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ABSTRACT

Nuclear monitoring systems provide an increasing amount of real-
time measurements to analyse equipment condition. Storage, re-
trieval, and effective use of information must therefore be made as
efficient as possible in order to achieve reliability goals and addi-
tional reductions in operating costs. Combining them with other
data sources like equipment characteristics, maintenance logs and
previous expertise reports will help make better diagnostics while
minimizing the time dedicated to an analysis hence leading to bet-
ter maintenance decisions. This paper presents an overview of the
project under study at EDF to develop a case based reasoning plat-
form enabling experts to efficiently retrieve similarities between
past events and the current situation. Several technical barriers
are encountered such as the comparison of multidimensional time
series, of textual information and the extraction of signal features.
The problem is here framed as a pattern classification problem
where the classes correspond to equipment faults. Similarity cri-
teria have been defined and evaluated against nuclear power plants
data for the diagnosis of abnormal patterns on critical equipment.
The classification results are compared with service and exper-
tise reports using clustering and classification algorithms. The
prospect of this diagnosis is to support the adjustment of mainte-
nance schedule by estimating the remaining useful life of critical
equipment.

1. INTRODUCTION

In the face of competition from other energy sources, research on
nuclear power plants aims to increase the equipment reliability to
ensure safety and security, while improving performance by re-
ducing operating costs. The balance between these objectives is
partly ensured by optimizing maintenance decisions. On the one
hand, this optimization helps reduce outage duration by limiting
equipment inspection or unnecessary replacement of equipment
– required by the calendar based maintenance policy. On the
other hand, a smarter scheduling of equipment replacement helps
to avoid unplanned outage caused by safety monitoring alarms –
consequence of the reactive maintenance policy.

To mitigate these issues, research on a third maintenance policy,
called condition based maintenance, grows rapidly (Jardine, Lin,
& Banjevic, 2006). It consists in, first, detecting incipient failures
using monitoring systems and then, identifying the resulting main-
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tenance tasks that should eventually be undertaken. This process
can be broken down in four main tasks which are Fault detection,
Fault diagnosis, Fault prognosis and Maintenance optimisation.

Besides the benefits of maintenance decisions optimization, the
rapid technological progress of data management solutions opens
up new prospects by making a better use of the available data
– sensors measurements, equipment characteristics, maintenance
logs, previous expertise, etc. These storage systems indeed re-
move some technical barriers by easing access to data, potentially
heterogeneous in nature, and offering scope for further analyses
by combining these data sources. These analyses help to extend
the equipment knowledge which lead to potential applications on
monitoring and maintenance optimization, by supporting the ex-
perts in their diagnostic, prognostic and maintenance schedule.

In this context, this study focuses on fault diagnosis – which can
in turn support prognosis and maintenance decision. The diag-
nostic process of an incipient failure that occurs on an equipment
can be compared to that realized by a doctor examining a pa-
tient. The first step of the process consists in the health assess-
ment whose objective is to state precisely the symptoms of the
potential equipment failure. For this purpose, the doctor com-
bines information coming from the regular medical check-ups –
respectively the sensors monitoring the state of the equipment in
real-time – with other additional measurements driven by the sus-
pected cause of the failure. The characterization of the study case
through the identification of the symptoms constitutes the key part
of the diagnostic process. This diagnostic will entirely rely on the
measurements realized to assess the equipment status. These mea-
surements, combined with information regarding the history of the
equipment and previous maintenance operations, form the inputs
of the diagnostic process.

For the diagnostic task, two approaches can be taken, alterna-
tively or jointly. The first approach is to use the experts’ knowl-
edge of monitored equipment – which relies on different sources,
namely the manufacturer’s information, physical or thermody-
namical models, simulations, etc. The second one uses the operat-
ing experience by comparing the current situation against previous
abnormalities – which occurred on similar equipment.

The proposed approach for diagnostic is to build a structured
database of previous abnormalities. Granting this database with
a metric, the comparison of situations will follow the case-based
reasoning approach. This approach will be defined and evaluated
against nuclear power plant equipment. Statistical methods will
help to refine the diagnostic and experts’ knowledge of equipment
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by adjusting the model – both the structure and the metric. There-
fore, the problem is here framed as a pattern classification prob-
lem in which adapting the model reduces the misclassification and
therefore leads to a better diagnostic.

This paper is organized as follows. Section 2 introduces the di-
agnostic process and some background while Section 3 presents
the problem for a chosen EDF application case and states the ap-
proach followed. The building up of the model will be developed
in Section 4 followed by its evaluation and refinement in Section
5. Drawbacks and perspectives of the research will be discussed
in the conclusion.

2. BACKGROUND

Monitoring systems provide a huge amount of physical mea-
surements regarding the equipment status and its components.
Thanks to the extensive instrumentation of equipment, in addi-
tion to safety alarms, fault detection methods are implemented for
early detection of abnormal behaviors. These detection methods
use the sensors time series to detect a faulty behavior. Potential
abnormalities are then analyzed by experts to assess the severity
of the potential damage and subsequently needed maintenance op-
erations. Case-Based reasoning methods assist experts in finding
the cause behind the current situation, and providing guidance on
maintenance decision-making and planning.

