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ABSTRACT

Generator bearing defects, e.g. ball, inner and outer race de-
fects, are ranked among the most frequent mechanical fail-
ures encountered in wind turbines. Diagnosis and progno-
sis of bearing faults can be successfully implemented using
vibration based condition monitoring systems, where track-
ing and trending of specific condition indicators can be used
to evaluate the former, current and potentially future condi-
tion of these components. The latter, i.e. evaluation of the
fault progression rate and remaining useful lifetime (RUL),
is of essential importance to owners and operators in regards
to maintenance planning and component replacement. The
above approach offers numerous benefits from financial and
operational perspective, such as increased availability, up-
tower repairs and minimization of secondary and catastrophic
damages. In this work, a non-speed related condition indica-
tor, measuring the signal energy between 10Hz to 1000Hz is
utilized as feature to characterize the severity of developing
bearing faults. Furthermore, local trend models are employed
to predict the progression of bearing defects from a vibra-
tion standpoint in accordance with the limits suggested in ISO
10816. Predictions of vibration trends from multi-megawatt
wind turbine generators are presented, showing the effective-
ness of the suggested approach on the calculation of the RUL
and fault progression rate.

1. INTRODUCTION

Condition monitoring has been gaining continuous attention
in the wind energy sector over the past decade (Tchakoua et
al., 2014). The increasing capacity of modern wind turbines
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and high demands for time or energy availability has resulted
in integration of condition-based maintenance strategies ap-
plied widely in other energy sectors. A small percentage in-
crease in the availability of a park may not be appealing to
certain original equipment manufacturers (OEMs) or owners
and operators from a return on investment standpoint, espe-
cially in countries where labour is inexpensive. However,
numerous supplementary benefits can be identified such as
up-tower repairs which lead to minimum crane and crew mo-
bilization, lead time to inspection, spare parts management,
root cause analysis and minimization of secondary failures.

Vibration based condition monitoring is the main technique
in large-scale wind applications focusing primarily on the
drive train rotating components. Condition monitoring sys-
tems (CMS) are commonly semi-automated, where the sys-
tem intelligence is combined with operator interaction in or-
der to alert, diagnose and evaluate the severity of the po-
tential defect, by evaluating numerous indicators describing
the condition of the monitored subcomponent and employing
advanced signal processing techniques. Although the above
setup is sufficiently functional, estimation of the remaining
useful lifetime is a crucial parameter towards the efficient
consolidation of monitoring and maintenance.

Prognostics is one of the areas of increasing interest in
academia and industry aiming at accurate prediction of the
fault progression and finally evaluation of the component’s
RUL (Lee et al., 2014). Reuben et al have used exponen-
tial modelling to determine the time-to-failure of helicopter
tail rotor gearbox bearings (Reuben & Mba, 2014). In (Li,
Lei, Lin, & Ding, 2015), an improved exponential model is
proposed for the RUL prediction of rolling element bearings.
Weibull models are used in (Naganathan et al., 2013) fot the
prediction of the time for the occurrence of failure. Particle
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filtering is applied in (Hu, Baraldi, Di Maio, & Zio, 2014)
and (Zio & Peloni, 2011) for the estimation of components’
remaining useful lifetime. An interesting RUL estimation
approach using information from warranty databases is pre-
sented in (Alam & Suzuki, 2009). Mixture of Gaussians Hid-
den Markov Models (MoG-HMMs) are employed as mod-
elling tool of bearings’ RUL in (Medjaher, Tobon-Mejia, &
Zerhouni, 2012). In (Hussain & Gabbar, 2013), adaptive
neuro fuzzy inference system and nonlinear autoregressive
model with exogenous inputs are applied on the health moni-
toring and fault prognosis in wind turbines.

In this work, linear and quadratic local trend models are used
towards the estimation of the fault progression rate in wind
turbine generator bearings, based on vibration acceleration
trends. The utilized condition indicator upon which the health
of the bearing is evaluated reflects the energy between 10Hz
and 100Hz as suggested in ISO 10816.

The paper is organized as follows: Section 2 presents the
monitoring setup in the current application, including the
used condition indicator, limit establishment and data clas-
sification based. The theoretical background of global and
local trend models is discussed in Section 3. Section 4 shows
the efficacy of linear and quadratic local trend models in the
estimation of the fault progression rate based on real world
data from a generator bearing inner race defect. Sections 5
and 6 present the discussion and conclusions respectively.

