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ABSTRACT

Prognostics is a promising approach used in condition based
maintenance due to its ability to forecast complex systems' re-
maining useful life. In gas turbine maintenance applications,
data-driven prognostic methods develop an understanding of
system degradation by using regularly stored condition mon-
itoring data, and then can automatically monitor and evaluate
the future health index of the system. This paper presents
such a technique for fault prognosis for turbofan engines. A
prognostic model based on a nonlinear autoregressive neural
network design with exogenous input is designed to deter-
mine how the future values of wear can be predicted. The
research applies the life prediction as a type of dynamic fil-
tering, in which training time series are used to predict the
future values of test series. The results demonstrate the rela-
tionship between the historical performance deterioration of
an engine's prior operating period with the current life predic-
tion.

1. INTRODUCTION

Critical engineering systems, such as gas turbines, require dy-
namic maintenance planning strategies and predictions in or-
der to reduce unnecessary maintenance tasks. A Condition
Based Maintenance (CBM) decision-making strategy based
on the observation of historical condition measurements can
make predictions for the future health conditions of systems
and this capability of predictions makes CBM desirable for
the systems reliability, maintenance, and overall operating
costs (Jardine, Lin, & Banjevic, 2006). The predictions on
the health level of the system can be provided to maintenance
scheduling and planning. This is especially useful in demand-
ing applications, where the maintenance must be performed
safely and economically for an entire lifetime.

One of the key enablers in CBM is the prediction, which leds
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to the transfer of data from the present monitoring into prog-
nostics. CBM can ensure impending failure diagnosis and
equipment health prognosis by obtaining periodic data from
system indicators (Peng, Dong, & Zuo, 2010).

Prognostics can be defined as the process of predicting the
lifetime point at which a component or a system could not
complete the proposed function planned during its design (Pecht,
2008). The amount of time from the current time to the point
of a system's failure is known as Remaining Useful Life (RUL)
(Galar, Kumar, Lee, & Zhao, 2012). The concept of RUL
has been widely applied as a competitive strategy to improve
maintenance planning, operational performance, spare parts
provision, profitability, reuse and product recycle (Si, Wang,
Hu, & Zhou, 2011). The prediction of RUL is the principal
goal of machine prognostics and this paper, therefore, eval-
uates the prognostics as the calculation of RUL for turbofan
engine systems.

Data-driven prognostics are more effective methods in gas
turbine prognostic applications because of the simplicity in
data finding and consistency in complex processes (Heng,
Zhang, Tan, & Mathew, 2009). They are also of particular
importance because of the ability to integrate innovative and
conventional approaches by generating inclusive prognostic
methods over a wide-ranging data series.

The most commonly practiced data-driven prognostic meth-
ods in the literature are the Artificial Neural Networks (ANNs)
(Schwabacher & Goebel, 2007; Heng et al., 2009). ANNs
are computational algorithms inspired by biological neural
networks of the brain and are used as machine-learning sys-
tems made up of data processing neurons, which are the units
to connect through computation of output value by the input
data. They learn by example by identifying the unique output
with many past inputs values (Byington, Watson, & Edwards,
2004).

Neural networks are effective applications to model engineer-
ing tasks consisting of a broad category of nonlinear dynami-
cal systems, data reduction models, nonlinear regression and
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discriminant models (Sarle, 1994). In some complex engi-
neering applications, the observations from the system may
not include precise data, and the desired results may not have
a direct link with the input values. In such cases, ANN is
a powerful tool to model the system without knowing the
exact relationship between input and output data (Murata,
Yoshizawa, & Amari, 1994). In particular, when a longer
horizon with multistep ahead long term predictions is required,
the recurrent neural networks play an important role in the
dynamic modelling task by behaving as an autonomous sys-
tem, and endeavouring to recursively simulate the dynamic
behaviour that caused the nonlinear time series (Haykin & Li,
1995; Haykin & Principe, 1998; Menezes & Barreto, 2008).
Recurrent Neural Network structure applies the target values
as a feedback into the input regressor for a fixed number of
time steps (Sorjamaa, Hao, Reyhani, Ji, & Lendasse, 2007),

Multi-step long term predictions with dynamic modelling are
suitable for complex system prognostic algorithms since they
are faster and easy to calculate compared to various other
prognostics methods. The recurrent neural networks, there-
fore, have been widely employed as one of the most popular
data-driven prognostics methods and a significant number of
studies across different disciplines have stated the merits of
them by introducing different methodologies.