2.1. Fault Detection

A fault is defined as a ‘condition of a machine that occurs
when one of its components degrades or exhibits abnormal be-
havior, which may lead to the failure of the machine’ (ISO
13372:2012(E/F), 2012). Monitoring systems provide real time
information to operators about the current equipment status.

The fault detection task has already been thoroughly investigated
and tools are deployed at EDF for early detection of abnormal
behavior on any monitored equipment (refer to statistical meth-
ods as the one presented in (Todorov, Feller, & Chevalier, 2015)).
One algorithm in use on monitored systems is based on a cluster-
ing approach applied to the sensors measurements (ECM: Evolv-
ing Clustering Method (Song, 2001)). This supervised method
distinguishes between the normal and the abnormal behaviors of
multidimensional time series. When the residual – relative devi-
ation of signals from their referenced normal behavior – reaches
a threshold, warnings are triggered which alerts the operators of a
potential fault detection, as illustrated by the Figure 1.

Figure 1. Global residual evolution which triggers the warning
signal

Note 1: This figure illustrate the evolution of a global residual signal. Three areas
are presented. The first one (in green) corresponds to a normal behavior. In the
second area (in yellow), few points are in error. The persistence of these errors
leads, in the third area (in red), to trigger the warning signal.

Following this detection, every anomaly must be extracted and
analyzed by experts to diagnose the encountered situation. Infor-

mation used for the diagnostic are monitoring data and additional
information on the equipment. Regarding the monitoring data,
this extraction concerns only sequences of a subset of sensors,
which is considered relevant for the monitored equipment.

2.2. Case-Based Reasoning

Once a potential failure is detected, it has to be diagnosed. Current
internal research works tend to refine this diagnostic by extending
the equipment knowledge in order to support experts’ decisions.

The proposed method is to follow the Case-Based Reasoning
(CBR) approach to determine the cause of the current faulty be-
havior. This method aims to diagnose a situation by taking ad-
vantage of past experience as detailed in (Aamodt & Plaza, 1994).
This approach mimics the diagnostic process manually realized
by the experts. It could enrich the current equipment knowledge
by being used in addition to other methods already in place such
as model-based or data driven methods.

Facing a potential abnormal behavior of an equipment, the pur-
pose of this approach is to support experts in their diagnosis by
finding the most similar situation that occurred in the past.

Actually, CBR is a broader approach that includes four steps:

• Retrieve: retrieve the closest previous situation(s) stored in
the case-base. A case consists of all essential data regard-
ing the event, including the event characteristics, associated
expertises and the proposed solution;

• Reuse: analyze the closest case or cases in order to make a
diagnosis and adapt their solution to the current situation;

• Revise: test the solution on the current situation and, if nec-
essary, revise;

• Retain: store the resulting experience as a new case in the
case-base.

Each step is directly part of the diagnostic process: comparing
a new potential equipment failure to previous situations, using
the most similar referenced situations to diagnose the current one,
adapting the maintenance and corrective actions and finally stor-
ing the newly diagnosed case to enrich the case-base.

Thus, the CBR process is a way of structuring the past experi-
ence regarding abnormal situations. The underlying difficulties
are with the definition of:

1. A standardized case structure;

2. A similarity distance between two cases.

These two issues are fundamentally related. They both need to be
tackled during the model construction, and will play a significant
role on the diagnostic results.

2.3. Synthesis

To sum-up, monitoring data are analyzed in real-time for early de-
tection of abnormal behaviors. When a faulty behavior occurs, it
is transmitted to the CBR platform. This system extracts essen-
tial information needed to structure the current case according to
the standardized structure. Then, this faulty behavior is compared
to past events already stored in the database and find the closest
cases. Additional information stored in the case-base, concern-
ing the closest cases, helps to identify the cause of the current
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situation, the maintenance or corrective actions, and assess the
Remaining-Useful Life (RUL) of the monitored equipment, i.e.
assess the remaining time before an alarm, a failure or an outage
are likely to occur (refer to Figure 2).

Monitoring
system

Fault
Detection

CBR

Case
comparison

Maintenance

Diagnostic

Corrective
Actions

RUL

Figure 2. Diagnostic process using CBR

Finally, the newly diagnosed case is stored in the case-base to re-
fine the model. This storage includes first the current case struc-
ture, secondly all the helpful information needed in face of a new
situation, such as expertises, maintenance, evolution and more
generally all information, decisions and actions related to this fail-
ure.

3. PROBLEM STATEMENT

In this paper, the CBR approach has been defined and evaluated
for nuclear power plant equipment for the diagnosis of abnormal
patterns.

3.1. Case-study

EDF is a French electric utility which operates a diverse portfolio
of 140+ gigawatts of generation capacity both inside and outside
France. Its 58 nuclear reactors represent 54% of its generation
capacity.

In this study, the monitored equipment is the reactor coolant pump
(called RCP), more specifically the seals #1, ensuring the ther-
mal barrier to the reactor coolant system (Figure 3). This critical
equipment plays an essential role in nuclear power plants for both
safety and efficiency reasons. Early fault detection tools warn the
operators when a potential fault occurs while safety alarms lead to
unplanned outages. In this study, the early warning signals trigger
the CBR process.