2. FAULT DETECTION

2.1. Data Collection

Vibration analysis is the most widely used monitoring tech-
nique in rotating machinery. The vast majority of high speed
rotating wind turbine generators are supported by ball bear-
ings on the drive-end – close to the coupling – and non-drive-
end sides. Vibration signals are recorded by accelerometers
installed on the bearing housing close to the load zone in or-
der to ensure optimal vibration path, as shown in Figure 1.
Accelerometers installed in the axial direction could also be
part of the monitoring solution, although it is not frequent
in wind turbines up to few megawatts due to cost savings
and the already valuable indications from radially installed
accelerometers.

In the current application, the recorded vibration signals are
processed by the Wind Turbine Analysis System Type 3652
(WTAS Type 3652) from Brüel and Kjær Vibro, which cal-
culates scalar values and streams them to central servers ev-
ery one half to one hour for long time trending and alarming.
These scalars are divided into two main groups, speed related,
as for example running speed or gear mesh orders, and broad-
band filters, as described in the following subsection. Fur-
thermore, 10.24 second vibration signals recorded by the ac-
celerometers mounted on the generator bearings, gearbox and

Figure 1. CMS sensor location. Positioning of accelerome-
ters on generator bearings at the load zone.

main bearings sampled at 25.6kHz are delivered to the central
servers every one or two days for detailed spectral analysis.

The detectable faults in generator bearings using vibration
analysis range from typical bearing faults, such as defects
on the inner and outer races (Marhadi & Hilmisson, 2013),
rotor dynamics faults, e.g. imbalance, misalignment, loose-
ness (Skrimpas et al., 2015) or unconventional failure modes
present in special generator types, such as rotor circuit mal-
function in DFIGs (Skrimpas, Sweeney, Jensen, Mijatovic, &
Holboell, 2014).

2.2. Condition Indicators

Numerous condition indicators (CIs) are utilized on the char-
acterization of bearing faults, such as broadband measure-
ments, amplitude of running speed harmonics or statistical
features in the time or frequency domains. Furthermore, fea-
tures in the time–frequency domain using wavelet analysis,
Wigner distribution or Short Time Fourier Transform (SFFT)
have been suggested by researchers in order to overcome the
issues introduced by speed and load variations in variable
speed systems (Antoniadou, Manson, Staszewski, Barszcz,
& Worden, 2015).

Focusing on the CIs employed on the evaluation of bearing
defects, a rough division can be made between early and late
stage fault indicators.

Generally, early stage defects contribute to increased vibra-
tion levels in the high bandwidth at the resonance frequency
of the subcomponent (inner race, outer race, ball, cage). Fig-
ure 2 displays the frequency spectrum up to 10kHz, which is
the cut-off frequency of the anti-aliasing in the current appli-
cation, of a vibration signal recorded from a generator bear-
ing suffering from early stage outer race defect. The latter
commonly starts as subsurface fractures or early stage flak-
ing. The resonance frequency of the defective subcomponent
is visible between 3kHz and 5kHz, which may vary in other
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bearing types or for different subcomponents. Therefore,
by employing a broadband filter between 1kHz and 10kHz
which will be referred as high frequency band pass (HFBP),
a global condition indicator can be extracted, eliminating the
necessity for special settings for each individual cases. How-
ever, it should be underlined that the offered information from
this CI can serve merely as very early stage fault notification
without the capability of providing any lead time to failure.
The characteristic bearing frequency can be found using en-
veloping techniques as shown in Figure 3, and thus explicitly
pinpointing the location of the fault.

At this point, it is of crucial importance to discuss the influ-
ence of the inverter switching frequencies and their sidebands
on generator bearing vibration signals, present close to 8kHz
in Figure 2. The presence of the aforementioned frequen-
cies has not been correlated to any inverter malfunction as
far as the authors are aware, hence they are treated purely as
noise. However, in certain cases, they might contribute con-
siderably to the vibration levels at specific frequency bands
and thus indicate a generator as outlier if compared to neigh-
bouring wind turbines or fleet. This phenomenon should be
taken into consideration when diagnosing a bearing defect or
performing trend park comparisons.