However, ANN multi-step predictions in prognostic applica-
tions can be quite challenging when only a few time series
or a little previous knowledge about the degradation process
is available and the failure point is expected to happen in the
longer term. The greater interest in neural networks is the ac-
complishment of learning but it is not always possible to train
the network as desired. The results at multi-step long-term
time series predictions may be ineffective and this is generally
more evident in the time series having exponential growths or
decays.

In this paper, a Nonlinear AutoRegressive neural network with
eXogenous inputs (NARX) is designed to make future mul-
tistep predictions of an engine from past operational values.
The model learns successfully to make predictions of time
series that consists of performance related parameters.

The designed prognostic method is modeled by using turbo-
fan engine simulation C-MAPSS datasets from NASA data
repository (Saxena & Goebel, 2008). The results demonstrate
the relationship between the historical performance deteriora-
tion of an initially trained subset and the RUL prediction of a
second test subset.

2. MODELING AND PREDICTION WITH NARX TIME SE-
RIES

A NARX model is a recurrent dynamic network which re-
lates the current value of a time series with the trained and
predicted past values of the driving (exogenous) series. The
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Figure 1. NARX network with the modelling of Series-
parallel and Parallel modes

model includes feedback connections enclosing several layers
of the network and these connections form the externally de-
termined series that generates the series of predictions (Beale
& Demuth, 1998).

NARX can be extended to the multivariable case when the
scalars are replaced by vectors in appropriate cases and mul-
tiple tapped delay lines are structured from the target series of
the network (Siegelmann, Horne, & Giles, 1997). This exten-
sion would provide that each delay line is used for a following
single output as seen on Figure 1.

Specifically, the defining equation for the operation of NARX
model is:

y(t+ 1) = f(yt−1, yt−2, ..., yt−ny , ut−1, ut−2, ..., ut−nu)
(1)
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where un and yn stand for, respectively, the externally deter-
mined training input and target variables to be explained and
predicted, while t denotes the discrete time step (Menezes &
Barreto, 2008; Siegelmann et al., 1997). This equation is im-
plemented by using a feedforward neural network to approxi-
mate the function where the previous values of the exogenous
input signal along with the previous values of the output sig-
nal regress together to achieve the next values of y(t). The
model can be expressed as in equation 2;

yt+1 = f(y(t);u(t)) (2)

The back-propagation network structure in Figure 1 describes
that NARX model is applied in two different modes (Menezes
& Barreto, 2008).

• Series-parallel (SP) mode, or also called as Open Loop
mode, only applies to actual values of the target series
in order to form the regressor of target series. SP mode
is used for network training between the target variables
and the principal components (input series).

ŷ(t+ 1) = f̂(ysp(t);u(t)),

ŷ(t+ 1) = f̂(yt−1, yt−2, ..., yt−n, ut−1, ut−2, , ut−n)

(3)
• Parallel (P) mode, or also called as Closed Loop mode,

forecasts the next values of target series by using the
feedbacks from the regressor of target series. The multi-
step ahead long term predictions are performed in paral-
lel mode after both input and target series are trained in
SP mode.

ŷ(t+ 1) = f̂(yp(t);u(t)),

ŷ(t+ 1) = f̂(ŷt−1, ŷt−2, ..., ŷt−n, ut−1, ut−2, , ut−n)

(4)

The state variables of the network, which correspond to xn
on the bottom of Figure 1, are defined to be the memory ele-
ments such as the set of time delay operators. A network has a
bijective function (one to one correspondence) between these
state variables and the node activations because each of the
node values is stored at each time (Siegelmann et al., 1997).