Figure 3. Reactor coolant pump [www.mhi-global.com]

The pumps seals ensure the sealing of the moto-pump at the in-
terface between moving shaft and fixed part. The seal #1 is a dy-
namic seal with a controlled leakage flow. It is subject to different
degradations that affect its behavior. These potential degradations
depend on many influencing factors such as the technology and
the endured stress.

The evolution of the seal degradation is, among others, monitored
by flow, pressure and temperature sensors. Experts’ knowledge of
equipment helps to select the relevant features for fault diagnos-
tics.

As a result, data needed for the diagnostic are both a selected sub-
set of monitoring data and influencing factors – additional infor-
mation concerning the equipment. Combining these data sources
enriches the knowledge on the situation under study.

3.2. Available cases

A database of past events, that occurred in the last 15 years on
the RCPs, has been set up using expertise reports and histories of
monitored data but it remains unstructured. It includes all exper-
tises associated to the different situations and the involved mon-
itoring data. This database contains less than a hundred cases –
an amount which is not significant enough to efficiently use sta-
tistical methods. Artificial data will therefore be generated for the
refinement of the model.

Originally, this case-base was not structured enough for the case
comparison. Cases encompass heterogeneous data in nature such
as:

• Time series coming from monitoring data;
• Equipment one-off measurements;
• Pictures, equipment sketches, etc.;
• Texts from maintenance decisions, equipment characteristics,

etc.

To ease the case comparison, a standardized case structure has
been established with the support of experts.

This structure consists in a fair view of a given situation, preserv-
ing its fundamental characteristics. It encompasses all essential
information for the case comparison, based on both influencing
factors and monitoring data, such as the measurements time se-
ries, feature extracted from them, the equipment characteristics
and the warning signals. Only these case structures will be used
during the case comparison.

3.3. Protocol

To sum-up, the proposed approach for diagnostic automation is
to properly establish a model defined by state variables – the case
structure – and a system metric – a similarity measure. This model
will be used at the end to diagnose a new potential failure through
a classification method. Initially established by experts, it will
be refined using both real and artificial data with clustering and
optimization methods.

This protocol is summed up in the following schema (Figure 4).

4. MODEL CONSTRUCTION

As previously stated, available data are heterogeneous. The model
construction first consists in identifying essential information to
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Model: State Variables and
Similarity Measure

• State variables
– sensors measurements

* monitoring
* contextual

– features extraction
– maintenance and other

influencing factors
• Similarity measure

Experts initial
set up

Analyses methods such
as:

• Clustering
• Regression
• Classification
• Etc.

Model validation

Real data Artificial data

Refine the model

Figure 4. General protocol

build a standardized case structure. State variables are then auto-
matically extracted from all registered situations to obtain a struc-
tured case-base. Parallel to this case structure, the second aspect
of the model construction is to define a similarity measure for the
case comparison.

4.1. State variables

State variables are computed using both monitoring data and in-
fluencing factors.

4.1.1. Preprocessing

The variables included in the case structure are numerical or tex-
tual. Regarding the textual data, manual or semi-automatic pre-
processing has been applied to standardize available information,
correct the eventual mistakes and fill the missing slots. This task
of reconciling data has been achieved with the expert’ support.
The resulting meta-data can be sorted in two categories which are
the machine identity (e.g. power plant, pump, technologies of the
seal) and the fault context (e.g. dates, operating regime, number
of pumps affected).

Regarding the numerical data, several preprocessing tasks have
been achieved:

1. Data cleaning: removing all abnormal values by filtering sig-
nals according to a quality indicator;

2. Data selection: filtering according to the operating states us-
ing the reactor fluid pressure and thermal power sensors;

3. Data sub-sampling and compression (applied to time se-
ries): reducing the volume in order to speed up the processing
and focus on long-term evolutions;

4. Data smoothing (applied to time series): reduce the noise
and its influence on the subsequent comparisons;

5. Features extraction (applied to time series (see 4.1.2)): the
selection of features has been tackled by the experts, and their
extraction is automated;

6. Normalization & Synchronizing (applied to time series (see
4.2.3)): this preprocessing helps in the time series compari-
son.

This fifth step – Features extraction – heavily relies on the applica-
tion and requires particular attention when designing it. Regarding
the seal #1 application case, the most impacted signal when a fault
occurs is the seal leakage flow measurement. Its evolution can be
classified in four categories which are:

• Stable: healthy case, where the leakage flow remains almost
constant;

• Stable irregular: abnormal case, the leakage flow fluctuates
rapidly in a limited range;

• Upward drift: abnormal case, large rise of the leakage flow
for a period of several weeks to several months, potentially
with steps;

• Downward drift: abnormal case, large drop of the leakage
flow for a period of several weeks to several months, poten-
tially with steps.

4.1.2. Case structure

The resulting structure is close to the following (Table 1) – confi-
dential information being concealed.

