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ABSTRACT 

This 300 MW steam turbine at a coal-based thermal power 

plant is equipped with a protection system, a condition 

monitoring analysis software and an automatic diagnostic 

tool. The Machine Protection System (MPS) and Condition 

Monitoring System (CMS) configuration combines sensors, 

electronic hardware, firmware and software specific to this 

application. The protection system initiated a trip having 

identified high vibration. The trip prevented further damage. 

Subsequent analysis of the data using the condition 

monitoring software established the bearings most affected 

and pin pointed the source of high vibration. The data is 

post processed using an Auto-Associative Neural Networks 

(AANN) that has been trained with healthy data recorded 

several hours prior to the trip. AANN are methodologies 

widely used for novelty and anomaly detection.  The AANN 

results indicates that such approach would be capable of 

detecting the failure event in advance compared to the 

automatic diagnostic system based on rules, demonstrating 

the validity of the approach in this context. Various aspects 

related to vibration: protection, condition monitoring, 

analysis, automatic diagnostics using rules and Neural 

Networks are presented and their results discussed.  

 

1. INTRODUCTION 

This coal-fired power plant (Figure 1) located in India, has 

two 300 MW units, each unit is based on a steam turbine-

generator (STG) equipped with 7 bearings and running at 

3000 RPM (Figure 2).  

 

 
Figure 1. Coal-fired power plant with 2 x 300 MW STG. 

 

On 31
st
 March 2012 at 17h00, while near full load, Unit 1 

tripped on high vibrations. The analysis revealed a severe 

mechanical fault involving blade loss in the low pressure 

turbine.  

The plant is equipped with a Meggitt VM600, with:  

- Protection system that was tuned to react to any event 

within a 3 seconds delay. This system is composed of 

absolute and relative vibration sensors and electronics, 

and monitors.  

- Condition Monitoring system, using the same VM600 

system infrastructure (sensors, cabling, racks, power 

supplies, etc) but using different signal processing 

approach and settings  

- An expert system based on rules, for which standard 

rules had been written and then were executed 

regularly in real time.  

In the post-analysis stage, we replayed also the data through 

an automatic detection application using neural networks 

algorithms. The results of these various methods are 

discussed. The system succeeded to protect this large and 

valuable facility against further damages and permitted 

analyzing the information recorded in the CMS to 
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understand the mechanical situation enough to drive the 

mechanical inspection of the machine and discover the 

cause of the trip. But not all tools provided the results in line 

with our expectations, so we will eventually come with 

conclusions on what to use, and how, amongst these 

different concepts and tools along the decision chain. How 

to configure parameters in details to get valuable 

information out of the vibration signals on similar machines, 

for that goal, is also shown. 

  

 
Figure 2. Main Steam Turbine Generator with arrangements 

of HP, IP, LP turbine bodies and bearings (extract from an 

on-line mimic). 

2. MACHINE PROTECTION  

2.1. General arrangement  

As suggested by the asset assessment process, the main 

Steam turbine-generator is the first, indeed critical machine 

monitored and protected in this plant, amongst other “not-

so-critical” machineries involved (Table 1) mostly in 

cooling the rest of the plant, also referred to as “Balance of 

Plant” machines. All other functions are achieved by 2 or 3 

redundant units.  

 

Table 1. Machines whose vibrations are monitored, and 

protect installations (total numbers for 2 units).  

 

Tag N° Description 

FWP 3+3 Boiler Feed Water Pump 

CoWD 3+3 Condensate Water Pumps 

CWP 3+2 Circulating Water Pumps 

ACWP 2+2 Auxiliary Cooling Water Pump 

DMCWP 2+2 De-Mineralised water Cooling Pump 

AC 4 Air Compressor 

TAC 3 Transport Air Compressor 

CC 2 Coal Crusher 

AWSP 2 Ash Water Slurry Pump 

 

For this turbine, other sensors are for:  

- Speed, 1/REV signal required for synchronization 

between all channels, and phase reference.  

- Expansion measurements  

- Axial displacement at the thrust  

- Rotor eccentricity  

The protection on vibration generated a trip signal, sent to 

the Distributed Control System (DCS) through a relay. This 

was followed by a controlled load drop in the steam turbine, 

then a normal stop of the machine. This procedure avoids an 

over-speed transition phase that is usually the case for an 

emergency stop, but also cumulates additional damages to 

the shaft.  

After the trip event, it was clear that all bearings were 

affected. At this point there had been a doubt whether the 

measurement system could be incriminated, by an electrical 

short-circuit, or by a general failure of a protection system.  