Figure 2. Early stage generator drive end bearing - Frequency
spectrum illustrating the resonance frequency of outer race
defect and inverter switching related frequencies.

Mid to late stage fault are directly observable in the low
frequency range, typically below 1000Hz, as harmonics of
the characteristic defect frequency. Based on ISO standard
10816, a broad band filter between 10Hz and 1kHz is used,
abbreviated in this work as ISOA (ISO acceleration), which
assists in facilitating consistent vibration limits, as shown in
later section (ISO 10816, 2015). Figure 4 displays the fre-
quency spectrum of a bearing diagnosed with late stage outer
race defect. This condition indicates that the fault has esca-

Figure 3. Early stage generator drive end bearing - Envelope
spectrum demodulating the frequencies from 3kHz to 5kHz
in Figure 2.

lated and bearing replacement should eventually take place
depending on the fault progression rate.

Figure 4. Late stage generator drive end bearing - Frequency
spectrum from 0Hz to 1200Hz showing multiple harmonics
of BPFO (ball pass frequency outer).

2.3. Limit Setting

Effective limit modification is a challenging task with two
main contradictory requirements. In one hand, the limits must
be set close to the actual vibration values in order to track
any change on time, trigger an alarm and consequently no-
tify the diagnosticians to proceed to further investigation. On
the other hand, one of the main objectives in condition mon-
itoring systems is to minimize the number of false positives,
which is one of the most influential factors in the success-
ful implementation of condition-based maintenance. Further-
more, it is important to underline that condition monitoring
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systems are designed to track slow or moderately slow com-
ponent deterioration over time, and thus should not be con-
fused with safety systems.

It is common practise in vibration based monitoring systems
to establish more than one limits so as to obtain the necessary
flexibility and secure proper evaluation of the monitored com-
ponent. In the current work, two limits are utilized referred
to as alert and danger respectively. Bearing in mind the effec-
tiveness of the condition indicators introduced in subsection
2.2 on the evaluation of the RUL of a generator bearing, a
global danger limit is selected only for ISOA (10Hz–1000Hz)
based on the limits included in ISO Standard 10816 Part 21
(ISO 10816, 2015), whereas individual alert limits for both
ISOA and HFBP are computed statistically from the period
where the generator runs fault free. A trivial statistical ap-
proach in limits setting is presented in Equation 1.

L = x · µ+ y · σ (1)

where µ and σ are the mean and standard deviation of the vi-
bration CI over a predefined time span and x and y are factors
used for proper limit setting.

ISO Standard 10816 Part 21 defines maximum velocity limit
for generator rolling element bearings between 10Hz-1000Hz
equal to 10mm/s. The latter is applicable for geared wind
turbines of nominal output below 3.0MW, which is consistent
with the cases studied in this paper. In order to have a uniform
setting of limits in acceleration term, the velocity limit (Lv)
is converted to acceleration as shown in Equation 2.

La = 2 · π · fc · Lv (2)

where the center frequency fc is based on the lower and
higher bandwidth values, shown as fl and fh respectively
(Randall, 1987).

fc =
√
fl · fh (3)

Using Equations 2 and 3, 10mm/s correspond to approx-
imately 6.28m/s2. This limit can function as basis upon
which slightly modified values can be established in cases
where the vibration CIs are classified based on the power pro-
duction, speed or torque.

2.4. Power Classification

Historical recording of CI is valuable for comparing and
trending developing faults. For variable load applications,
such as in wind turbines, it is advantageous to classify all vi-
bration measurements according to the produced power at the
time the measurement is recorded. This classification ensures
that all extracted CIs can be compared and trended under the

same operating conditions. Furthermore, one of the main ad-
vantages in this approach is proper limit setting and therefore
minimization of false positives. As example, the power out-
put of a 1.5MW wind turbine can be divided into five equally
spaced power bins with a tolerance of 10% error, as depicted
in Figure 5.

Figure 5. Power classification of vibration data in a 1.5MW
wind turbine.

3. PREDICTIONS IN TREND MODELS

A trend model is a regression model of the following form
(Madsen, 2008):

YN+j = fT(j) · θ + εN+j (4)

where f(j) is a vector of known forecast functions and θ is
a vector of parameters. The noise term ε is independent and
identically distributed, i.e. E[ε] = 0 and V ar[ε] = σ2.