Table 1. Standardized case structure for the EDF application case

Machine identity
Plant Plant n°1 Seal type techno α

Affected pump 3 Glass technology techno β

Plant type 1300 Sliding ring techno techno γ

Context
Start Date 15/11/1997 Operating regime Nominal Level

End Date 22/01/1998 Nb pump concerned 2

Alarm Level LF Yes Alarm Level LT No

Alarm residual LF Yes Alarm Residual LT No

Time series
Leak flow Leak temperature Injection flow Injection temp

Pressure Power
Influence parameters
Injection flow-IF Drop, normal level Injection Temp IT Stable, high level

Correlation LF-IF -92% Correlation LF-IT 70%

Correlation LT-IF -89% Correlation LT-IT 93%

Linear Reg LF=f(IF) (-0.54, 1706, 0.85) Linear Reg LF=f(IF) (1.25, -5.6, 0.87)

Identified symptoms
Evolution LFJ1 Upwart drift Drift Amount XXX L/h

Mean level XXX L/h Noise 15 L/h (std)

Evolution speed Fast: 63.9 days Step(s) No

Evolution LTJ1 Stable Standard Deviation 1.3°C

Mean level 55.9°C
Additional information
Validated Fault BDGJ1 drilled Suspected Fault BDG/DLI

File references 0e621293-8d49-4e31-8c1c-99fe14f6016a

The textual data are used to fill the two first categories of the struc-
ture – Machine identity and Context. The model includes time se-
ries coming from the monitoring system: leak flow, leak temper-
ature, injection flow, injection temperature, pressure and speed.
Then, features are extracted from these measurements time series
to fill the Influence parameters and the Identified symptoms cate-
gories. Finally, the last section provides some additional informa-
tion and links to related documents about the corrective actions,
diagnostic, etc. This last category is only used once the closest
situation is found.

Features extracted from the time series consist in: correlations
between interesting signals, regression parameters and evolution
indicators. These computed indicators describe the global evolu-
tion, the drift amount, the mean level, the noise, the detection of
step, etc. As previously mentioned, the selection of the interesting
features extracted is governed by the experienced abnormalities.
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4.2. Similarity measure

The similarity measure used to compare two situations must be
designed to deal with heterogeneous data. To ease the study, this
global similarity measure has been set up as a weighted measure
– sum of similarity measures. These weights have been initialized
by experts and need to be adjusted.

To avoid initial predominance of a factor on another, every local
similarity measure si of the ith factor Fi, has been set in the inter-
val [0, 1] such that:

si : Fi × Fi → [0, 1]
(x, y) 7→ si(x, y)

(1)

4.2.1. Categorical data

The key characteristic of categorical data is that values are not in-
herently ordered. The categorical similarity measure is applied to
textual data and some numerical information that cannot necessar-
ily be meaningfully ordered such as the plant type. A wide variety
of similarity measures of categorical data exists but in this study,
only the simplest one has been used: the overlap measure (Stanfill
& Waltz, 1986).

This similarity measure si between two elements x and y belong-
ing to the ith factor Fi is defined by:

∀ (x, y) ∈ Fi × Fi, si (x, y) =

{
1, if x = y

0 otherwise
(2)

Thanks to the reconciliation of textual data, the different cate-
gories are standardized which eases the construction of a cate-
gorical similarity measure.

4.2.2. One-off numerical data

The simplest way to make the similarity measure between one-
off numerical data take values in [0, 1] is to normalize a distance.
This definition requires the knowledge of the limits of this dis-
tance measure that should be mapped to the similarity measure;
in addition, this resulting similarity is sensitive to outliers caus-
ing distortions. The solution adopted here is to introduce satura-
tion effects (Lesot, Rifqi, & Benhadda, 2008). Given d a distance
measure such as a Minkowski distance, this similarity measure
sMi between two elements x and y belonging to the ith factor Fi
and based on the saturation limit M is defined by:

∀ (x, y) ∈ Fi × Fi, sMi (x, y) = max

(
M − d (x, y)

M
, 0

)
(3)

M is a fixed parameter chosen according to the range of the com-
pared signals. This parameter is an addition to the set of weights
in the refinement.

4.2.3. Time series

The comparison of time series has been applied to multidimen-
sional time series – the leakage flow, the leakage temperature, the
injection flow and the injection temperature – but the computation
is expensive. These comparisons have been made on both nor-
mal and residual data, using alternatively normalized and unnor-
malized signals in time and amplitude. The similarity measures

adopted for the time series comparison are based on the Euclidean
and the Dynamic Time Warping distances (Wang et al., 2012).

1. Residual data
The residual data comes from the fault detection model already
deployed. Their time series correspond to the gap between the
expected behavior and the real behavior. In a first approximation,
these residual data can be computed by subtracting the mean value
just before the fault detection.

2. Normalization
The following figure (Figure 5) illustrates the normalizations in
time and amplitude. Initially, the two time series do not neces-
sarily have the same length nor the same range. Although the
resulting curves seem very close when normalizing in both am-
plitude and time, the physical meaning of these normalization is
uncertain. To avoid arbitrary eliminating some of them, these four
comparison methods were used in the global similarity measure
with four respective weights. The weights adjustment will reduce
the influence, if not disregard, the less meaningful measures. Note
that for the multidimensional time series comparison, these nor-
malizations are applied to each time series involved in the com-
parison.