However this was not possible because of the general 

fundamental architecture of the system installed.  

In this system the protection function is insured locally and 

independently in each of the modules inserted in the system 

rack, so the event could not come suddenly at the same time 

from independent sources for not a good reason. If power 

supply were lost, then there is a logic by which a Normally 

Energized relay opens, therefore showing the system as “not 

operational”, as with a “watchdog”. But this was not the 

scenario for this trip.  

As the system had shown a good reliability and no false trip 

event in the previous 3~4 years of operation, the trip event 

was considered seriously and probably originating from a 

mechanical origin.  

So, after all it is a success at this stage for the Machine 

Protection System (MPS), considering that the system was  

able to decide to stop automatically the machine within a 3 

seconds decision loop, while it was running several years 

already without false trips.  

2.2. Configuration setup  

These are some of the parameters (Figure 3), configured in 

the system, which were used, therefore recommended for 

this type of large Steam Turbine protection (extracted from 

the Configuration Summary).  

Interesting parameters involved are: the filter allows up to 

1500 Hz, this as per §5.2.3 in (ISO-comitee, ISO 10817-1, 

1998). The delay is 3 seconds. All decision are routed to 2 

redundant relays, and the trip signal, at 254 micrometers 

Peak-to-Peak is validated by the [ok] of each channel. The 

threshold is a little bit higher than in (ISO-comitee, ISO 

10817-1, 1998). This achieves both a good reactivity in case 

of a real trip event, as well as rejection of false events due 

to, for example, a failure at the sensor or at its connection to 

the system.  

At some bearings, critical speeds generated trip during run-

ups. Adaptive monitoring (Figure 4) is used, then to allow 

passing, indeed rapidly, these critical speeds to reach 

nominal speed. This is an improvement to the “Trip 

Multiply” method, for which the multiplier on the threshold 

is unique across all speed layers. This “Adaptive 

Monitoring” is one of the features participating to improve 

the accuracy of the protection. The adaptive does not affect 

the protection at normal operation at 3000 RPM.  
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Figure 3. Vibration configuration for protection: Relative 

shaft channel (left), Absolute bearing channel (middle) and 

logical combination for the trip logic sent to relays.  

 

 
Figure 4. Example of adaptive monitoring configuration for 

critical speeds (shaft resonances) allowances, applied to the 

the threshold.  

3. TRIP EVENT  

3.1. As recorded in the DCS  

The Distributed Control System (DCS) of the plant recorded 

the absolute shaft vibrations, which were sent by Modbus 

from the Machine Protection System (MPS). We have no 

change before the trip (Figure 5) and all levels increased 

suddenly within less than 10 seconds, while several of them 

jumped to 500 microns corresponding to the maximum 

range (Figure 7 and 11).  

The background level before the trip is approx. 25 µm_Pk-

Pk on an average, and always less than 50 µm_Pk-Pk. The 

vibration levels jumped suddenly by a factor of 10, at least.  

 

 
Figure 5. Vibration Trip, as recorded in the DCS during one 

hour before machine stop at 17 h00. 

 

Other parameters were affected: in particular bearing 

temperature rose on bearing 4 (Figure 6), but the maximum 

was reached only 9 minutes after the trip.  

 

 
Figure 6. Other parameters during the trip. The maximum 

temperature is on bearing 4 and 9 minutes after the trip. 

 

Had the protection been trigged by temperature alone, the 

late response due to temperature diffusion to the probe 

would have delayed the decision by several minutes in this 

case. This would have caused to more damage to the 

machine meantime. We also checked that oil pressure was 

in normal range before and after the trip ensuring proper 

lubrication at all times.  

But not all bearings were involved in the incipient change. 

We observed that bearing 4, then 3, surrounding the LP 

turbine, responded first to the incident. This confirmed the 

“First-out-Event” in the Protection System.  
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We could confirm this, after looking at the vibration data 

recorded in the CMS. Our recommendation then followed: 

to open LP turbine body on the side of bearing 4.  

 

 
Figure 7. Incipient change of vibration levels: bearing 4 

increases the most and the fastest in the first 10 seconds 

before reaching maximum level. The cursor is on the event. 

3.2. As recorded in the Condition Monitoring System  

The CMS ran independently on a separate PC and a 

reference clock was not available for its synchronization. As 

a result there was 2 minutes drift difference between 

systems. The event list (Figure 8) shows that the events 

occurred first on bearing 4.  

