show the implementation of a ma-
chine learning algorithm for automatic fault detection based
on cluster analysis and regression. Thereby, the district heat-
ing substation’s control behaviour is learned and deviations
due to a malfunction or failure can be detected before the
customer notices them. In addition, we discuss the useful-
ness of two key performance indicators (return temperature
and supply-return temperature difference) that can be com-
puted relatively simple but resulting in very effective insights
for condition-based maintenance and identifying substations
with highly negative effects on the overall network. Our find-
ings’ correctness and usefulness were verified by the corre-
sponding domain experts of the geothermal district heating
company. Finally, we provide an outlook on smart meter
data’s role for the further development of intelligent district
heating networks and the realization of highly complex ap-
proaches such as smart grids. To foster future research, we
provide exemplary our RapidMiner processes.

1. INTRODUCTION

The anthropogenic climate change is the most pressing chal-
lenge of our time and is now showing itself in increasingly
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dramatic effects e.g. rising seas, melting ice or extreme
weather events. This development is caused by the steady in-
crease of greenhouse gas emissions since the beginning of in-
dustrialisation. According to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change (IPCC), in-
direct CO2 emissions for the generation of electricity and heat
for building use accounts for 12% of global greenhouse gas
emissions (Pachauri et al., 2014). Against this background,
it is necessary to convert the heat supply to sustainable and
resource-saving forms of energy.

The supply of heat to individual buildings by a central power
plant is generally referred as district heating and contributes
to the heat supply in almost all regions of the world. In many
countries of Central, Northern and Eastern Europe, it is one of
the most important types of heating, for example in Scandi-
navia, where its share is partly over 90% (Sayegh et al., 2017).
In particular, by using non-fossil energy sources, for example
geothermal energy (Rybach, 2003) or waste heat from indus-
trial processes, district heating systems can make a significant
contribution to reduce greenhouse gas emissions.

To further increase the acceptance and distribution of dis-
trict heating networks (DHNs), they need to be operated effi-
ciently and economically. Therefore (Lund et al., 2014) have
defined the concept of the 4th Generation District Heating
(4GDH). 4GDH networks rely as much as possible on sus-
tainable energy generation and highly efficient heat distribu-
tion. To achieve this, the main challenge is to reduce the net-
work’s temperature level drastically compared to today’s sys-
tems. Especially, district heating substations (DHS), where
heat is transferred from the DHN to the building’s own heat-
ing system, can make a substantial contribution to this. How-
ever, faulty components can cause significant performance
drops or the breakdown of DHS and must therefore be iden-
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tified as soon as possible.

Since recently all DHSs will be equipped with smart meters
that send data to the network operator for billing purposes,
this paper examines whether and how these data can also be
used for condition monitoring and network optimization. Our
main contribution is the implementation of a fault detection
approach that extends existing solutions with automated de-
tection, as well as the application of two key performance in-
dicators to determine inefficient and potentially faulty DHSs.
Moreover, our findings are evaluated by means of case stud-
ies and the results are verified by several technical experts of
the network operator. Furthermore, our implementation used
for analysis is publicly available in the form of RapidMiner
workflows at: https://github.com/FeTheu/RM-fault-detection
-in-dhs.

The paper is structured as follows: we first describe the es-
sential basics of district heating substations and smart meters
in Sect. 2 and summarise selected related work. The focus of
this paper in Sect. 3 is to demonstrate different data-driven
use cases for fault detection and condition management using
a real smart meter dataset of a medium-sized district heating
network in Southern Germany.