Basic trend models are the constant mean, linear, quadratic,
polynomial and harmonic models , listed below (Madsen,
2008).

Constant : YN+j = θ0 + εN+j

Linear : YN+j = θ0 + θ1j + εN+j

Quadratic : YN+j = θ0 + θ1j + θ2j
2/2 + εN+j

Polynomial : YN+j = θ0+θ1j+θ2j
2/2+. . .+θkj

k/k!+
εN+j

Harmonic : YN+j = θ0+θ1sin(2π/p)+θ2cos(2π/p)+
εN+j

3.1. Global Trend Model

In the global trend models, all Y1, . . . , YN observations can
be represented in matrix format as shown in Equation 5.

Y = xN · θ + ε (5)

where Y = [Y1, . . . , YN ]T , xN = [fT(−N +
1), . . . , fT(0)]T , θ = [θ1, . . . , θN ]T and ε = [ε1, . . . , εN ]T .
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The estimated model parameters, θ̂N , can be computed ap-
plying the least-square method, yielding (Madsen, 2008)

θ̂N =
(
xTNxN

)−1
xTNY = F−1N hN (6)

where FN = xTNxN and hN = xTNY.

The prediction ŶN+l at step l, given the observations
Y1, . . . , YN at time N , is

ŶN+l|N = fT (l) · θ̂N (7)

The variance of the prediction error eN (l) = YN+l− ŶN+l|N
is equal to

V ar[eN (l)] = σ̂2[1 + fT (l)FN
−1f(l)] (8)

where the estimated variance is

σ̂2 =
[Y − xN θ̂N ]T [Y − xN θ̂N ]

N − p
(9)

and p stands for the number of parameters.

The 100(1 − α)% prediction interval for the future value is
calculated as

ŶN+l|N ± tα/2(N − p)
√
V ar[eN (l)] (10)

where tα/2(N − p) is the α/2 quantile in the t-distribution
with N − p degrees of freedom.

3.2. Local Trend Model

In global trend models, the parameter θ is constant in time
and each observation has the same weight. This approach im-
poses a number of limitations especially when dealing with
trends changing behavior over time. Local trend models over-
come the latter challenge by assigning less weight on past
observations and higher weight on more recent, introducing
a forgetting factor λ in the calculating of the parameter θ. In
local trend models, the variance of noise ε in Equation 5 be-
comes (Madsen, 2008) :

V ar[ε] = σ2Σ (11)

where

Σ = diag[1/λN−1, . . . , 1/λ, 1] (12)

In this case, the estimated model parameters are calculated
using the weighted least-square method,

θ̂Nw =
(
xTNΣ−1xN

)−1
xTNΣ−1Y = F−1NwhNw (13)

It can be shown that

FNw =

N−1∑
j=0

λjf(−j)fT (−j) (14)

and

hNw =

N−1∑
j=0

λjf(−j)YN−j (15)

The prediction values and prediction intervals are calculated
using Equations 7 and 10 respectively.

In local trend models, the variance σ2 can be alternatively
estimated as

σ̂2 =
[Y − xN θ̂Nw]TΣ−1[Y − xN θ̂Nw]

T − p
(16)

where T is referred to as total memory and is a measure of
how many observations, the estimation is essentially based
upon.

T =

N−1∑
j=0

λj ≈ 1 − λN

1 − λ
(17)

Finally, if λ = 1 then the resulting local trend model is iden-
tical to the global un-weighted trend model.

4. PROGNOSIS OF FAULT DEVELOPMENT EMPLOYING
LOCAL MODELS

Figure 6 illustrates the vibration trends of a generator bear-
ing subjected to an outer race defect. The displayed condi-
tion indicator is ISOA, which is the energy between 10Hz
and 1000Hz. The monitoring strategy incorporates classifi-
cation of data in five power classes as elaborated in section
2.4. Although the analysis will be based only in one set of
data from one power class in this case study, the same method
is applicable in all remaining four classes. An ensemble ap-
proach combining the outcomes of all five power bins has not
been followed in the present work based on the overall front–
end and back-end design of WTAS Type 3652 from Brüel
and Kjær Vibro. Vibration scalar values are generated by the
CMS unit every one hour in each power class, given that the
turbine has operated at the corresponding power production
level for a predefined period of time. In the proposed prog-
nostic scheme, the hourly data are averaged per day based on