 

 
Figure 8. Event list in the CMS, by their order of arrival 

even though the time only shows the second resolution.  

 

The sequence of events shows how the fault developed and, 

more importantly, that almost all probes (relative vibrations) 

were going directly from “normal” (green) to “Alarm” (red), 

having no time even to be in “Alert” (yellow) status in 

between. The band 1X (extraction of the signal at the 

frequency of the rotation) is always involved. The change 

was so quick that the resolution in time was not enough to 

pick up the fast increasing slope on the level; due to cutting 

the signal in FFT blocks before processing. This is not the 

case for the protection system, which uses fast and reactive 

digital filtering techniques instead of the slower FFT 

technique (Fromaigeat, 2000).  

There was no sign in the trends, whatsoever, that could 

indicate the failure before it occurred. This is well known in 

literature (McCloskey, 2002) that a sudden blade failure can 

well happen without any preliminary change on vibration 

parameters. Within 2 years of operation, the machine 

showed same vibration behavior with thermal transients 

after run-ups, and some fluctuations with load and daily 

temperature changes (Figure 9).  

 

 
Figure 9. Vibration trends observed one month before the 

event, on bearings x extraction {3,4}x{Overall,(1X)}. 

Normal fluctuations are due to daily load and temperature 

changes.  

 

All vibration bands and gap show the same flat curve a few 

hours before the trip. From Figure 10 it is possible to 

observe that after the trip none of the sensors give less 

vibration than the maximum observed before.  

At the time of the event, some “pre-trip” data was stored 

every second in a CMS buffer. This was analyzed together 

with all the transient trends of all bands and Polar plots 

(example Figure 11).  

The response is much bigger (over 500 µm_pk-pk), 

compared to previous transients, and this strong (1X) means 

“ unbalance” as per general diagnostic rules.  

Polar, Bode, Cascade for all bearings and directions were 

plotted. They are not all presented here. On bearing 3 and 4, 

the rundown signature is way-off the normal behavior of the 

shaft.  

Concerning the spectral signatures during rundown, as soon 

saturations occur the integrity of the data is lost. Signal 
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Saturations are distortions which prevent spectra to 

represent the signals accurately.  

 

 
Figure 10. Vibration trends 2 hours before the failure.  

 

 
Figure 11. Example of Polar plot on bearing 3. 

 

But, we can still make use of the signal that were not 

saturated. This is the case for bearing 6 signals, even just 

after the trip. Bearing 6 is located on the other side of the 

generator. In this signature there is a strange subtle change 

that had never been seen before on this machine. It consists 

of additional 1/3, 2/3, 1+1/3, 1+2/3, etc. signatures in the 

spectra (Figure 12) and can be seen almost on all bearings 

just after the event.  

 
Figure 12. Valid cascade plot on a non-saturating sensor. 

Strange inter-harmonics can be seen in the early stage of the 

rundown (details are on the spectrum, left-bottom).  

In this early stage, the sub-harmonics represent a large part 

of the signal, as shown in Figure 13. They mostly consist in 

this 1/3 harmonic and multiples.  

We think these inter-harmonics, both sub- and higher -

harmonics signatures, at fractional ratio of harmonics, can 

be related to a well known effect due to “Erratic loose parts” 

in rotating machines. This type of signature is known to be 

due to non-linear, chaotic movements of lost parts inside a 

rotor, rotating within a certain specific range of speed, 

which depends on the weight of the part.  

 
Figure 13. Transient (rundown) trend of the bands: Overall, 

1X, and sub-synchronous. Between 2900 and 2700 RPM, 

the SUB harmonics is abnormally high.  

 

This leads to quasi-periodic behavior, with a certain degree 

of randomly controlled movement (resulting in following a 

fractal-shaped trajectory in space).  

3.3. Machine Damage  

 

When opening the machine, 2 blades were discovered inside 

the LP body. Eventually a total of 4 blades were detached 

from the rotor (Figure 14).  

 

 
Figure 14. Rests of blades found in LP turbine after the trip. 
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The rotor showed the 4 missing slots on disk #5, out of the 7 

disks. Most blades have been de-rooted from the shaft 

(Figure 15), shrouds being gone. 

There is almost a periodicity of 6 in the blade loss. This is 

because, on this side, blades are attached by groups of 6 to 

the same shroud. Also 2 fixed blades were off in the stage 

between 5 and 6. We believe these were a consequence of 

rotating blades loss, because they could have been hit by the 

“flying” blades, downstream the steam path afterwards.  