The state variables at the next time step are expressed as

ai(t+ 1) = zi(t) (5)

The target series is assigned arbitrarily to be equal to the first
node in the network and therefore;

y(t) = z1(t) (6)

The state variables of the NARX model includes two delay
lines on the input and target series. The corresponding for-
mula to calculate the state variables is reformed as

a(t+1) =



u(t) i = nu

y(t) i = nuny

ai+1(t) 1 ≤ i < nu and nu < i < nu + ny

(7)
when the delays correlate with the values at time t, it is de-
noted by

a(t+1) = [(yt−1, yt−2, ..., yt−n, ut−1, ut−2, ..., ut−n)] (8)

A NARX network is formed of a Multilayer Perceptron (MLP)
which takes the input state variables as a window of past input
and output values and computes the current output. Neurones,
which are the building blocks of a neural network, evaluate
and process these input state variables. The nodes in the hid-
den layer are performed by the function of

y = σ
(∑n

i=1 wiai + b
)

(9)

where the fixed real-valued weights (wi) are multiplied by
state variables (xi) with the adding of bias b. Thus, the neu-
ron's activation (y) is obtained as a result of the nodes and the
nonlinear activation function of neurons (σ) (Barad, Rama-
iah, Giridhar, & Krishnaiah, 2012; Krenker, Kos, & Bešter,
2011). The activation function used in the model is the sig-
moid function denoted as

σ(a) =
1

1 + e−a
(10)

It is accepted in this study that y corresponds to assumed val-
ues of gas turbine performance, and u is the input data set
consisting of multiple multivariate time series from a certain
type of engine. The state variables of input values used in the
nodes are represented by x. It is noted that the errors in data
training and forecasting do not allow the current value of the
output variables to be predicted exactly by using historical
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data.

3. APPLICATION OF ALGORITHM

Neural network performance is related to the primary steps
of the network design process. In this work, the forecasting
setup of NARX consisted of the following structures:

1. Data Collection and Preparation
2. Open Loop Setup
3. Network Configuration
4. Network Training
5. MSE (mean square error) validation
6. Switching to Closed Loop Mode
7. Using the Closed Loop design with trained network to

predict future outputs of test subset
8. Evaluation of the result with corresponding RUL values.

The input data sets consist of multiple multivariate time se-
ries measured from the engine. The time series are divided
into sequential subsets of data points, typically consisting of
successive measurements made over a time interval. It is ex-
pected from the model to train itself from the previous state
and make further predictions by using this data.

3.1. Data Exploration & Preparation

The C-MAPSS (Commercial Modular Aero-Propulsion Sys-
tem Simulation) dataset is formed of multi-various time se-
ries assembled into training and test subsets. At the start of
each series, the variables start in normal operational condi-
tions with a case-specific unknown initial wear which is con-
sidered normal (Saxena & Goebel, 2008).

Training time series have full operational periods which end
at the failure point due to the wear. However, the test subsets
are curtailed some time before they reach the system failure.
The challenge is to predict the remaining time interval be-
tween the end of each test set and the actual failure time. A
data vector corresponding to true RUL values of the test data
are given separately and so that, the results can be validated
with the true RUL values of test subsets.

Each measurement in both data subsets is a snapshot of data
which is taken during a single operational cycle. Although
the measurements are not named, it is known that they cor-
respond to different variables (Saxena & Goebel, 2008). The
exponential growth in wear during the operations is the key
assumption used to train the network, to calculate remaining
useful life and to decide on the threshold point for multistep
time series predictions. Therefore, this paper only uses the
variables in which an exponential growth or decays occurs.
There are 14 different measurements used in the model for
training and prediction. These measurements are in differ-
ent value ranges and moreover, the time series are very noisy

and unsuitable for NARX closed loop prediction. It is there-
fore required to extract new information from the data set and
transform it into a comprehensible structure for further fore-
casting use.
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Figure 2. Time Series After Normalisation

• Normalisation and Transformation:

The raw time series needs to be reformatted in a given ar-
ray. An unity-based normalisation (feature scaling) method
is used to bring all these values into the range of [0, 1]
and later, the range of values are restricted slightly due
to avoid multiplication by zero which would cause fail-
ure in NARX training.

The curves of engine data series are sometimes inconsis-
tent to wear like trajectories, acting like exponential de-
cays as seen on Figure 2, so the decaying curves (blue)
are required to be transformed into exponentially grow-
ing curves (black).