(a) Raw data (b) Normalized in amplitude

(c) Normalized in time (d) Normalized in time and amplitude

Figure 5. Time series normalization for the comparison

Note 5: This figure illustrated the additional preprocessing methods applied for
the comparison here on leak flow data (normalizations). Two time series are il-
lustrated, with each time both raw data and preprocessed time series (cleaned, fil-
tered, compressed, smoothed). Note that the amplitude values have been modified
in order to respect the confidentiality. Note 5(a): Raw data with their respective
preprocessed time series represented by the smoothed curves. Note 5(b): Signals

normalized in amplitude – yNA
=

y − ymin

ymax − ymin
. Note 5(c): Signals normal-

ized in time – unchanged for y
(1)
NT

while ∀t, y(2)NT

(
t
∆t1

∆t2

)
= y(2)(t). Note

5(d): Signals normalized in both time and amplitude.

3. Synchronization
In the case when signals do not have the same length, syn-
chronization help in the comparison. The objective is to find
the best matching position. For this purpose, the method used
here is a sliding window with the Euclidean distance to find
the position corresponding to the smallest residual. Again, this
synchronization has been made on all four signals involved in the
comparison at the same time to find the best global position. The
following figures illustrate this process for a 1D synchronization
(Figure 6).
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(a) Raw data (b) Synchronized time series

Figure 6. Time series synchronization

4. Distance measure
For the comparison of time series, the similarity measure has
been created based on a distance measure mapped to the adequate
range, by using normalization and saturation. The distance mea-
sures applied in this study are the Euclidean distance and the Dy-
namic Time Warping. The first one is a lock-step distance while
the second one is elastic. By including both of them with a proper
weight in the global similarity measure, the adjustment of the set
of weights will provide a assessment of their impact.
The Euclidean is a particular Minkowski distance, also called L2.
The distance between two signals x and y of the same length n is
given by:

∀(x, y), d(x, y) =
√∑n

i=1 (xi − yi)
2 (4)

The Dynamic Time Warping is an elastic measure based on a
lock-step distance. The resulting distance is the solution to a con-
strained optimization problem that dynamically computes the op-
timal match between two sequences. In this study, the deforma-
tion has been curbed to maintain the integrity of the subsequences.
When comparing x(1..N)to y(1..M), calling p(1..L) the followed
path vector of (N, M)-warping path – i.e. ∀l, pl = (nl,ml) where
n and m are the index of the path followed – the constraints im-
posed are the following (Senin, 2008):

• Boundary condition: p1 = (1, 1) and pl = (N,M)

• Monotonicity condition: n1 ≤ n2 ≤ ... ≤ nL and m1 ≤ m2 ≤
... ≤ mL

• Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} ∀l ∈
J1..L− 1K

• Deformation limitation condition: ∃s such that |nl − ml| <
s(l).

The following figure (Figure 7) illustrates these two kinds of com-
parisons on artificial signals:

(a) Euclidean distance (lock-step) (b) DTW (Elastic)

Figure 7. Euclidean and DTW illustrations

Note 7: This figure illustrate the lock-step and elastic measure where time series
have equal length. The elastic distance allows space-time distortions.

Unlike the Euclidean distance, the DTW allows the comparison
of sequences of different lengths. Nevertheless, in this study, ev-
ery distance computation has been operated on subsequences of

equal length. The final distance result is then divided by this sub-
sequence length in order to obtain comparable results.

5. Penalty
For original sequences which are not of the same length after the
preprocessing, a penalty has been set. This cost is applied when
the synchronization lead to compare a subsequence of length lsub
less than both of the original sequences length (l1, l2). This cost
parameter penalizes additional points according to the following
rule:

cost = αcost (min (l1, l2)− lsub)2 (5)

A cost parameter αcost has been introduced. This parameter is an
addition to others in the refinement.

6. Time series similarity measure
As a result, the time series similarity measure applied in this study
is a combination of weighted sub-similarities. The resulting dis-
tances (di) are mapped to similarity measures (si) by applying
normalization and saturation (M). Thus, the similarity measure
sMi between two elements x and y belonging to the ith factor Fi
and based on the limit M is defined by:

∀(x, y), si(x, y) = max

(
M − di(x, y) + cost

M
, 0

)
(6)

As with the one-off measure, the saturation parameter has to be
adjusted during the refinement.

Note that the multidimensional signals comparison has been car-
ried out by defining similarity measures for, on the one hand, com-
puted data and features extraction and on the other hand, prepro-
cessed time series.

4.2.4. Global similarity measure

In the global comparison, some categorical factors may be set to
be exclusive such as the operating regime. The resulting simi-
larity measure between two cases c1 and c2 composed in factors
(x1, .., xn) and (y1, .., yn) respectively is defined by:

S(c1, c2) =

∏
i∈F

(Ce)
i

sCe(x, y)

W

 ∑
i∈F (C)

αC
i s

C(x, y)

+
∑

i∈F (O)

αO
i s

O
i (x, y) +

∑
i∈F (TS)

αTS
i sTS

i (x, y)

 (7)

where:

F
(Ce)
i is the ith factor associated to exclusive categorical measurements;
αC
i is the categorical measurement weight associated to factor F (C)

i ;
αO
i is the one-off measurement weight associated to factor F (O)

i ;
αTS
i is the time series weight associated to factor F (TS)

i ;
sCe
i is the local similarity measure of exclusive categorical data;
sCi is the local similarity measure of categorical data;
sOi is the local similarity measure of one-off data;
sTS
i is the local similarity measure of time series;
W is the total weight W =

∑
i∈FC

αC
i +

∑
i∈FO

αO
i +

∑
i∈FTS

αTS
i ;

Note that some local similarity measures depends on the factor
(i.e. on type of measure compared) since they have been obtained
using a saturation parameter which relies on the range of the sig-
nals compared.
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5. VALIDATION AND REFINEMENT

First, a set of weights defined with the expertise support will be
evaluated against the 100 fault cases of the case-base. Then, a
second approach aims to optimize these weights using a genetic
algorithm on artificial data.