 Whatever be the reason of the de-rooting of blades 

(McCloskey, 2002) whether before or after the de-

shrouding, we can estimate the consequence on vibration.  

 

 
Figure 15. Rotor showing missing shrouds and 4 blades off, 

at positions: 7, 13, 19, 38 on stage 5 that has a total of 124 

blades. On this side, 2 blades had been de-rooted.  

 

Let us calculate the consequence on the unbalance, in the 

approximation of a rigid rotor. More information, are in 

(nPower-RWE, 2007)  

The weight of a blade is:  w = 1.045 Kg and the radius to 

consider corresponds to its center of gravity, that is: distance 

between the root and the rotor axis, plus half a blade length:  

 

                          ( 1 ) 

 

  R =  0. 91 + 0.42/2  (m)    ( 2 ) 

 

Assuming a rotor weight W = 29441 Kg, of which half of it 

is supported by this bearing, the order of magnitude of the 

specific unbalance is then, for one blade:  

 

 Ub = (w.R) /W ~= 80 g.mm/Kg (=80.10
-6

m
-1

) ( 3 ) 

 

The total specific unbalance of the 4 blades is the vector 

composition of the individual unbalances at their respective 

angle.  

 Ubtotal ~=  230 g.mm/Kg    ( 4 ) 

 

With the simplification of a rigid rotor, the conclusion is: 

one blade is enough to raise the vibration level to 160 µm 

(peak-to-peak) minimum on the (1X) component; but with 4 

blades, the 500 µm (peak-to-peak) limit is reached on the 

closest bearing. And this does not even include yet the 

weight of gone off shrouds in the calculation. The threshold 

254 µm_Pk-Pk (as configured in Figure 3) is reached at 

least for two de-rooted blades. The conclusion would not be 

significantly different considering a flexible rotor, which it 

actually is, at 3000 RPM.  

The hypothesis for this scenario would have been as 

follows:  

- one blade detached from its shroud, or the reverse, and 

this caused the blade to be de-rooted from the shaft,  

- large unbalance generated by this event then created 

vibrations that triggered other blades to detach very 

quickly, causing yet other vibration increases up to 

more than the maximum at 500 µm Peak-to-Peak, and 

obviously to the threshold at 254 µm Peak-to-Peak, 

- The lost blades or shrouds “flew” into the turbine 

body, and generated erratic vibrations at fractional 

ratios of 1/3X,  2/3X, etc. for a while before being 

blocked somewhere in the LP turbine shell.  

- Due to the protection, no part reached the condenser.  

 
Figure 16. Static Unbalance calculation with removal of 1 

blade, then 4 blades, on x-axis: speed in RPM (on graphic 

from ISO 1940-1)  

 

In terms of balancing standards, the initial turbine could be 

specified G2.5, was actually G6.3, and the loss of 4 blades 

moves it to G63, which is a considerable value of unbalance 

to consider at this nominal speed (3000 RPM).  



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

7 

4. AUTOMATIC DIAGNOSTIC METHODS  

The further question is how to, not only protect the machine 

(like it was achieved), but also provide automatic 

diagnostics, and possibly a prognostic indication of the 

event. However, at this stage, a blade loss is known to be 

more or less impossible to predict. Nonetheless, providing 

an automatic diagnostic tool with the CMS was required for 

this facility for other types of defects. It was required 

because the site is remote. Availability of experts is scarce 

there and travelling to the site is long and costly.  

4.1. Rule-based expert system  

The CMS provided was completed by an expert system 

running a set of rules to detect 6 types of defects. A 

summary is provided in Table 2. For each defect, and after a 

check on the machine condition, there are 2 successive 

criteria applied:  

First is an “Existence” criteria, by which the presence of a 

typical signature in the spectra is not in error and of 

sufficient significance. 

Second is a “Dominance” criteria, by which the component 

in the spectra, by combination, or association with others, is 

recognized as being the “highlight” of what is happening, in 

real time. 

 

Table 2. Defects detected by the Diagnostic Rule Box. 

