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ABSTRACT 

This paper introduces a Semi-Supervised Feature Selection 

(SSFS) approach for selecting the most suitable features for 

fault diagnostics in evolving environments. The 

effectiveness of the proposed SSFS approach is verified 

with respect to an application concerning the classification 

of the defect type of bearings in Fully Electric Vehicles 

operating at different loads. The results show that SSFS 

allows adapting the diagnostic model to the varying load by 

updating the set of features used for the classification and 

achieves more satisfactory diagnostic accuracy than the 

traditional diagnostic models. The proposed diagnostic 

approach can contribute significantly to the maintenance 

practice of components such as gearboxes, alternators, 

shafts and pumps, whose working conditions are usually 

characterized by evolving environment.  

1. INTRODUCTION 

Most industrial components are worked in Evolving 

Environments (EE) characterized by continuous or periodic 

changes in the operating conditions. Performing fault 

diagnostics in EE is very challenging, since the datasets 

used for training the diagnostic models do not fully cover all 

the possible environmental conditions that the components 

experience during their whole life (Nandi, Toliyat, & Li, 

2005; Peng & Chu, 2004; Zio, 2016) 

In this work, we consider the problem of selecting and 

updating the set of features most suitable for building 

diagnostic models in evolving environments. The purpose of 

feature selection is to reduce the number of features used in 

input to a diagnostic model to reduce its complexity and 

improve its performance (Emmanouilidis, Hunter, 

MacIntyre, & Cox, 1999). Feature selection algorithms are 

typically based on a procedure for searching a feature set in 

the space of all possible combinations of features and on the 

evaluation of its expected diagnostic performance. Filter 

feature selection approaches evaluate the feature set 

considering statistical properties of the data, whereas 

wrapper approaches are based on the construction of a 

classifier trained by the selected features and on the 

evaluation of its performance (Guyon, Guyon, Elisseeff, & 

Elisseeff, 2003; Saeys, Inza, & Larrañaga, 2007). Filter 

approaches are computationally simpler, faster, and easier to 

implement, but, since they neglect the dependencies 

between the feature sets and the classification models, they 

typically have less satisfactory performances than wrapper 

approaches. However, wrapper approaches strongly depend 

on the classification algorithm, i.e. the selected feature set 

may not be optimal when a different classification algorithm 

is used. In addition, the computational burden of wrapper 

approaches is significantly higher (Dy & Brodley, 2004; 

Zhang et al., 2015). 

Typically, both filter and wrapper approaches are applied 

off-line, using data characterizing the component behavior 

in a static environment, and the selected features are never 

changed during the on-line application of the diagnostic 

model. However, the diagnostic performance of the priori 

selected feature set can deteriorate, since the capability of a 

feature to provide useful diagnostic information may depend 

on the working and environmental conditions experienced 

by the component. 

To overcome this problem, we propose a novel Semi-

Supervised Feature Selection (SSFS) approach. The main 

idea is to assess the performance of a feature set in EEs by 

considering two indicators: (A) the accuracy and precision 

of a Support Vector Machine (SVM) classifier trained using 
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labelled data collected from a static environment, and (B) 

the confidence of the same classifier when used to classify 

unlabeled data collected from EEs. Indicator A is a 

traditional performance indicator quantifying the 

classification ability of the feature set, whereas indicator B 

assesses the performance of the feature set by estimating 

how confident is the classifier when used outside its training 

domain on unlabeled data collected from an EE. A Borda 

Count method (Morais & De Almeida, 2012) is used to 

perform a multi-objective ranking of all the feature sets and, 

thus, to identify the one with the most satisfactory trade-off 

among indicators A and B. 

The proposed SSFS approach is verified with respect to a 

dataset containing the results of laboratory tests on defective 

bearings performed within the FP7 European Project 

HEMIS (Electrical powertrain Health Monitoring for 

Increased Safety of FEVs). The data refer to six different 

types of defects and six different working loads. 

The paper is organized as follows: Section 2 presents the 

problem addressed in this work; in Section 3, the SSFS 

approach is described; in Section 4, the experimental test 

setup and the application of the developed method to the 

experimental data is discussed; finally, some conclusions 

and remarks are drawn in Section 5. 