5.1. Validation of the model defined with experts

For the validation of the set of weights adjusted with experts, the
resulting similarity measure has been compared to an arbitrary
one. For this purpose, both similarity measures have been used to
cluster the 100 referenced fault cases. The set of clusters obtained
with each measure will be compared with the case categories as
assessed by the experts. The method used for the clustering is
the agglomerative hierarchical clustering tree based on the Ward
distance between clusters since it provides multiple levels of gran-
ularity (Everitt, Landau, Leese, & Stahl, 2011).

Ideally, these case categories would correspond to the diagnosed
fault. Unfortunately, due to missing or incomplete information
regarding the seal #1 faults, this evaluation has been limited to the
four generic leak flow categories.

5.1.1. Set of weights established with the experts

The set of weights has been established according to the following
rules:

• The operating regime of the cases and their seal type are set
to be exclusive criteria – if they differ, the similarity is set to
zero;

• The most important categories of the case structure are the
Identified symptoms, followed by the Time series (relation of
two-thirds):
– For the Identified symptoms category, the greatest

weights are set for the drift amount, its duration and the
signal stability;

– For the Time series category, the preponderant weight
is set for the unnormalized comparison, followed at a
distance by the amplitude and time normalization. As
suggested, the combination of normalizations is more or
less disregarded.

5.1.2. Evaluation of the clustering results

The evaluation has been realized by comparing the results ob-
tained, regarding the leak flow, using an arbitrary set of weights
to those using the refined set. The resulting clustering trees are
presented on dendograms showing the dissimilarity measures of
the clusters at multiple levels of granularity (Figures 8 and 9):

1. Using an arbitrary set of weights (Figure 8):
Judging only from the leak flow generic categories, many cases
are not well classified. The elements under the mention ‘cases not
recognized’ are a mix of cases of all categories including upward
drift and downward drift.

2. Using the experts’ support to adjust the weights (Figure 9):
By adjusting the weights, the classification is significantly
improved. On this dendrogram of the complete tree, the first
differentiation is on the operating regime between nominal
transient on the left hand side and operation state on the right

Figure 8. Clustering tree with an arbitrary set of weights

Note 8: y-axis represents dissimilarity measure and x-axis shows case number
rearranged.

Figure 9. Clustering tree: adjusting the weights with experts’ sup-
port

Note 9: y-axis represents dissimilarity measure and x-axis shows case number
rearranged.

hand side. Then, in the nominal operation state category, the
distinction between downward drift, stable and irregular and
upward drift is well established.

Looking further, finer categories can be pointed out.

• Regarding the transient cases (Figure 10(a)), on the right
branch stand the downward drifts and on the other branch the sta-
ble irregular behaviors. Further differentiations are made on the
drift amount and on the plant;
• Regarding the downward drift and stable and irregular (Figure
10(b)), distinctions are made on the drift amount and duration and
on the stability;
• Focusing on the upward drift (Figure 10(c)), cases are clus-
tered regarding the drift amount and its duration.

These finer clusters could be related to diagnosed faults. As pre-
viously suggested, a way to improve this evaluation is to extend
its scope by judging directly from the observed degradations. The
prerequisite of this is to clean up the database by filling all missing
expertises and observed degradations.

7
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(a) Transient Cases

(b) Downward Drift and Stable and Irregular cases

(c) Upward Drift

Figure 10. Classification tree details

Note 10: y-axis represents dissimilarity measure and x-axis shows case number
rearranged.

This evaluation is really positive in the sense that both the four
generic leak flow categories and the finer details are well clus-
tered when using the similarity measure defined with the support
of experts.

5.2. Refinement of the measure using artificial data

Artificial data helps to extend the case base and avoid over-fitting
in statistical methods. In this study, the two main advantages when
dealing with artificial data are:

• The amount of data is flexible;

• The degree of similarity between cases is known in advance,
by construction.

These advantages are possible only because artificial data cor-
rectly replicate the equipment behavior.

5.2.1. Artificial data

Generated artificial data need to mimic the global interactions
within the equipment. Such a construction requires first a good
knowledge of each sub-equipment and materials of the monitored
equipment, and secondly a good understanding of all their inter-
actions.

Unfortunately, these interactions are very complex and hard to
model – in particular the relations between a given degradation
and the related measurements. Therefore, in this study, the gen-
erated artificial data are limited to the leak flow. The objective is
then to adjust the parameters of the global similarity measure to
find their relative influence on the case comparison.

In this context, the remaining descriptors included in the artificial
case structure are the leak flow preprocessed time series and the
Identified symptoms category (refer to Table 1: evolution, mean
level, step, noise, drift amount, speed).

Several parameters are introduced to generate the artificial signals.
They ensure these signals are as close as possible to real leak flow
measurements:

• Amount of drift: from −200L/h to 600L/h;

• Duration: from 1 month to 1 year;

• Mean level: low (300L/h), normal (450L/h) or high (700L/h);

• Steps: with or without steps;

• Noise: 20 to 40L/h of amplitude.