2. FOUNDATIONS AND RELATED WORK

2.1. District Heating Substation

Within the district heating substation (DHS), heat is trans-
ferred from the district heating network (DHN) to the heating
systems on the building side. DHSs consist of a number of
different components: The heart of any DHS is the district
heating controller, which monitors and controls connected
sensors and actuators, e.g. the control valve that regulates
the flow and thus indirectly the heat consumption. The heat
exchanger is used to transfer heat from the district heating
pipe to the customer’s internal network. If the heating system
consists of several heating circuits, a heat exchanger must be
installed in each of them. To protect the heat exchangers and
valves, strainers filter the water on both sides (Skagestad &
Mildenstein, 2002). The heat meter records the consumed
heat energy Wth for billing purposes with the customer as
follows:

Wth = ρ · V · c ·∆T, (1)

where V is the measured flow, ∆T = Tps − Tpr is the tem-
perature difference between supply Tps and return flow Tpr,
p is the density and c the heat capacity of the network’s liquid
(typically water).

It is important to monitor the current condition of a DHS since
malfunctioning components can lead to incorrect billing and
waste of energy. (Sandin, Gustafsson, Delsing, & Eklund,
2012) identified valves, flow meters and temperature sensors
as sources for potential failures. Moreover, faults are com-
monly caused by humans through incorrect installations, con-

figurations (of meters and control system) or during mainte-
nance as well as intentionally by customers. Furthermore,
degradation can lead to leakage in heat exchangers and pipes.

2.2. Smart Meter

Smart meters (SMs) record the consumption of electricity,
gas, water or heat and are integrated through certified gate-
ways into a network to share data in both directions. In addi-
tion to customer billing, smart meter data offers further areas
of application such as load analysis, load forecasting, and
(peak) load management. The ability to enable communi-
cation between energy suppliers and customers make SMs a
central component in smart grids and enable novel innovative
services such as variable tariffs or the optimisation of the en-
tire DHN, for example by coordinating decentralised energy
storage (Wang, Chen, Hong, & Kang, 2018). Moreover, with
the amendment of the European Energy Directive in 2018, the
European Union decided on a concrete timeline for the roll-
out of the SM infrastructure in Europe. Since 2020, all newly
installed district heating meters must be remotely readable
and all existing meters must be retrofitted by 2027 (European
Union, 2018).

The role of SMs is seen as a cornerstone of future smart grids
and provide essential information about energy consumption
for smart home applications (Jahn et al., 2010). Despite the
different settings, the advantages and disadvantages of smart
meters in the application fields of electricity, gas or heat are
quite similar. Some of the key benefits of smart meters from
the perspective of the customer and district heating provider
are summarised in Table 1, based on (Sun et al., 2015) and
(Zheng, Gao, & Lin, 2013).

Table 1. Benefits of smart meter

2.3. Gathered Data

The DHN considered in this study was already equipped with
modern SMs and a central meterdata management (MDM)
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system during its development phase. All DHSs are equipped
with a Modbus-capable controller that collects the data from
the controller itself and from the heat meter. These data are
retrieved at 3-minute intervals via the gateways.

The analysed data set is a subset from the MDM of a medium-
sized southern German geothermal DHN with over 2000 con-
nected office and household buildings. It includes data from
896 DHSs over a heating period (04.11.2019 to 31.03.2020).
For each connected heating circuit (e.g. one circuit for heat-
ing and one for domestic hot water), different actuator, pa-
rameter, and sensor attributes are written in the MDM. Typ-
ical actuator values are the signal for the control valve po-
sition or the operating mode of the circulation pump (ac-
tive/inactive), which are steered by the controller. Tab. 2
shows the sensor values used in the analyses during Sect. 3
and their notation.

Table 2. Selection of available sensor values

Since the DHN’s data acquisition was just launched, the re-
corded data still revealed some issues. The most common
problem, which can be observed in different intensity in al-
most all DHSs, is an interrupted data transmission to the MDM.
For example, in 137 out of 896 DHS, less than 90% of data
is transmitted to the MDM via the gateway. This results in
time series with missing and unequally sampled observations,
which needs to be considered when choosing the algorithms
for fault detection and is discussed in Sect. 3.1.