2. FEATURE SELECTION IN EVOLVING ENVIRONMENTS 

The overall target of feature selection in fault diagnostic 

applications is to select the feature subset that allows 

building the diagnostic model with the most satisfactory 

performance. Assuming to have available an overall feature 

set 𝑇𝐹𝑆 = {𝐹1, 𝐹2, … , 𝐹𝑁FS
} of 𝑁FS features, there are totally 

2𝑁FS − 1 possible candidate feature subsets, 𝐹𝑆𝑖, 𝐹𝑆𝑖 ⊂ TFS. 

In the case of EE, the following information are typically 

available to perform feature selection: 

 a set of 𝑁𝑇 labelled data, 𝑇 = {𝑋𝑇 , 𝐿𝑇}. 𝑋𝑇 is the signal 

value matrix with 𝑁𝑇 ∗ 𝑁FS dimension, 𝑁𝑇  is the total 

number of patterns in 𝑋𝑇 . 𝐿𝑇  is a binary matrix of 

dimension 𝑁𝑇 ∗ 𝑁𝑐𝑙 , with 𝑁𝑐𝑙  representing the total 

number of fault classes, whose generic element 𝑗, 𝑘  is 

equal to 1 if the j-th pattern is of class k and 0, 

otherwise. 
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These labelled data are assumed to be collected in 

stationary working conditions, before the occurrence 

of a concept drift. 

 a set of 𝑁𝐶  unlabelled data, 𝐶 = {𝑋𝐶}, where 𝑋𝐶  is a 

matrix of dimension 𝑁𝐶 ∗ 𝑁FS  containing the signal 

values. These data describe the component behaviour 

in evolving environments. 

3.  THE SEMI-SUPERVISED (SSFS) FEATURE SELECTION 

APPROACH 

The main idea of SSFS is to evaluate the performance of 

each candidate feature subset, 𝐹𝑆𝑖 , 𝐹𝑆𝑖 ⊂ TFS , by 

calculating the following two indicators: 

 Indicator A: the classification accuracy of a SVM 

classifier on the labelled data 𝑇. 

 Indicator B: the confidence of the SVM classifier in 

the assignment of the unlabelled data 𝐶 collected in the 

new environment. 

Indicator A quantifies the capability of the feature set of 

correctly classifying test data in stationary working 

conditions. Notice, however, that a satisfactory value of 

indicator A does not automatically guarantee a high 

accuracy of the diagnostic model in an EE. Thus, in order to 

quantify the performance of the feature set in a new 

environment, we introduce indicator B. Given the 

unavailability of the true labels of the patterns in 𝑋𝐶 , 

indicators B focuses on the evaluation of the confidence of 

the classifications provided by the SVM.  

Sections 3.1 and 3.2 below will further discuss the 

computation of indicators A and B, whereas Section 3.3 

shows the Borda Count-based procedure for aggregating the 

information provided by these two indicators. 

3.1. Indicator A 

For a generic feature subset 𝐹𝑆𝑖, Indicator A is a measure of 

the accuracy of a SVM classifier built considering as input 

signals the features in 𝐹𝑆𝑖   and trained using 50% of the 

labelled data  of T. The classification accuracy is evaluated 

using the remaining 50% of the data of T. The classifier 

used in this paper is a SVM with pairwise coupling (Wu, 

Lin, & Weng, 2004), which provides in output the 

probabilities 𝑝𝑗𝑘 that the j-th test pattern belongs to class k, 

k=1,…,  𝑁𝑐𝑙 . Assuming to have available 𝑁𝑡𝑒  labelled test 

patterns, indicator A is defined by: 
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𝐼𝐴𝐹𝑆𝑖
 is the value of indicator A of candidate feature set i, 

ℎ𝑗𝑘 is the corresponding element in 𝐿𝑇; in order to obtain a 

robust evaluation of the accuracy, a Cross Validation (CV) 

procedure is applied. In practice, we repeat 10 times the 

random partition of the labelled dataset 𝑇 = {𝑋𝑇 , 𝐿𝑇}  into 

two equally sized subsets: the first one is used to train the 
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SVM classifier and the second one to compute its accuracy. 

IA is then computed as the average of the 10 runs: 
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The value of this indicator is between 0 (all patterns 

misclassified) and 1 (all patterns correctly classified). The 

larger 𝐼𝐴, the more accurate is the classifier built with the 

feature subset 𝐹𝑆𝑖. 