The formula unifying both rescaling and transformation
is given as:

f(x(i)) =


x(i)−xmin

xmax−xmin
for c < 0(

xmax − xi−xmin

xmax−xmin

)
+ xmin for c ≥ 0

(11)

• where, c corresponds to the difference between the mean
of early time series and the mean of late series, repre-
sented as;
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c =
1

d

d∑
i=1

xi −
1

d

L∑
i=(L−d+1)

xi (12)

The length of the time series is L, while d is the constant ar-
biter factor that determines the amount of series used in the
calculations of mean. Both train and test subsets are com-
bined into a transient dataset for normalisation and transfor-
mation processes in order to assign the threshold point con-
sistent with each other. Subsequently, they are divided into
two discrete subsets again.

• Filtering:

The exponential growth of the wear in time series is very
noisy because of the system and environmental settings.
The series are required to be filtered by reducing the in-
formation that is ineffectual or confusing to the model.
The polynomial fitted curves are used for exponential
curve fitting process returning the coefficients for a kth

degree polynomial which best fits in a least-squares man-
ner and calculates the threshold point of failure as closely
as possible .

The polynomial regression is used to filter the nonlinear
relationship between the noisy raw values and the corre-
sponding dependent variable which is modelled as an kth

degree polynomial (Anderson, 2011). In this study, 9th

and 4th degree polynomial regressions are used respec-
tively for train and test subsets because only the higher
degree polynomial regression can detect the failure thresh-
old point in training subset. The main aim of this analysis
is to estimate the expected values of dependent vectors in
terms of the values of independent vectors.

Generalising from a raw vector to a kth degree polyno-
mial, the general polynomial regression model yields to

yf i = a0 + a1xi + a2x
2
i + ...+ akx

2
i (i=1,2,...,k)

(13)
where, x is independent variable, y is dependent variable
and a is response vector. This expression can be written
in matrix form as


yf 1
yf 2
yf 3

...
yfn

 =


1 x1 x21 · · · xk1
1 x2 x22 · · · xk2
1 x3 x23 · · · xk3
...

...
...

...
1 xn x2n · · · xkn




a0
a1
a2
...
ak

 (14)

In pure matrix notation, the equation is given by;

~yf = X~a (15)

After the polynomial regression is received, the filtered data
can be achieved by the following formula

xf (i) =
(
yf ig + xi

)
/(g + 1) (16)

where g corresponds to multiplication variable which is se-
lected in a way that it ensures consistency and relevance of
the time series for network training. In other words, it re-
duces the noise into an acceptable range that NARX model
can perform, train and predicts well.
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Figure 3. Input And Output Variables

The normalised, and transformed series coherent with the wear
growth pattern of the assets performance are shown in Fig-
ure 3.

The exponential growth is generally linked with the perfor-
mance of main engine components and can also be assumed
to be equivalent to the parameters of aircraft engine mod-
ules such as efficiency and flow level. The interval start and
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end points represent a full operation period between a certain
point at a set performance level and the eventual threshold
limit, which can be determined by the end user according to
their standards. In this study, the threshold limit is determined
according to the ending value of training output series.

• Output assignment:
After the input variables are normalised, transformed and
filtered, the target series are assigned as the median of all
input values at the same time step. The corresponding
formula separating the higher half of input variables at
the same time step from the lower half is expressed by
the following equation (Hogg & Craig, 1995).

According to the order statistics;

xf 1 = minj ỹtj , xf 2, , xfN−1, xfN = maxj ỹtj (17)

the statistical median of the Input variables at time step j
is defined by

ytj =


xf (N+1/2) if N is odd

1
2

(
xfN/2 + xf 1+N/2

)
if N is even

(18)

3.1.1. Recurrence relation

Since the target vector representing the wear level of the sys-
tem is detected by the median values of input series, the wear
growth model can be applied to learn the pattern from histor-
ical data and to estimate RUL time until the pattern exceeds
threshold point.
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Figure 4. Transformed Data

Although the NARX model can accomplishment the network
training in open loop mode, it cannot produce predictions of
multi-step long-term time series when the vectors have ex-
ponential growths as are present in these series. Therefore,
a recurrence relation equation is used to redefine the expo-
nential series into a form that the model can perform well.
Each further series are defined as a function of the preceding
values.

xr(i) =


1 for i = 1

xf (i)/xf (i−1) for i ≥ 0

(19)

where xr (or yr according to the data type) corresponds to ini-
tial principal components un or the target variables yn which
are used for network training and forecasting in Figure 1.