 
Fault Criteria Bands 

ratio 
Tunable 

parameter 
Qualifyer 

U
n

b
a

la
n

c
e
 Level 1X>Alert Alert  

Dominance 1X/OVR 93% Probable 

M
is

a
li

g
n

m
e
n

t 

Level 2Xor3X 

>Alert 

Alert  

Dominance (2X + 3X) 

/1X 

100% Probable 

B
e
a
ri

n
g

 

st
if

fn
e
ss

 ratio "abs"/OVR < 33 %  

Meaning: AbsCasing 

/RelShaft 

> 66% Probability 

O
il

 W
h

ir
l Existence SUB > 10 um  

Dominance  SUB/OVR 55%  

Dominance 0,5X/SUB 80% Probability 

S
te

a
m

 I
n

st
a
b
il

it
y
 

Existence SUB > 10 um  

Dominance SUB/OVR 55% Possibility 

Dominance 0,5X/SUB < 80% - 

R
u

b
 Existence HI > 10 um  

Dominance HI/OVR 30% Possibility 

 

The object under scrutiny are “ratios” being just a particular 

band or a combination (that can be a ratio) of them. The 

tunable parameter is the threshold beyond which the rule is 

considered as true. A qualifier aims then at indicating the 

quality of the decision that is being made.  

The “Probable” is almost sure, and “Probability” is stronger 

than a “Possibility”. Using other parameters than vibrations 

can alter the qualifier. For example, higher metal 

temperature on a bearing would raise a misalignment defect 

from “Possibility” to “Probability” in this “kind-of” ranking 

method. An example of rule is shown graphically below in 

Figure 17. This rule combines the SUB, 1/2X, 1X bands of 

both sensors X and Y in the intent to detect:  

- fluid dynamic instability of steam, whose signature is a 

strong sub-synchronous, but rarely restricted to 0.5X 

only,  

- oil whirl in the journal bearing, indeed a quite different 

defect, always located between 0.43X and 0.48X, so that 

all its energy, using the FFT configured resolution, is 

located in the 0.5X band.  

 
Figure 17. Example of rule for Oil-whirl and Steam 

instability with tests (at left), operations (in middle) and 

actions  (at right).  

 

Together with the rules, the quadratic sum of the vibration at 

1X is computed in real time, in the same way as the 

computation of the residual unbalance index. Similarly, an 

index of residual misalignment is computed by the quadratic 

sum of harmonics 2X and 3X assuming that misalignment 

depends on these harmonics. This is a novelty and is called 

“General misalignment index”. Only experience will tell 
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whether this indicator would give valuable information in 

future.  

Maintenance operators will display both indexes (as in 

Figure 2), trend them against time, and provide feedback.   

In this machine, we had an exception to the rules concerning 

the “Bearing stiffness” defect. This is because the absolute 

bearing vibration is affected by the transmission path 

through the pedestal between bearing 5 and bearing 6 

(across the generator). We then had to alter the rule by 

including a certain amount (45%) of bearing 5 vibration in 

the rule for bearing 6, and the same for bearing 5 from 

bearing 6 location. We had included this in the calculation, 

instead of an “independent” per bearing calculation:  

 

)5(Re

)6(45.0)5(

brglativeVib

brgAbsVibbrgAbsVib    ( 5 ) 

 

for bearing 5, and: 

 

)6(Re

)5(45.0)6(

brglativeVib

brgAbsVibbrgAbsVib    ( 6 ) 

 

for bearing 6.  

Eventually on this machine with 7 bearings and 6 rules 

each; only 42 rules give an idea of main vibration features, 

if not a precise diagnostic which is, after all, impossible to 

give with just an expert system without the vector 

information on synchronous harmonics, and without built-in 

additional knowledge specific to each particular machine.  

These rules are generic, quite basic, and not sophisticated, 

but are robust and prove to give good results in most cases. 

However, they cannot detect subtle changes in the vibration 

behavior, like we will see with other methods (§ 4.2). This 

type of expert system is installed on 11 large Steam 

Turbines totaling 2.4 GigaWatt installed capacity in India.  

Unfortunately, the automatic rule-based expert system was 

tuned, in this plant, for preventive detection/classification, 

but not for sudden events diagnostics. To that goal, it 

executed the rules (including also the calculations):  

- Only when speed is close to the nominal, in the 

interval [2800 .. 3200 RPM],  

- Every 15 seconds under this condition.  

 

The rules did not give any message in this context, despite 

the importance of the event. It would have been a “good 

luck” if the rule ran just during the event was occurring. The 

probability of this to happen depends on the 3 seconds event 

duration over 15 seconds between the rules: the probability 

was then: 1/5. 

The rule-box ran last time a few second before the event. 

The next run 15 seconds later would have happened only 

while the machine speed already dropped below 2800 RPM.  