3.2. Indicator B 

Indicator B measures to what extent the SVM classifier built 

using the labelled data 𝑇  is able to provide confident 

classifications of the unlabelled data 𝐶  in the new 

environment. According to (Richard & Lippmann, 1991; 

Wan, 1990), the confidence of a classifier can be evaluated 

by considering the entropy: 
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E is a measure of the information content in the matrix [𝑝𝑗𝑘]: 

the smaller the entropy, the more confident the classification. 

However, since in fault diagnostic applications the major 

concern of the decision maker is to have a class clearly 

preferable from the others, rather than the entropy itself, the 

use of the entropy measure can have limitations. For 

example, let us consider a case of two classifiers, 𝑂1 and 𝑂2, 

which assign the same test pattern to classes 1,2 and 3 with 

the following probabilities: 𝑂1 = [0.6, 0.2, 0.2]  and 

𝑂2 = [0.6, 0.39, 0.01 . According to equation (3), the 

classification 𝑂2  is considered more confident than 𝑂1 , 

(𝐸2 = 0.72 < 𝐸1 = 0.95). However, from the point of view 

of the decision maker in a fault diagnostic problem, even if 

in both cases the probability of class 1 is 0.6, he/she is more 

confident that the test pattern belongs to class 1 considering 

the output of classifier 𝑂1. This is due to fact that the second 

most probable class is assigned by classifier 𝑂1with a lower 

probability value than that by classifier  𝑂2 . In order to 

overtake this limitation of the entropy metric, in this work 

we propose a new confidence metric, from the decision 

making point of view, based on the evaluation of the 

difference between the probabilities of the class of the 

maximum probability and that with the second maximum 

probability. Thus, indicator B is defined by:  
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where 𝜆𝑗 = max𝑘=1:𝑁𝐶
(𝑝𝑗𝑘)  and 𝜇𝑗  is the second largest 

value among the 𝑝𝑗𝑘  values in row j. The larger 𝐼𝐵 , the 

more confident is the classifier. 

3.3. Borda count Method 

Once indicators A and B have been computed for all the 

feature sets of interest, we need to select the feature set to be 

used for the fault diagnostics in the new environment. This 

is a group decision-making process which involves 

aggregating the information from multiple sources (Forman 

& Peniwati, 1998; Matsatsinis, Grigoroudis, & Samaras, 

2005). The aggregation problem is here addressed using the 

Borda count method, which has been successfully applied in 

very different application fields (Saari, 1999; Smith, 1973). 

Borda count is a single-winner vote method, which ranks 

candidates according to the sum of ballots from all the 

voters. The detailed procedure is based on the following 

steps: 

1) Individual ranking: rank all the candidate feature sets 

with respect to each indicator; 

2) Voting: for any indicator i, two scores 𝐹𝑢𝑝𝑝𝑒𝑟
𝑖  and 

𝐹𝑙𝑜𝑤𝑒𝑟
𝑖  are assigned to each candidate feature set. With 

respect to 𝐹𝑢𝑝𝑝𝑒𝑟
𝑖 , assuming that there are x candidate 

feature sets, the mark 1 is assigned to the feature set 

with the smallest indicator value, the mark 2 to the 

second-smallest, … the mark x to the feature set with 

the largest indicator value. Similarly, a score 𝐹𝑙𝑜𝑤𝑒𝑟
𝑖  is 

assigned to the feature sets: the mark x to the feature set 

with the smallest indicator value, x-1 to the second 

smallest, 1 to the feature set with the largest indicator 

value. The final 𝐹𝑢𝑝𝑝𝑒𝑟  (𝐹𝑙𝑜𝑤𝑒𝑟 ) value associated to a 

feature set is the sum of all the scores 𝐹𝑢𝑝𝑝𝑒𝑟
𝑖  (𝐹𝑙𝑜𝑤𝑒𝑟

𝑖 ) 

on both of the indicators IA and IB  

3) Choosing: The final score 𝐹𝑓𝑖𝑛𝑎𝑙  of each candidate 

feature set is: 

 upperfina o erl l wF FF     (5) 

The selected feature set is the one with largest 𝐹𝑓𝑖𝑛𝑎𝑙  

Once the best performing feature set is selected by the 

Borda count method, the corresponding SVM classifier 

will be retrained using all the data in T and used for 

fault diagnostics in the new environment. 