5



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

the argument that the level of predictive accuracy is not in
the order of hours but rather in days or even weeks, where a
side benefit of this approach is data de-noising. The erratic
behaviour encountered in the actual ISOA trends is directly
linked to the consolidation of vibration data into five discrete
power bins, whose range is in the order of 600kW . In addi-
tion, any speed variations of data within the same power bin
are not taken into account or compensated, resulting in rel-
atively large deviation. Finally, the green points in Figure 6
are interpolated points in missing days using spline function
in order to account for no production in this power bin at a
specific day.

A point of interest in the below figure is the establishment of
the two limits, where the alert limit is set very close to the
actual trend and the danger limit is equal to 7m/s2, which is
roughly 10% higher compared to the limit in the ISO stan-
dard.

The following prediction approaches do not depend on physi-
cal models of bearing fault development, such as exponential
models, but treat the available vibration data as time series,
offering unbiased estimations of the bearing condition.

4.1. Linear Model

The first step in prediction systems is to determine the pa-
rameters influencing the model. In local trend models, these
are the past time, forgetting factor and the model. Figure 7
shows the normalized logarithmic model error for varying λ
and past time, of a linear model. Two main conclusions can
be made: 1) the model error is minimized using longer past
interval, 2) the forgetting factor influence the error heavily.
Based on the above, a reasonable model parameter selection
is 70 to 100 days as past values and high λ above 0.95.

Figure 6. Generator bearing daily averaged ISOA trend and
limits in power bin 2 (low-mid power production).

Figure 8 illustrates the prediction of the last 30 days of a late
stage bearing defect based on 70 days of past values and λ

Figure 7. Relationship of past interval and forgetting factor λ
for local linear trend model given 30 days of prediction time
for linear model.

equal to 0.95. Zooming in the prediction period, it is ob-
served that the forecast is representative of the actual over-
all development rate of the fault. The progression is equal
to to 0.0255m/s2 per day, which is time independent. Fur-
thermore, the 95% confidence intervals are presented which
incorporate the necessary uncertainty level of the prediction.
Naturally, it is not expected that the trend will settle down
without any intervention, such as replacement of the defective
bearing, but it covers the probability of erratic behaviour. The
upper confidence level functions as the worst case scenario in
case of sudden change of the component condition. From an
operational standpoint, the upper confidence level represents
the least available time which all the necessary procedures for
ordering of components, crane mobilization and recourse al-
location, before the condition of the bearing becomes critical.

An investigation of high interest regarding the broad use of
the model is the estimation of the prediction error as function
of the past and forecast intervals, given a specific forgetting
factor. Figure 9 shows the aforementioned error for λ equal
to 0.95. It can be seen that if the prediction time exceeds
40 to 50 days, the prediction error increased significantly for
limited period of past values, and it gets its highest values for
future predictions of 100 days while the past time is limited
to less than 15 days.

4.2. Quadratic Model

Quadratic models can be also employed to predict future vi-
bration trends, development rate and ultimately the compo-
nent’s RUL. Detailed analysis on the model parameters is a
requisite in order to define the most suitable for the current
trend. Figure 10 displays the logarithmic model error as func-
tion of λ and the past interval. The graph shows that the error
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Figure 8. Estimation of fault progression rate using local lin-
ear model. The fault development rate is 0.0255m/s2.

Figure 9. Relationship of past predict intervals for λ = 0.95
for local linear trend model.

is low for long past values and it is relatively insensitive for
λ’s above 0.8. In order to compare the linear and quadratic
models, the same models settings are applied in this case as
well. The predictions follow a very smooth second order
function along with the confidence intervals whose quadratic
behaviour is more pronounced, as shown in Figure 11.

The fault development rate is shown in Figure 12, where the
progression is not constant as in the linear model, but ”de-
celerates” with increasing prediction interval. Although this
decelerating pattern might be contradictory with the expected
development rate in any faults, it could be justified if a wind
turbine does not operate at high power bins for a certain time
period and hence the average stress on the bearing is reduced.