5.2.2. Problem statement

The problem is here framed as a classification problem. Cate-
gories are identified by construction and the objective is to find
the most adapted set of parameters involved in the similarity mea-
sure that replicates these predefined clusters.

When defining a global similarity measure between cases, sev-
eral parameters have been defined: a set of weights and additional
variables introduced in the definition of local similarities (refer
to 4.2). The resulting problem is a constrained non-linear opti-
mization problem. The aim is to minimize the misclassification
by refining the global similarity measure.

For this purpose, during the generation of artificial cases, classes
have been established. Two parameters are considered to have
a lower influence on the comparison: the noise amount and the
presence of steps. Generated data includes pairs of identical
signals except for their noise; these paired cases are considered
closest to each other. Three levels of step and two level of noise
lead to six similar signals. As a result, by construction, each
signal is classified in a two-element category – two noise amounts
– which is itself part of a much larger six-element category –
including different level of steps. A sample of these artificial data
is illustrated Figure 11.

As a result, this construction eases the identification of the
closest or the five closest cases to a given situation. However, its
comparison with other classes is not well-established. This lead
to restrict the objective functions to the followings:

8
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(a) Illustration of
the two-element and
six-element categories

(b) Artificial data - sample 1.1

(c) Artificial data - sample 1.2

(d) Artificial data - sample 2.1

(e) Artificial data - sample 2.2

(f) Artificial data - sample 3.1

(g) Artificial data - sample 3.2

Figure 11. Sample of artificial leak flow time series

Note 11: These figures show a sample of the generated artificial data. This example
illustrates the six-element class associated to a given set of identical parameters
except noise and steps.

Function 1: Signals are associated with their closest.
Function 2: The five closest cases are correct.

These two functions will be used in the optimization.

5.2.3. Optimization using the genetic algorithm

A Genetic Algorithm (GA) is a search heuristic that is used to
solve optimization problems according to (Mitchell, 1996). Usu-
ally starting from a population of randomly generated individuals,
it iteratively adjusts the parameters to approach the optimum. In
this study, this algorithm terminates when a maximum number of
iterations has been reached.

The considered population is the set of weights and additional
parameters introduced in the definition of local similarity mea-
sures. Due to these additional parameters, the resulting optimiza-
tion problem is non-linear and amount to 18 parameters.

Several approaches have been tested:

1. Applying the GA on all parameters:
The first idea was to apply the GA directly on the 18 parameters.
The results are not satisfactory: the error rate is up to 30% on some
sets of artificial data. Some potential reasons have been raised:

• The 18-parameters optimization problem may be over-fitted;
• Some of these parameters are linked which affects the opti-

mization results. Different combinations of these parameters
lead to the same optimal value.

To improve the optimization, the GA has been applied to a sub-
set of parameters: Identified symptoms, DTW and Euclidean dis-
tances with raw and residual signals. Then, fixing these local
weights, the GA will be applied on the global system to optimize
the remaining weights.
2. Applying the GA on the Symptoms parameters:
Multiple sets of artificial data have been used with both objective
functions alternatively – one or five closest neighbors. The aver-
age resulting set of parameters is the following (Table 2).

Table 2. Symptoms parameters

Weights

Step 1.5 Drift 125 Noise 1.1

Level 88 Stability 34 Duration 69

Max

Drift (L/h) 466 Noise (L/h) 74 Duration
(Months) 3.6

Level (L/h) 255 Stability
(L/h) 53

Note Table 2: The weights amount for the importance of each factor in the global
similarity measure (No units). The max are defined in the local similarity measures
for the saturation effect.

The error rate remains high, up to 25% on some artificial data sets.
The next section will show that the global weights will provide a
finer model and consequently lead to better results.
The maximum values mostly depend on the range of the factors
compared. The weights explain the relative impact of the symp-
toms on the case comparison. Judging from these results, these
factors are ordered as follows: drift, level, duration, stability and
then, at a distance, step and noise. These are not inconsistent with
the earlier expert adjustment.

3. Applying the GA on the Time series parameters:
In order to adjust the parameters involved in the time series
comparisons, the GA has first been applied on each time series
similarity measure independently: raw data or residual data, with
time and/or amplitude normalization. This optimization helps to
find the two parameters related to local similarities, namely cost
and limit parameters. The results are close for each similarity:
around 400 for the cost and 8000 for the limit. These parameters
will be fixed in the following optimizations.

The second step of the process is to apply the GA to adjust the
different weights, local parameters – cost and limit – being fixed.
The results are the following (Table 3).

Table 3. Time Series weights

Euclidean

Raw 92.4 Residual 61.6 Norm Time 88.5

Norm
Amplitude 91.3 Norm Time

& Amplitude 13.1

DTW

Raw 90.5 Residual 79.8 Norm Time 83.0

Norm
Amplitude 82.7 Norm Time

& Amplitude 3.48

Note Table 3: The weights amount for the importance of each factor in the global
similarity measure (No units).

The simultaneous normalizations in time and amplitude are
disregarded for both euclidean and DTW distance measures. In
fact, signals whose evolution is different may be found similar
after this transformation. The other weights remains in the same
range, between 61.6 and 92.4 and none of them is really prevalent
on the others.