3.4. The SSFS algorithm 

Figure 1 shows the sketch of the SSFS. The first step is 

performed when only one batch of labelled data ( 𝑇 =
{𝑋𝑇 , 𝐿𝑇} ), referring to a stationary working condition is 

available. The data are used for an initial wrapper feature 

selection whose objective is the maximization of the 

classification accuracy (Indicator IA). 
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Figure 1. Sketch of the SSFS approach 

Once the feature set with the best classification performance 

on the labelled data is identified, the corresponding SVM 

classifier f is used until a modification of the working 

conditions occurs. In this work, we assume that the time at 

which there is a modification of the working conditions is 

known. Notice that in the case in which the information on 

the modification of the working conditions is not explicitly 

available, one can resort to automatic methods for concept 

drift detection (Brzezinski & Stefanowski, 2014; Dries & 

Rückert, 2009).  

Each time a new batch of unlabelled data collected from 

new operational conditions become available, the feature 

selection algorithm described in Sections 3.2 and 3.3 is 

applied and a new feature subset is selected. Finally, the 

corresponding SVM classifier f is trained and can be used 

for fault diagnostics in new operative conditions. 

4. NUMERICAL APPLICATION  

In this Section, we apply the SSFS approach to a problem of 

diagnosing bearing defects in evolving environments. We 

consider data collected in laboratory tests performed on 

defective bearings within the FP7 European Project HEMIS 

(Electrical powertrain Health Monitoring for Increased 

Safety of FEVs). The tests have been performed on bearings 

of an electric engine, considering six different types of 

defects (Table 1). For each defect type, six different 

working loads have been applied to the bearing during the 

laboratory tests (Table 2). A raw vibrational signal has been 

measured at a frequency of 20kHz using an accelerometer. 

Then, 87 features have been extracted from non-overlapping 

time windows of the raw signal. The considered features are 

statistical indicators, such as mean value, kurtosis, peak 

value etc., and wavelet transform coefficients, such as 

minimum and maximum Haar wavelet coefficient, symlet 

wavelet coefficient, etc. Among the 87 extracted features, 

15 have been preselected to reduce the computational 

burden of the analysis using an unsupervised spectral 

feature selection method (Zhao & Liu, 2007). The list of the 

considered features is reported in Appendix 1. For each 

defect type, 84 patterns at 6 different loads have been 

obtained (Table 1 and 2). 

The classification accuracy achieved by the SSFS method is 

compared with that of a SVM classifier built considering the 

labelled training set T and never updated (here after named 

‘pure SVM’). The source code of the SVM classifiers used 

in this paper is taken from “LIBSVM” (Chang & Lin, 2001). 

Six different experiments are designed in order to compare 

the performance of the proposed SSFS approach with that of 

the pure SVM. In all the experiments, the presence of an 

evolving environment is simulated by assuming that data 

become progressively available in batches and each batch 

contains patterns collected at a fixed load, different from the 

load of the previous batch. In all the experiments, a labelled 

dataset formed by 98 patterns at a prefixed load is initially 

available, whereas 5 batches formed by unlabelled patterns 

become progressively available. The six experiments differ 

in the sequence with which the batches of data become 

available, as shown in Table 3. 

Due to limitations in computation and storage resources, we 

do not perform an exhaustive search among all the 215 −
1=32767 possible feature subsets of 15 features, but we 

limit the search to consider only the (
15
3

) = 455  feature 

subsets formed by 3 features. 

Table 1. Defect types 

Defect 

label 

(class) 

Fault 

location 

Fault 

intensity 

Number of 

available patterns  

1 Inner race 1 mm 84 

2 Inner race 1.5 mm 84 

3 Inner race 2 mm 84 

4 Outer race 1 mm 84 

5 Outer race 1.5 mm 84 

6 Outer race 2 mm 84 

7 Healthy 0 mm 84 

Table 2. Loads applied during the laboratory test 

Label  load 
Rotational 

speed 

Number of 

available patterns 

 

1 100 Nm 250 Rpm 98 

2 100 Nm 300 Rpm 98 

3 100 Nm 320 Rpm 98 

4 150 Nm 250 Rpm 98 

5 150 Nm 300 Rpm 98 

6 150 Nm 320 Rpm 98 



 

 

Table 3. Sequence with which the batches of data become available 

 
Training 

dataset 
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 

Experiment 1 all patterns in load 1  load 2  load 5  load 6  load 3  load 4 

Experiment 2 all patterns in load 2  load 1  load 5  load 6  load 3  load 4 

Experiment 3 all patterns in load 3  load 2  load 5  load 6  load 1  load 4 

Experiment 4 all patterns in load 4  load 5  load 1  load 2  load 3  load 6 

Experiment 5 all patterns in load 5  load 6  load 1  load 2  load 3  load 4 

Experiment 6 all patterns in load 6  load 5  load 1  load 2  load 3  load 4 

 