The input and output series trajectories take form as in Fig-
ure 4 after the exponential data is redefined according to above
equation. Subsequently, the predicted data vector is rein-
stated to its original exponential form after closed loop net-
work makes multistep predictions.

3.2. Network Configuration and Training

The first step to structuring the network structure is the con-
figuration of input and output series. Inputs are situated as a
14×t cell array of 1×1 matrices which represents a dynamic
data of ’t’ time steps of 14 different variables. The output, or
target, is also a 1 × t cell array of 1 × 1 matrices and only
represents t time steps of 1 variable. In order to reduce error
numbers between trained outputs and targets, multiple open-
loop networks are designed in a double loop structure over
the increasing number of hidden nodes of an outer loop and
random weight initialisations of an inner loop (Heath, 2015).

Figure 5. Closed and Open Loop designs in NARX
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• Mean Squared Error : The loops terminates when min-
imum desired error occurs. The standard reference Mean
Squared Error is used to calculate the performance of the
networks. It represents the average squared difference
between achieved output values from open loop mode
and initial target values.

MSE =
1

t

t∑
i=1

(
y̌r(i) − yr(i)

)2
(20)

At the end of both loops, the least erroneous network is con-
verted to closed loop mode. For validation, a predetermined
MSE goal is used to choose the best open loop design mode.

Figure 5 illustrates the open and closed loop modes in NARX
design. The network is firstly trained by the introduction of
input series x and target values y. The tapped delay lines
are decided with two delays (1:2) for both the input and the
targets so training begins after these points. In each time of
neural network training, the results can give different solu-
tions because of different initial weight w and bias values b.
Following the training between input and target, NARX uses
back-propagation for multi step ahead predictions by using
the stored network function.

Bayesian regularisation is used to minimise a combination
of squared errors and weights in network training. This ap-
proach can be implemented well in generalisation for difficult
and noisy datasets.
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Figure 6. Predicted Multistep Variables

3.3. Multi Step Prediction

Test subsets have ended some time prior to failure occurrence.
This means that there is no real data to train the remaining
time series. To that end, the closed loop mode replaces the

Input And Target series

NARX Model

Did the network
reach the MSE

goal?

Closed network

Drag and drop it to
the Closed Loop

Mode

Threshold Point
RUL predictions

Increase Hidden
Nodes

Open Loop
network

TEST Input And Target
series

Shifted inputs, Initial
input delay states

and
Initial layer delay

states

Converted Input
delay states and

layer delay states

Multi Step Predicted
Value

Repeat Ntrial
Times

Figure 7. Flowchart representing the process

feedback input values of the test subset's values with a direct
connection from the test targets. The algorithm is trained in
open loop network simulation with the train subset, and then
converted into a closed loop mode to make multistep predic-
tions by including only the external test subset's inputs.

The input and output series are complicated and required to
be simplified so both series can be shifted as required steps in
order to fill the input and layer delays. Then, the feedback
outputs are formed into a new form conducive to defining
closed-loop parameters as seen on the flowchart in Figure 7.
As a result of this process, a vector of multistep predictions
of target series can be calculated by the closed loop network
and test parameters. The predictions made by using internal
inputs can be as long as the training series. Figure 6 illus-
trates the multi step predictions of the recurrence relation. A
reverse calculation is required to reinstate the wear shaped

7



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

Time
0 20 40 60 80 100 120 140 160 180

W
e

a
r 

L
e
v

e
l

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Failure Threshold

Multi Step
Predictions

Test Dataset
Target

Failure Point

Train Dataset
Target

Remaining Useful
Life

Figure 8. Remaining useful life multi step estimation

exponential growth as seen on Figure 8.

yp(i)
=


yt(i) × yr(i) for i = 1

yp(i−1)
× yr(i) for i ≥ 0

(21)

4. ANALYSIS OF MODEL

Based on the previous section, the engine wear level prog-
nostic analysis is carried out using dynamic network mod-
elling. An initial wear threshold point is specified before the
model is started. This point basically corresponds to where
training subset's target values has the maximum value. It is
assumed that the test subsets needs to fail at a similar fail-
ure point found in training data. Figure 8 presents the re-
sult of multistep data prediction for the test subset of the first
operational sequence of the first dataset. Here, x-axis repre-
sents the time index (cycles) showing the assumed number of
flights whereas y- axis is the wear index based on normalised
parameter levels.