Figure 10. Relationship of past interval and forgetting factor
λ for local linear trend model given 30 days of prediction time
for quadratic model.

Figure 11. Estimation of fault progression rate using local
quadratic model.

This condition can manifest in the trend as decay of the fault
progression rate, as shown in Figure 12.

As in the case linear models, the prediction error in quadratic
models is low for long past values and short prediction inter-
vals, as displayed in Figure 13.

4.3. Long Term Predictions

The former sections present the forecasts of the two models
aiming at prediction time of 30 days, which is relatively long
from a prognostics perspective, but could be considered lim-
ited in certain occasions, as for example in offshore instal-
lations. In order to cover the latter, long term prediction of
120 days (four months) are presented using both linear and
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Figure 12. Fault development rate as function of prediction
time in quadratic model.

Figure 13. Relationship of past predict intervals for λ = 0.95
for local quadratic trend model.

quadratic model in Figures 14 and 15 respectively. It can be
seen that the linear model underestimates the progression of
the fault by inherently establishing a constant development
rate, whereas the quadratic model offers a more coherent pre-
diction. It should be emphasized that the selection of past val-
ues is of essential importance in the model building in both
cases. Furthermore, it is important to re-estimate the model
when new data is available in order to update the current fault
condition continuously. The necessity of constant model up-
dating is reflected if one compares the fault development rates
in two different time periods as shown in Figures 12 and 16.

5. DISCUSSION

Deployment of prognostic systems has inherent limitations in
trend analysis of CMS data mainly due to the varying load
and running speed conditions of modern wind turbines. This
operational frame complicates the predictions considerably
both regarding the past values based on which the model is
designed and the forecast time.

From an operation and maintenance standpoint, the main
question is the added value of these systems in the decision
making process of the maintenance and component replace-

Figure 14. Estimation of fault progression rate using local
linear model for long term prediction.

Figure 15. Estimation of fault progression rate using local
quadratic model for long term prediction.

Figure 16. Fault development rate as function of prediction
time in quadratic model for long term prediction.

ment planning. Quantification of the expected RUL based on
the history of the fault minimizes the uncertainty of too early
or too late actions, but it basically provides the proper lead
time to order spare parts, mobilize cranes if needed, allocate
the required human resources, etc.

On the contrary, the major pitfall in prediction systems is the
loss of trust not only in the prognosis part but also in the diag-
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nosis of a fault in case of inaccurate forecast. Hence, it is of
essential importance to provide predictions only in the cases
of developing faults and not under sudden events. Undoubt-
edly, confidence intervals facilitate part of the uncertainty and
should always be part of any forecasting system in order to
stress the outlook and level of trust of the future estimations.

An important part of discussion is the required skills of the
analyst employing prognostics in order to formulate more ad-
vanced severity estimation of the defective component. The
method of local trend modelling is a function of four main pa-
rameters, the forgetting factor λ, the prediction time, the past
time and the model itself, i.e. linear, quadratic or higher order
polynomial. Unrealistic predictions for example due to im-
proper past time selection should be identified and discarded,
and modification of the above mentioned factors should be
considered in order to obtain an updated estimation of the fu-
ture condition. The latter, i.e. update of forecast, is important
as the fault severity might escalate rapidly which cannot be
predicted based on the past progression rate. The model up-
date frequency should ideally be equal to the data import rate
or at least at daily basis.

6. CONCLUSIONS

Modern condition monitoring systems incorporate diagnos-
tics and prognostics services for fault detection, severity es-
timation and prediction of the component remaining useful
lifetime. Two different trend models are applied for predict-
ing the fault progression rate of wind turbine defective gener-
ator bearings, based on the energy of vibration signals from
10Hz to 1000Hz, as suggested by ISO 10816. It is shown
that both linear and quadratic local trend models can be em-
ployed successfully for relatively short prediction interval in
the range of one month, offering useful information to the ser-
vice provider. In both models, it is concluded that high forget-
ting factors and relatively long past intervals produce the most
accurate predictions of the fault development. On the con-
trary, for long term forecasting, it is observed that quadratic
models have more coherent behaviour. In the model configu-
ration part, one of the most important factors is the selection
of appropriate past values in order to obtain representative
forecasts. It is concluded that updated estimations are nec-
essary when new data are available so as to systematically
specify the current fault condition.
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