Figure 2. Classification accuracy provided by the pure SVM and the SSFS approaches in the 6 experiments. The numbers in 

the Figures refer to the Table in the Appendix and indicate the features selected by the SSFS algorithm. 
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Figure 3. Projection of the training dataset (circles) and of the data in batch 2 (stars) of experiment 3 on the initial feature set 

{47, 49, 64} used by the pure SVM (left) and on the feature set {1, 48, 50} used by the SSFS method (right). Different colors 

indicate different classes of the data, red squares represent wrong classifications. 

Figure 2 shows the classification accuracy provided by the 

pure SVM and the SSFS approaches in the 6 experiments. 

When in correspondence of a new batch of data, the feature 

set used by the SSFS approach is changed, the new selected 

feature set is indicated in the Figure. Notice that, thanks to 

the dynamic updating of the feature set, the SSFS approach 

is able to provide more accurate predictions than the pure 

SVM. 

Figure 3 shows the projection of the patterns of the second 

batch of experiment 3 in the feature sets used by the pure 

SVM, formed by features {47, 49, 64} and by the SSFS 

approach, formed by features {1, 48, 50}. We can clearly 

see that patterns of different classes tend to overlap when 

they are projected on the feature set {47, 49, 64}, whereas 

they are well separated on the feature set {1, 48, 50}. 

5. CONCLUSION  

In this work, we propose a Semi-Supervised Feature 

Selection (SSFS) approach for performing fault diagnostics 

in evolving environments. SSFS allows adapting the 

diagnostic model to the evolving environment by 

automatically changing the feature set used for the 

classification. The approach has been successfully verified 

with respect to a problem of classification of bearing defects 

in different load conditions. 

A limitation of the SSFS method lies in the computational 

efforts required for the feature selection task, since it needs 

to perform exhaustive search among all the possible feature 

sets. Search algorithms such as Genetic Algorithms, 

Differential Evolutions and Ant Colony can be used to 

select the best feature sets, without the necessity of 

exploring all the possible solutions. 

Future work will also be devoted to improve the efficiency 

of SSFS by designing a drift detector able to decide when it 

is necessary to change the feature set.  

ACKNOWLEDGEMENT 

This research has received funding from the7th European 

Union Framework Programme (FP7/2007-2013) under grant 

agreement no.314609. Further information can be found on 

the project website (www.hemis-eu.org). The authors are 

grateful for the contributions of Prashanth Dhurjati and Toni 

Escamilla (IDIADA, Spain), and Daniel Astigarraga and 

Ainhoa Galarza (CEIT, Spain) in the design and execution 

of the laboratory tests and their suggestions during the 

development of this research. The participation of Yang Hu 

is supported from China Scholarship Council (No. 

201206110018). The participation of Enrico Zio to this 

research is partially supported by the China NSFC under 

grant number 71231001. 

REFERENCES 

Brzezinski, D., & Stefanowski, J. (2014). Reacting to 

Different Types of Concept Drift: The Accuracy 

Updated Ensemble Algorithm. Neural Networks and 

Learning Systems, IEEE Transactions on. 

doi:10.1109/TNNLS.2013.2251352 

Chang, C., & Lin, C. (2001). LIBSVM: a library for support 

vector machines. Computer, 1–30. Retrieved from 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.114.4532&amp;rep=rep1&amp;type=pdf 

Dries, A., & Rückert, U. (2009). Adaptive concept drift 

detection. Statistical Analysis and Data Mining, 2(5-

6), 311–327. doi:10.1002/sam.10054 

Dy, J. G., & Brodley, C. E. (2004). Feature Selection for 

Unsupervised Learning. Journal of Machine Learning 

Research, 5, 845–889. Retrieved from 

http://portal.acm.org/citation.cfm?id=1016787 

Emmanouilidis, C., Hunter, A., MacIntyre, J., & Cox, C. 

http://www.sciencedirect.com/science/article/pii/S0026271416300348#gts0005
http://www.hemis-eu.org/
mailto:Prashanth.Dhurjati@idiada.com


EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

7 

(1999). Selecting features in neurofuzzy modelling by 

multiobjective genetic algorithms. Artificial Neural 

Networks, 1999. ICANN 99. Ninth International 

Conference on (Conf. Publ. No. 470). 

doi:10.1049/cp:19991201 

Forman, E., & Peniwati, K. (1998). Aggregating individual 

judgments and priorities with the analytic hierarchy 

process. European Journal of Operational Research. 

doi:10.1016/S0377-2217(97)00244-0 

Guyon, I., Guyon, I., Elisseeff, A., & Elisseeff, A. (2003). 