The test subset in Fig 8 consist of 30 steps. The future trajec-
tories after this point are calculated and predicted by closed
loop mode. The training subset, on the other hand, is formed
of 191 steps and the end of the series represents the failure

point. Since NARX model allows to make predictions as long
as the data steps trained in the open loop mode, there can only
be 191 future predictions to find the remaining useful life of
test subset.

The normalised wear level for both subsets has started close
to each other so the values of initial wear for both subsets are
parallel in the beginning. Remaining useful life is calculated
as the time interval between the end of test subset and the
point where the prediction value exceeds the value of train-
ing subset target vector. In Figure 8, where the future wear
growth at gas turbine performance is predicted, RUL estima-
tion corresponds 116 cycles. The true remaining useful life
for the test engine subset was given as 112 steps separately
in the dataset. The absolute deviation between true and pre-
dicted values is therefore reasonably small.

In Table 1, the estimated RUL for the first twenty sequence
is shown along with the true RUL and absolute deviation of
predictions. The future remaining life predictions of NARX
seems promising for employing past and present time series
while some calculations may suffer from computational com-
plexity in particular to the cases having dissimilar initial wear
levels. The prediction of engine RUL from Figure 8 is found
to be satisfactory, however, the algorithm may provide a lower
performance than that have shown very close results due to
the different levels of scattering of the data and the incon-
gruity of test and train series.
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Table 1. Results of first 20 sequences

Sequence True RUL Pred RUL Abs Deviation

1 112 116 4
2 98 112 14
3 69 43 26
4 82 79 3
5 91 88 3
6 93 111 18
7 91 93 2
8 95 107 12
9 111 118 7

10 96 93 3
11 97 85 12
12 124 78 46
13 95 84 11
14 107 98 9
15 83 97 14
16 84 100 16
17 50 52 2
18 28 39 11
19 87 113 26
20 16 26 10

Among all these cases, RUL predictions of 6 cases could be
calculated in a close-range to true remaining useful life, in
which the deviation is less than ten steps. The results of case
3, 12 and 19 have resulted in less performance. The differ-
ence at starting levels of variables between the train and test
variables are relatively higher in these cases.

The number of early predictions is 8 while late predictions
are 12. However, it should be mentioned here that early in
time predictions are less risky as compared to late in time
predictions because late predictions may cause catastrophic
results during operations. On the other hand, an early in time
prediction may cause a significant economic burden when the
failures may not necessarily terminate with life-threatening
conditions (Saxena, Goebel, Simon, & Eklund, 2008).

To sum up, the developed model seems to exhibit promis-
ing results at multi-step long term time series predictions for
exponential wear growths. The training of network could
accomplish learning as desired while training performance
is substantially increased by recurrence input data use and
the loop designs in closed loop mode. However, poor per-
formance on the calculations may happen occasionally since
the future prediction can never be absolutely accurate espe-
cially when the asset is very complex. The deficiencies ex-
hibited by network adequacy and the functionality of the ap-
proach for remaining useful life calculations, such as expo-
nential growths and unstable operating conditions or inabil-
ity to obtain satisfactory multistep calculations, can be eradi-
cated if data sets are trained multiple times and the highest
performance network is applied for forecasting. The sug-
gested model also demonstrates the point that there may be
more reasonable modifications for open and closed loop based

NARX model depending on distinctive implementations and
developments.

5. CONCLUSION

This paper presents a data driven prognostic framework for
gas turbine applications by adapting existing nonlinear au-
toregressive neural network with external input methods. The
NARX model is based on the conversion of open and closed
loop modes to predict multistep exponential growth behaviours
from measured historical information.

An initial dataset is trained in the model to learn the engine
behaviour and a second subset is used to predict future wear
level. The application of the suggested technique shows that
NARX is able to detect the unknown RUL effectively and can
predict the exponential wear level of the system at multistep
long terms.
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