2.4. Related Work

Although the data of the MDM was designed especially for
monitoring and billing energy consumption, related work e.g.,
(Seem, 2005), (Sandin, Gustafsson, & Delsing, 2013) have
shown its suitability for fault detection and diagnosis. A proven
approach to fault detection in heating, ventilation and air-
conditioning (HVAC) is the detection of deviations from the
regular intraday and intraweek load cycles. (Seem, 2005)
and (Li, Bowers, & Schnier, 2009) therefore develop clus-
ter analyses to classify the households with regard to their
intraday and intraweek cycles. (Kiluk, 2012) further uses
data on the size of the heated building area for a cluster anal-
ysis in combination with a piecewise regression. Through
k-means clustering and logistic regression, (Gianniou, Liu,
Heller, Nielsen, & Rode, 2018) segment meter data from single-
family households into different consumption groups. (Xue

et al., 2017) combine clustering with association analysis and
identify faulty DHSs and those with significant optimisation
potential. Unlike the previous studies, (Månsson, Kallion-
iemi, Sernhed, & Thern, 2018) use the volume flow as the
target variable in conjunction with a gradient boosting regres-
sor. The analysis pipeline is additionally optimised by a tree-
based pipeline optimisation tool (TPOT). This automatically
generates different input constellations and evaluates which
one provides the best results. To identify faulty DHSs, (Gadd
& Werner, 2014) use the temperature difference between flow
and return depending on the outdoor temperature. However,
this approach can only be used at lower outdoor temperatures
up to approx. 10 °C, as above that the domestic hot water
heating becomes a dominant factor. In summary, the most
approaches apply cluster analysis combined with regression
analysis to learn the normal behaviour and use deviants to
detect faults. However, to the best of the authors’ knowl-
edge, no regression analysis approach has yet been presented
in previous work on how these deviants can be detected auto-
matically.

3. CASE STUDIES ON FAULT DETECTION AND CONDI-
TION MONITORING

The aim of our study is to demonstrate possible applications
of smart meter data with regard to advanced maintenance in
the field of district heating. The methods presented here can
be implemented using only standard energy metering data and
do not require any additional information. We first describe a
machine learning (ML) approach to detect failures and mal-
functions of the components of a DHS mentioned in subsec-
tion 2.1 and then discuss possibilities of condition monitor-
ing.

3.1. Fault Detection

The heat demand of a DHS (measured via P ) depends on sev-
eral factors from which the outside temperature Tout as well
as the individual user behaviour are the most dominant ones.
Since user behaviour cannot be measured directly, the heat
demand is subject to strong fluctuations in the course of the
day and week. For this reason, the goal of the following ML
approach is to learn a regular load profile that represents the
normal behaviour and then to detect automatically deviations
due to a malfunction or failure.

3.1.1. Approach

As shown in Fig. 1, the machine learning pipeline splits into
four separate steps.

1) Preprocessing and transformation
The goal of preprocessing and transformation is to generate
a suitable data set for the further analysis steps. Initially, an
outlier detection using k-nearest neighbour (k-NN) classifi-
cation is applied to the outdoor temperature Tout and con-
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Figure 1. Illustration of the machine learning pipeline

sumed power P . Since both values should be in correlation,
the outliers are eliminated on the basis of their Euclidean dis-
tance to the k-NN. In addition to outlier detection using k-
NN, simple threshold values for temperature sensors are also
used, for example by assuming that the supply temperature
cannot rise above 110 °C and all values above this must be
measurement errors. A replacement strategy for deleted ob-
servations is not necessary, because our approach does not re-
quire a time series sampled in equal intervals as input. More-
over, to reduce the computational effort and counteract fluc-
tuations in the transmission rate between Gateway and MDM,
we transform the sensor entries to hourly averages.

2) Cluster analysis
Cluster analysis is a common analysis approach for identi-
fying time-dependent heat load patterns in HVAC systems.
(Seem, 2005) and (Seem, 2007) as well as Li et al. (Li et al.,
2009) apply it to daily averages to identify weekday cycles.
Sandin et al. (Sandin et al., 2013) extend this idea to hourly
recorded meter data, which is also the approach we have cho-
sen.