Had it run, it would have probably detected unbalance all 

over the places, and potentially also a “Steam instability” 

which it wasn’t, but only a strong sub-synchronous 

signature just after the trip (due to the 1/3 harmonics and 

multiples). The expert system missed the event then.  

 

As a conclusion, an expert system based on a set of rules 

provides valuable diagnostics, but in this example, it failed 

to provide information:  

- beforehand, as a predictive tool, because not fine-tuned 

enough to detect subtle changes,  

- during the trip when this was precisely useful, because 

not executed often enough,  

- after the trip because it did not consider interharmonics 

during rundown.  

4.2. AANN Post-processing  

Auto-Associative Neural Networks (AANN), also known as 

Replicator Neural Networks or Auto-encoders, are families 

of Neural Networks which are trained to reproduce their 

input at the output (Kramer, 1992).   

At first sight, this replication task could seem trivial; 

however, the network structure has a “bottleneck” as the 

hidden layer has fewer neurons than the input and output 

layers as it can be observed in Figure 18.  

 

 

Figure 18. A simple Auto-Associative Neural Network. 

 

This means that within the hidden layer(s) a compression 

process of the input data takes place. This forces the 

network to learn the significant features of the input data.  

Once trained with healthy data, the AANN is capable to 

replicate unseen nominal data with good accuracy. However 

faulty data are expected to possess information content 

which is structured differently from the healthy ones and 

that cannot be efficiently compressed in the hidden layers. 

As a consequence the reconstruction result will be 

inaccurate.   

Once a new sample is processed by the AANN, the measure 

of the difference between output and input, the 

Reconstruction Error (RE) is computed as:  
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        ║X-Out X║ (7) 

 

where X  is the input vector Out X  is the output of the 
AANN and || symbol stands for any p- norm. 
 

The RE measures how accurately a new sample can be 

replicated by the network. A small RE indicates that there is 

no new information content in the data under test, hence no 

novelty or anomalies are present. A thresholding logic can 

then be applied to establish if the data belongs to the same 

class used during training which is, usually the healthy 

class.    

The threshold value can be determined using the 

information contained in the statistical distribution of the 

RE computed over the training set (for instance average and 

standard deviation). 

In recent times, AANN methodology has been increasingly 

proposed for machine condition monitoring purposes 

(Worden, 1997) (Sanz, Perera, & Huerta, 2007) (Chandola, 

Banerjee, & Kumar, 2009) (Lu, C., Hsu, & Zhang, 2000). 

As a consequence after the trip event it has been decided to 

analyze the data recorded approximately ten hours before 

the incident with AANN to understand if such methodology 

could have been helpful to detect symptoms in advance with 

respect to our traditional strategy. 

Therefore an AANN has been trained using data recorded 

the day before the incident. Network input is represented by 

12 features computed on vibration data acquired by 

accelerometers on bearings 3, 4 and 5. 

The AANN is a single hidden layer network with 12x4x12 

topology; the training set size is 880 samples. 

 

Once training has been completed data acquired during the 

last ten hours before the incident has been processed by the 

network. For each sample the reconstruction error using L
2
 

norm has been computed. The results, plotted in linear and 

log10 scale, are shown in Figure 20   

 

Figure 19. Reconstruction error in Log10 scale. Dashed line 

represents the threshold level, dotted line the Log10 of RE. 

 

 

Figure 20. Reconstruction error in linear scale, on top the 

zoom of the period before the incident 

It is fairly visible from both plots that RE starts increasing 

just before 10 am. On the logarithmic plot our statistical 

threshold level (dashed line) is crossed before 10 am. Then a 

plateau is reached just after 11 am and this level is 

maintained until the trip event. 

5. CONCLUSIONS 

This case study shows the benefit of protection against high 

vibration, with properly configured systems able to trip a 

unit quickly enough but with no false alarm. An on-line 

Condition monitoring System is then quite useful to analyze 

the signature of before and during the trip and understand 

the events sequence. The automatic diagnostic using a set of 

rules failed in this case because it was configured to run in 

steady-state, not often enough, and with too basic rules.  

Data reprocessed and analyzed by means of an AANN 

shows that precursors of the trip event would have been 

identified well in advance with respect to the methods 

currently configured and implemented. As a consequence 

the AANN methodology is very well suggested for next 

generation of online monitoring systems aside more fine-

tuned rule-based expert systems.  

The results of these methods are particularly important for 

remote power plants with no expertise at site.  This incident 
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represented a concause of the shortage of power event in the 

summer 2012 in Northern India (Singh & Katakey, 2012). 
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