An introduction to variable and feature selection. 

Journal of Machine Learning Research, 3, 1157–

1182. doi:10.1162/153244303322753616 

Matsatsinis, N. F., Grigoroudis, E., & Samaras, A. (2005). 

Aggregation and disaggregation of preferences for 

collective decision-making. Group Decision and 

Negotiation, 14(3), 217–232. doi:10.1007/s10726-

005-7443-x 

Morais, D. C., & De Almeida, A. T. (2012). Group decision 

making on water resources based on analysis of 

individual rankings. Omega, 40(1), 42–52. 

doi:10.1016/j.omega.2011.03.005 

Nandi, S., Toliyat, H. A., & Li, X. (2005). Condition 

monitoring and fault diagnosis of electrical motors - A 

review. IEEE Transactions on Energy Conversion. 

doi:10.1109/TEC.2005.847955 

Peng, Z. K., & Chu, F. L. (2004). Application of the wavelet 

transform in machine condition monitoring and fault 

diagnostics: a review with bibliography. Mechanical 

Systems and Signal Processing. doi:10.1016/S0888-

3270(03)00075-X 

Richard, M. D., & Lippmann, R. P. (1991). Neural Network 

Classifiers Estimate Bayesian a posteriori 

Probabilities. Neural Computation, 3(4), 461–483. 

doi:10.1162/neco.1991.3.4.461 

Saari, D. G. (1999). Explaining All Three-Alternative 

Voting Outcomes. Journal of Economic Theory, 87, 

313–355. doi:10.1006/jeth.1999.2541 

Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of 

feature selection techniques in bioinformatics. 

Bioinformatics. doi:10.1093/bioinformatics/btm344 

Smith, J. H. (1973). Aggregation Preferences with Variable 

Electorate. Econometrica, 41(6), 1027–1041. 

Wan, E. A. (1990). Neural network classification: A 

Bayesian interpretation. IEEE Transactions on Neural 

Networks, 1(4), 303–305. doi:10.1109/72.80269 

Wu, T.-F., Lin, C.-J., & Weng, R. C. (2004). Probability 

Estimates for Multi-class Classification by Pairwise 

Coupling. J. Mach. Learn. Res., 5, 975–1005. 

doi:10.1016/j.visres.2004.04.006 

Zhang, Z., Chen, H., Xu, Y., Zhong, J., Lv, N., & Chen, S. 

(2015). Multisensor-based real-time quality 

monitoring by means of feature extraction, selection 

and modeling for Al alloy in arc welding. Mechanical 

Systems and Signal Processing, 60-61, 151–165. 

doi:10.1016/j.ymssp.2014.12.021 

Zhao, Z., & Liu, H. (2007). Spectral feature selection for 

supervised and unsupervised learning. Proceedings of 

the 24th International Conference on Machine 

Learning - ICML ’07, 1151–1157. 

doi:10.1145/1273496.1273641 

Zio, E. (2016). Some Challenges and Opportunities in 

Reliability Engineering. IEEE Transactions on 

Reliability, -(-), -. 

 

 

 

 

 

 

 

Appendix 1:  List of features 

Feature number Feature name 

1 Mean value 

2 Kurtosis                                                                                                                                       

5 Crest indicator  

24 Clearance indicator                                                                                                                        

47 Peak value                                                                                                                              

48 Minimum Haar Wavelet coefficient                                                                                        

49 Maximum Haar Wavelet coefficient                                                                                       

50 Norm  level D1 Daubechies Wavelet Transform                                                                   
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64 Norm Node 1 Symlet6 Wavelet                                                                                                     

48 Norm Node 5 Symlet6  Wavelet                                                                                              

78 Norm Node 6 Symlet6  Wavelet                  

80 Norm Node 3 Symlet6  Wavelet                  

81 Norm Node 2 Symlet6  Wavelet 

84 Norm Node 13 Symlet6 Wavelet                                                                                                   

86 Norm Node 15 Symlet6 Wavelet 

 