Figure 2. Heat load pattern with k = 2 for high (red) and low
(blue) heat load

The aim of the cluster analysis is to identify an individual heat
load pattern of a DHS on the basis of the historical records
by assigning each time point (hourly) of a weekday to a clus-
ter. For separation, we use k-means clustering, in which each
observation of a DHS is divided into k clusters to obtain the
most compact and separated clusters. This procedure is ap-
plied to P and the Euclidean Distance is used. The optimal
number of clusters k may vary depending on the individual
substation. The reference literature usually uses two (high
and low load) or three (high, low and medium load) clusters

and defines k a priori. Similar to Xue et al. (2017) we do
not strictly specify the number of clusters, but decide it based
on the Davies-Boulding Index (Davies & Bouldin, 1979) in-
dividually for each DHS in order to obtain an optimal value
for k.

In general, cluster analysis assumes that the behaviour of a
DHS follows a regular pattern, which means that observations
at a particular time but on a different week can be assigned to
a cluster as clearly as possible. As a measure for the regular-
ity of the heat load cycles, the cluster consistency is defined in
the context of this work, which calculates how often a certain
timestamp of the majority cluster was assigned compared to
the total number of data points of this timestamp. For exam-
ple, if 18 of 20 data points are assigned to cluster A (which
therefore forms the majority cluster), the cluster consistency
of this timestamp is 0.9. For instance, Fig. 2 shows hourly
averaged heat load P for each day with k = 2.

3) Regression analysis
The cluster analysis groups different times of day based on
their historical consumption. Using a simple linear regres-
sion for each of the previously defined cluster, the usually de-
manded thermal energy can now be predicted as a function of
the outdoor temperature by calculating the linear dependence
of the independent variable Tout on the dependent variable P .
In this way, it is modelled that the heat demand increases with
decreasing outdoor temperature because the indoor tempera-
ture is to be kept constant (usually 20-22 °C).

Compared to similar implementations in other DHNs, the sim-
ple linear regression already produces adequate results in our
studies. This is because our data was recorded exclusively
during the heating season. To model all year round depen-
dency between outdoor temperature and heat load, a piece-
wise linear regression should be used to consider the domi-
nating influence of tap water heating with increasing outdoor
temperatures (Sandin et al., 2013).

4) Residual analysis
Using the regression analysis, a model that represents the
DHS’s regular behaviour was learned for each of the clusters.
By applying a suitable residual analysis, deviations caused by
a fault or failure must now be recognised as an alert. To the
best of author’s knowledge, previous work is limited to the
manually visual detection of deviations and did not discuss
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how to automatically analyse the residuals.

A DHS is identified as potentially faulty if a relatively large
number of consecutive observed values have relatively high
residuals measured by the error term ε. The error term’s
behaviour is heteroskedastic, which means its variance de-
creases with increasing Tout, i.e. with higher values of the
abscissa. For example, an error term of 2 kW is more signif-
icant at an outdoor temperature of 15 °C than at 5 °C, since
less energy is consumed at higher outdoor temperatures and
thus the relative deviation is higher. Therefore, the error term
ε is set in relation to the expected value E and calculate the
deviation measure D.

D =
ε

E
(2)

A value of D = 0.3 therefore means that the actual heat de-
mand deviates by 30% from the regression forecast. For an
automatic processing, let us assume that an algorithm anal-
yses the successively arriving values for D. To increase the
robustness of the deviation measure against single, short-term
fluctuations of the sensor values, the deviation measurements
of the previous five hours are arithmetically averaged to D̄. If
D̄ is outside the threshold values S1 (upper threshold) or S2

(lower threshold) for a longer period of timeAf , the system’s
condition is interpreted as faulty. Different strategies can be
used for the choice of the threshold values S1 and S2:

1. The upper and lower thresholds are defined a priori for
all substations as a fixed value, e.g. S1 = S2 = 0.5.

2. Individual threshold values are learned for each DHS:
(a) Uniform thresholds for all timestamps, or
(b) individual thresholds for each timestamp.