The third step is to remove the disregarded factors and optimize
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again the set of parameters. The results are the following (Table
4).

Table 4. Time Series weights

Euclidean

Raw 99.9 Residual 98.0 Norm Time 98.6

Norm
Amplitude 0.02

DTW

Raw 93.4 Residual 81.9 Norm Time 56.4

Norm
Amplitude 30.1

Note Table 4: The weights amount for the importance of each factor in the global
similarity measure (No units).

Regarding the Euclidean distance, the amplitude normalization is
disregarded. In fact, as suggested earlier, this normalization lead
to find similar signals potentially very different before the ampli-
tude transformation. The three other comparisons remain equiva-
lent even the normalization in time. Increasing the set of durations
involved in the artificial data generation may affect this factor by
reducing its relative importance.
Regarding the DTW distance, the elasticity of the measure re-
duces the preprocessing impact by adapting itself. It results in
high weights for raw data or residual comparison and not negligi-
ble weights for the normalized signals comparisons.
As a result, normalizations have less impact on the comparison
than raw data or residual data. However, these results should be
put into perspective since in this study, the objective functions
only take into account the closest or the five closest cases. In any
event, they are not inconsistent with the observations previously
stated.

4. Applying the GA on the global model:
This last optimization has been made by fixing all previously es-
tablished parameters. The results are the following (Table 5).

Table 5. Global parameters

Symptoms 37 Time Series 30

Note Table 5: The weights amount for the importance of each factor in the global
similarity measure (No units).

Using this set of parameters, the error rate remains up to 15% with
some artificial data samples.

5.2.4. Comments on the results

Parameters adjustments obtained using artificial data are consis-
tent with the one performed with the experts’ support. They
helped to adjust the weights relative to the leak flow factors. As
a result some symptoms and some time-series preprocessing pre-
ponderate on others in the comparison. In particular, normaliza-
tions, noise and steps are more or less disregarded in comparison
with other factors.

These results should be put in perspective. Indeed, some difficul-
ties have been encountered and partly tackled in this artificial data
adjustment:

• Artificial data should perfectly mimic the reality. Otherwise,
including these results in the global model may alter its rep-
resentativity;

• Even whether these signals have been generated artificially,
the establishment of a predefined similarity is not that simple.
The solution employed was to restrict the objective function
to the closest or the five closest cases. This restriction may
lead to incoherent results since, as an example, two identi-
cal signals except for their mean level may be considered as
identical by the experts but they are not in this model;

• When dealing with many parameters, some of them may be
correlated which potentially alter the representativity of the
results. Indeed, multiple parameters configuration lead to the
same optimum. This is partly solved by adjusting subsets of
parameters;

• Optimizing subsets of parameters may give a local optima
which differ from the global optima of the optimization prob-
lem.

Some prospects can be laid out. Extending the artificial data scope
to other data than the leak flow may increase its representativity.
Ideally, it would not only take into account the four generic cat-
egories but directly the associated fault. Moreover this optimiza-
tion is not specific to the application case and the overall approach
could be used for other application cases.

6. PROGNOSTIC PROSPECTS

Given a situation, the implemented tool is able to find the closest
situation in the past event case-base. This closest case is related
to additional documents regarding the diagnostic or the corrective
actions which could inform on the expected remaining useful life.

In this study, the prognostic approach is based on the time series
comparison. By synchronizing the time series, the closest case
can be used to assess the expected remaining life before an alarm
or an outage. The figure 12 illustrates this prognostic.

Figure 12. Prognostic illustration

Note 12: This figure illustrate the two closest signals to a given one (represented
in blue). These two signals can help to predict the evolution of the current signal.

Judging from these closest cases, the leak flow may increase up
to 138L/h in 11.8 days or 29L/h in 8.2 days. These cases give a
prognosis based on the real experienced abnormalities. This in-
formation could, in addition to already stored data regarding the
closest cases, support the experts in their decisions.
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7. CONCLUSION

The establishment of the Condition Based Maintenance policy re-
quires a perfect mastery of the state of functioning of monitored
equipment in real-time. For this purpose, early detection tools
warn the operators when a potential anomaly is about to occur.
Once a situation is detected, it is analyzed and diagnosed to iden-
tify the adapted corrective actions that should be performed.

This paper presented the application of the Case-Based Reason-
ing approach for the monitoring and diagnostic of nuclear power
plants equipment. The proposed work encompasses different
methods from the literature to create a case structure, define a
similarity measure, and then evaluate and refine the model. The
resulting tool supports, by case comparison, the experts in their
decisions. Many challenges have been tackled such as the es-
tablishment of a similarity measure for heterogeneous data, the
multidimensional signal comparison and the optimization of the
similarity measure.

The main difficulty remained in the establishment of a standard-
ized case structure. Each case need to be rigorously and com-
pletely defined, in particular concerning the diagnostic and the
corrective actions. These were missing or incomplete for the seal
#1 case study, which lead to adapt the classification method.

Using this approach, a smart choice of the similarity measure led
to great classification results. The proposed approach can be ex-
tended to other case studies. This study opens up new prospects
for diagnostic and prognostic approaches.
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