The learning of DHS-specific threshold values (2a) has the
advantage that the accuracy of predictions can be significantly
improved on the basis of historical data through learning ef-
fects. If a DHS behaves relatively uncyclically, larger fluctu-
ations in heat demand usually occur and the threshold values
should be chosen more broadly. When learning individual
thresholds at the time stamp level (2b), it can also be con-
sidered that certain times of the day are also more irregular
in normal behaviour (e.g. when switching between day and
night mode).

Fig. 3 outlines the scenario proposed here. In the regression
analysis on the left, the last five data points deviate strongly
from the regression line (red data points). In the residuals
plot (right), the averaged deviation measure is now entered in
the chronological order and exceeds the previously described
threshold value S1 from entry value 9 onwards. In this case,
averaging delays the alarm slightly, but our experiments show
that attenuating random peaks makes the result of the ML
model much more robust.

Finally, we define the threshold parameter Af for generat-

Figure 3. Regression and residual plot over time

ing an alert if the number of successive D̄ values exceed this
threshold. Typically, Af is DHS specific and for defining it,
for instance, the maximum value from a validation data set
can be used. If no D̄ are found on the validation data set, a
value can be defined based on expert knowledge or DHS with
similar characteristics (load behaviour, DHS type, etc.) can
be used.

3.1.2. Results

In this section, our proposed approach is demonstrated on two
DHSs (A and B) for which a failure was encountered and a
maintenance action was necessary. For demonstration pur-
poses, two substations with an opposite pattern of normal be-
haviour are selected. Fig. 4 shows the usual plant behaviour
on a randomly selected day (11th February 2020).

Figure 4. Comparison of the two examples on 11 February
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DHS A: circulator pump breakdown
On this substation, the circulation pump suddenly fails on
21.03.2020, which was noticed by the customer the next day
when the room temperature cooled down and was remedied
by replacing the pump. This system does not heat domes-
tic hot water. As can be seen in the upper time series in
Fig. 4, the substation behaves very steadily, with the excep-
tion of the changes between day and night mode (between 4
and 5 o’clock). This means that only a few consecutive ob-
servation points with high error terms should be significant
to detect a potential failure, which can also be seen in the
high cluster consistency of 0.94. Fig. 5 shows the regression
analysis for both clusters. From the pump defect onwards,
the measured sensor values are far away from the predicted
value, as can be seen from the red data points at the bottom of
the diagram. Also, for the ”high load” cluster (red triangle)
as well as for the ”low load” cluster (blue), individual data
points with larger deviations from the regression line can be
recognised. These can be explained by the changes between
day and night mode, where small deviations occur for a short
time.

Figure 5. Regression analysis for pump failure of DHS A

Due to the averaging of the deviation measure D̄ (cf. Sect.
3.1.1), these short-term deviations do not lead to any false
alarm, as can be seen in the upper time series in Fig. 6. In the
entire time series, the algorithm only detects a deviation in
the period in which the circulator pump breaks down. The al-
gorithm detects the failure already three hours after the pump
has broken down. This means that this fault can be detected
much earlier than it is noticed by the customer.

DHS B: leaking control valve
Substation B comprises a heating circuit for building heating
and domestic hot water heating including a buffer tank. On
16.01.2020, the customer reports an insufficient temperature
of the tap water and the radiators. A close look at the sensor
data reveals that the leakage already exists from 10.01.2020
and thus a few days before the customer noticed it. During
the inspection by the service technician, a leaking screw con-
nection on the control valve was identified and repaired on
the same day by replacing the seal. Based on the Davies-
Bouldin Index, the heat load pattern of this DHS is divided

into three clusters (high, medium, low heat demand). In con-
trast to A, the control signal of the volume flow control fluc-
tuates strongly between the extreme states 100% (maximum
flow) and 0% (no flow), which is expressed in a poor cluster
consistency of 0.57 (vs. 0.94 for DHS A). This is demon-
strated in the lower time series in Fig. 4, which shows the
performance of a randomly selected day. The reason for the
unsteady behaviour is that the buffer tank is heated with an
additional heat source, which massively affects the control
loop of the DHS controller.

The time series at the bottom in Fig. 6 shows the sensor value
P and the intervals identified as potentially faulty by the algo-
rithm. It can be seen that many false alarms occur, e.g. when a
certain level of P is predicted according to the learned model,
but the DHS takes much less energy from the district heating
network due to the additional heat source. For clarification,
the length of the longest intervals leading to a false alarm
is given (square brackets; in hours). To avoid false alarms
caused by unstable system behaviour, the threshold value Af

can be defined as in Sect. 3.1.1 before a signal is considered
as a fault. Even if the DHS failure can be noticed before the
customer due to the long failure interval (130 hours), statisti-
cal methods only work to a limited extent for DHS with such
unsteady behaviour.

3.1.3. Discussion

Our approach combines various methods from related liter-
ature and extends them at different points, for example, the
automatic analysis of the regression result by using residuals
analysis. Compared to deep learning methods, which often
lack explainability, the method proposed here makes it easier
to understand the results of the algorithm. For example, in
the case of a failure notification, the expert can see from the
regression plot why the algorithm is reporting an alarm. In
addition to power P , the designed ML pipeline can also be
applied to all other sensors whose values correlate with the
outdoor temperature Tout. For example, if the heating sys-
tem consists of several heating circuits, the power consump-
tion can be analysed for each of them using the described
methodology and, in the event of a fault, the affected part of
the system can be diagnosed. The algorithm is also very ro-
bust against the transmission failures between gateway and
MDM described in Sect. 2.3, as it does not require a con-
sistent recording of the sensor values to train the ML model,
unlike representatives of time series analysis such as Matrix
Profile which assume an equally sampled, complete time se-
ries (Yeh et al., 2016). The cluster consistency can be used
as an indicator for a suitable hyperparameterization and the
estimation of the analysis accuracy. This allows the identifi-
cation of DHSs in advance where the algorithm is not suitable
or where the length of the fault intervals must be significantly
longer to reliably detect a fault. On the other hand, DHSs
with high cluster consistency should be given stricter thresh-
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Figure 6. Comparison of the detected fault intervals for DHS A (top) and DHS B (bottom)

olds S1 and S2 to react to faults that have a lower impact on
the sensor values. Nevertheless, one focus of the further de-
velopment of the approach should be an efficient and, in the
best case, an automated hyperparameter optimization (Feurer
& Hutter, 2019). In this way, an optimal balance between
recall and precision can be found.

As the example of DHS B shows, our model currently does
not consider the influence of additional heat sources, such
as solar thermal energy. In this case, the regression analy-
sis could, for example, be supplemented by the independent
variable of solar radiation (multivariate regression). More-
over, our case study also revealed the limitations of our MDM
data, e.g. for predicting the remaining useful life (RUL). For
example, we could not detect any patterns in the data that
could be used as indicator of minor leaks in advance of the
failure at DHS B. Thus, additional sensors (e.g. humidity)
would have to be installed and made available to the MDM
data in order to be able to act in advance. Especially for the
case of DHS A, measuring current or vibration of the pump
could be helpful to detect wear in advance (Fausing Olesen &
Shaker, 2020).

3.2. Condition Monitoring

The objective of the machine learning pipeline presented in
Sect. 3.1 is to detect unexpected failures of the substations
and to initiate corrective maintenance as soon as possible.

These failures typically lead to an insufficient heat supply,
which is noticed by the customer after some time due to the
drop in room temperature and a reduced tap water tempera-
ture.

From the DHN operator’s point of view, however, it is also
of great interest to work with low flow and temperature lev-
els and to identify substations that cause a significant drop
in overall grid efficiency and thus have a negative impact
on its profitability. Up to now, a time-based maintenance
strategy (Selcuk, 2017) is applied in the examined DHN, in
which all DHS are maintained once a year according to a
fixed scheme. This includes, among other things, a visual
or functional check of the pipes, valves and the heat meter as
well as the cleaning of the strainers. The disadvantage of this
strategy is that maintenance is done regardless of the condi-
tion of the DHS and thus the remaining useful life cannot be
optimally utilised. In modern DHNs, the permanent and cen-
tralised monitoring of the DHS offers new possibilities for
condition-based maintenance. The following subsections de-
scribe two key performance indicators (KPI) for assessing the
need of maintenance of DHSs using condition monitoring.

3.2.1. High Return Temperature

Increased return temperatures often have a negative impact on
the overall efficiency of a DHN, especially when geothermal
energy is used. Analogous to Eq. 1, the output of a geother-

7

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN – 978-1-936263-34-9

Page 413



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

Figure 7. Return temperature in relation to the flow rate (dark points imply a higher power, which is partly indicated)

mal plant is the product of the volume of circulated thermal
water and the temperature difference between the thermal wa-
ter pumped into the grid and the thermal water returned from
the grid (p and c are neglected for simplicity). Nevertheless,
the advantages of low return temperatures apply not only to
geothermal energy, but to all types of district heating net-
works (Gadd & Werner, 2014).

In geothermal DHNs, the amount of thermal water extracted
from the ground per unit of time and its temperature are fixed
parameters. The return temperature of the DHN is therefore
the key parameter to increase the overall performance and to
reduce heat losses in the pipelines. For this reason, heat sup-
plier and customers agree on a maximum permissible average
return temperature in many DHNs. In the analysed data set,
48 out of 896 buildings have an average return temperature
above the agreed limit of 60 °C. But even the mean value of
all substations, at 52.3 °C, is still well above the return tem-
peratures targeted by the 4GDH. Table 3 outlines the positive
influence of low return temperatures based on a real example
of a DHS with P = 14.8 kW. If Tpr can be reduced to the
maximum permissible value of 60 °C, V is reduced by more
than half and thus also the corresponding energy losses in the
DHN.

Table 3. Comparison of V for different Tout

The scatter plot in Fig. 7 shows the distribution of the re-
turn temperature in relation to the flow rate of all DHSs. It
can be seen that DHS with large power consumption tend to
have high return temperatures and flow rates. In the context of
maintenance planning, those DHSs that fulfil these three char-
acteristics (large P , large V , large Tpr) should therefore be
maintained primarily. When considering low return tempera-
ture, the overall situation of the DHS must also be taken into
account, e.g. if domestic hot water heating takes place and the
return temperature may not fall below a certain threshold for
hygiene reasons. Possible causes for high return temperatures
are a missing or incorrect hydronic balancing of the radiators
as well as faulty valves that lead to a permanent flow through
the system or an ineffective outdoor temperature-dependent
control (Wirths, 2008). Especially with hydronic balancing
of the individual radiators, the return temperature can often
be significantly reduced and thermal comfort improved at the
same time. In order to meet the requirements of 4GDH, DHSs
with high return temperatures should therefore be assessed
and, for example, the use of flow valve limiters at the radia-
tors should be examined (Averfalk & Werner, 2017).

3.2.2. Low Average Temperature Difference

The maximum supply temperature of a DHS is determined
by its position in the DHN. The greater the distance to the
power plant, the higher the heat losses in the pipes and the as-
sociated reduction in Tps. In the data set analysed, the range
of the average supply temperature is approximately between
100 °C and 85 °C , which means that near buildings receive
up to 15 °C warmer supply temperatures. (Gadd & Werner,
2014) therefore suggest investigating the temperature differ-
ence ∆T between supply and return in relation to the outside
temperature as a performance indicator.
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The achievable temperature difference of a DHS depends very
much on the conditions of the heated building. The average
∆T is 44 °C, with the best DHS reaching 67 °C and the
worst only 15.2 °C. However, since no precise information
is available about the buildings (e.g. year of construction or
heated living space) and the heating system, no target values
for well-functioning DHS can be given. (Gadd & Werner,
2015) therefore propose a target value of 45 °C as a threshold
value for identifying installations to be inspected.

Figure 8. ∆T before (blue) and after maintenance (red)

For demonstration purposes, Fig. 8 shows the positive effects
after a maintenance intervention where the strainer (primary
side) was cleaned. The hourly ∆T values are plotted and a lo-
cally weighted regression line is calculated using the LOESS
(locally estimated scatterplot smoothing) algorithm. As a re-
sult of the maintenance, the DHS’s performance improves re-
markable, as ∆T increases by an average of 21 degrees. The
system is subsequently much more efficient, as significantly
more energy can be extracted from the same quantity of wa-
ter.

3.2.3. Impact on Maintenance Strategy

In a sample of 30 maintenance operations, no noticeable ef-
fect on parameters ∆T and Tpr was found. This means that
their performance did not change considerably after the main-
tenance and is questionable if the on-site inspection by a tech-
nician was really necessary. Thus, the metrics illustrate the
weaknesses of the current time-dependent maintenance strat-
egy: A large part of the DHSs that are regularly inspected
on-site do not yet need to be maintained due to their current
state of wear. On the other hand, a significant number do not
work optimally, for example because their return temperature
is permanently too high (c.f. Fig. 7). For this reason, we
argue that smart meter data should become a much stronger
focus of maintenance planning.

In discussions with domain experts, it was confirmed that it

is in general possible to customise the maintenance rhythm
of a DHS. Therefore, a condition-based maintenance strat-
egy (Jardine, Lin, & Banjevic, 2006) should be applied in the
future, prioritising those DHS whose performance indicators
are particularly poor or where these values have noticeably
deteriorated over time. In addition to the existing sensors,
which are mainly used for control purposes, extra sensors
such as humidity or power consumption (e.g. of the circu-
lator pump) could enable to detect faults at a relatively early
stage in order to enable predictive maintenance in the future.

4. CONCLUSION AND FUTURE WORK

In this paper, various data-driven applications for failure de-
tection and condition monitoring using smart meter data in
the field of district heating were demonstrated. First, an ML
pipeline for automatic failure detection was designed and dis-
cussed on the basis of two selected failure cases. It was shown
that learning regular load patterns can be used for sudden
failure detection, but the accuracy of the algorithm depends
significantly on the regularity of the substation’s behaviour.
Future failure detection models should therefore be supple-
mented by the influence of exogenous factors such as addi-
tional solar thermal heat use. In addition to failure detection
using cluster and regression analysis, two metrics (KPIs) for
improving the maintenance strategy and the overall efficiency
of DHN were also discussed. We therefore recommend the
permanent assessment of the DHSs’ condition via suitable
KPIs and their consideration for a condition-oriented main-
tenance strategy. Finally, all our results as well as their use-
fulness are verified and confirmed by domain experts of the
DHN operator.

Future work can focus on incorporating of gained experi-
ence from previously conducted maintenance actions using
the methodology of case-based reasoning (Bergmann, 2003)
for diagnosis in addition to fault detection. In this regard, we
see one major challenge in transferring knowledge between
DHS with different load patterns, which requires the appli-
cation of transfer learning (Moradi & Groth, 2020). Further-
more, it can be explored how semantic technologies can be
used to solve interoperability problems by relating domain
knowledge in form of ontologies and describing data streams
from heterogeneous sources in order to leverage them for
condition monitoring (Al-Shdifat, Emmanouilidis, Khan, &
Starr, 2021). In addition to the use cases outlined in this pa-
per, data from smart metering offers further potential, espe-
cially with regard to the increasing complexity within future
smart grids and the growing interconnection of different sec-
tors such as electricity, heat supply, industry and transport
according to the principle of sector coupling. In contrast to
conventional district heating systems, DHSs in the future will
be controlled adaptively and in real time as part of a cooper-
ating network via the Internet of Things.
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