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ABSTRACT

Over time railway networks have become complex systems
characterized by manifold types of technical components
with a broad range of age distribution. De facto, about 50 per-
cent of the life cycle costs of railway infrastructures are made
up by direct and indirect maintenance costs. A remedy can
be provided by a condition based preventive maintenance
strategy leading to an optimized scheduling of maintenance
actions taking the actual as well as the expected future infras-
tructure condition into account. A prerequisite is, however,
that the thousands of kilometers of railway tracks are almost
continuously monitored. Thus, a promising approach is
the usage of low-cost sensors, e.g. accelerometers and gyro-
scopes, which can be installed on common in-line freight
and passenger trains. Due to ambiguous data records a
credible classification of railway track irregularities directly
from these data is challenging. Alternatively to this pure
data-driven approach, in this paper a novel hybrid approach
is presented. To this end, a simplified vehicle suspension
model is applied for the purpose of railway track condition
monitoring by analyzing the dynamic railway track - train
interactions. The inversion of the model can be used to re-
calculate the actual inputs (irregularities) of the monitored
system (rail surface) which have caused recorded system
responses (dynamic vehicle reactions and acceleration data,
respectively). These recalculated inputs are a sound basis
of subsequent data-driven condition monitoring analyses.
In this preliminary study, a classification algorithm is im-
plemented to identify a simulated railway track irregularity
automatically.

René Schenkendorf et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

1. INTRODUCTION

Roughly speaking, half of the life cycle costs of railway in-
frastructures are caused by maintenance costs (Gradinariu,
2008). Rail surface irregularities (e.g. Fig.1), in particular, are
critical in terms of safety and reliability and call for advanced
and cost saving monitoring concepts (Haigermoser, Luber,
Rauh, & Grife, 2015; Schenkendorf, Groos, & Johannes, 2015).
Here, condition based preventive maintenance strategies
may help leading to an optimized scheduling of mainte-
nance actions taking into account the actual as well as the
prospective infrastructure condition. To implement a seam-
less condition monitoring of high-frequency, high-capacity
railway networks low-cost monitoring systems are manda-
tory. In detail, micro electro-mechanical systems (MEMS)
inertial sensors (accelerometers and gyroscopes) which have
the potential to be installed on a large amount of common
in-line freight and passenger trains (e.g. (Ward et al., 2011;
Molodova, Li, & Dollevoet, 2011; Naganuma, Kobayashi, &
Tsunashima, 2014; Weston, Roberts, Yeo, & Stewart, 2015;
Quirke, Cantero, OBrien, & Bowe, 2016)) are promising can-
didates. In this way, the gathered acceleration data may be
used on a daily basis to reveal and monitor relevant railway
track irregularities by signal processing tools as for instance
the Continuous Wavelet Transformation (CWT). Due to am-
biguous data records, however, a credible classification of
railway track irregularities directly from low-cost sensors
acceleration data form in-line trains is challenging. The
response of the vehicle to the track irregularities is sensi-
tive to a number of vehicle-specific and partly time varying
vehicle parameters (e.g. mass, suspension system, speed,
wheel diameter, and position of the measurement device).
For instance, a train passing the same critical track segment
with different speeds produces different acceleration sig-
nals. Due to these unsolved challenges pure data-driven
approaches with low-cost sensors on in-line trains are still
not commonly implemented in today railway monitoring
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concepts. Alternatively to the pure data-driven approach, in
this work a hybrid approach is presented. To this end, a sim-
plified vehicle suspension model, a.k.a. quarter-car model,
is applied prior to a data-driven approach for the purpose
of railway track condition monitoring. The inverse model
can be used to recalculate the actual inputs (irregularities)
of the monitored system (rail surface) which have caused
recorded system responses (dynamic vehicle reactions and
acceleration data, respectively). This approach addresses
the unsolved problem how to systematically consider these
relevant and variable parameters by the detection of rail
track irregularities with low-cost sensors on in-line trains.
As shown in this manuscript, these recalculated inputs are
a sound basis for track irregularity detection by a follow-
ing data-driven approach providing, in addition, a valuable
input for subsequent studies, e.g. life cost analysis (Rama
& Andrews, 2016) and prognostic charts (Saha, Goebel, &
Christophersen, 2009; Cocheteux, Voisin, Levrat, & Iung,
2010).

The remainder of this paper is structured as follows. In Sec-
tion 2 the idea of the novel hybrid approach for rail surface
condition monitoring is outlined. Here, in 2.1 the concept
of CWT as an essential signal processing tool is shortly sum-
marized. In 2.2 the quarter-car model is derived. The basics
of a model inversion strategy to recalculate track irregulari-
ties are addressed in Section 2.3. The classification strategy
based on recalculated track irregularities is demonstrated in
3. Finally, the conclusion is given in Section 4.

Figure 1. Corrugated rails reduce the driving comfort in
terms of vibration and noise while increasing the overall
wear due to harsher track - train interactions.

2. HYBRID APPROACH

As previously described, the automatic detection of rail sur-
face failures via low-cost sensor systems is an active research
field within the PHM community. In literature, various ap-
proaches can be found utilizing acceleration data to assess
the rail surface quality by classification and fault detection al-
gorithms (Fig. 2a). These studies, however, are usually based

on idealized assumptions, e.g. an unique measurement sys-
tem installed on a dedicated train with constant speed and
masses of the vehicle. Constraints which are rarely met in
practice and, in consequent, are one main reason why a
credible condition monitoring of the rail surface quality fails
to the present day. Alternatively, model-based approaches
incorporating expert knowledge of the monitored system
can gain helpful insight in terms of fault detection and iden-
tification. When implementing model-based concepts in
conjunction with data analysis ideas, a hybrid approach is
formed (Lee, Ni, Djurdjanovic, Qiu, & Liao, 2006) combin-
ing the advantages of both strategies. In this study, a novel
hybrid approach is presented. Instead of utilizing a conven-
tional model, an inverse model is applied to recalculate the
model inputs, i.e. the rail surface quality (Fig. 2b). In conse-
quence, more credible results can be provided by the classi-
fication of these recalculated inputs instead of analyzing the
raw acceleration data directly. But before demonstrating the
efficiency of the overall concept, the most relevant elements
are explained in subsequent.

2.1. Continuous Wavelet Transformation

In any data-driven concept informative features have to be
derived from the analyzed data, e.g. geometrical or statisti-
cal quantities calculated in the time and/or frequency do-
main of the signal. In this study, frequency dependent char-
acteristics assigned to the recorded track position are of fun-
damental importance. Thus, the Continuous Wavelet Trans-
formation is applied to extract these localized frequency
features of a signal under investigation. This time-frequency
resolution provides essential information of rail surface fail-
ures, associated data time spans and localization within the
track, respectively. In detail, the mathematical definition of
the CWT reads as:

W(a,b)::mr%ff(t)\y* (%b)dt; a,beR a#0, (1)

where f(?) is the signal under study (e.g. acceleration data,
y, or recalculated rail surface, 1), ¥(-) a so-called mother
wavelet (here, a mexican hat wavelet is used), * indicates
the complex conjugate, a and b are scaling and translation
parameters, respectively. For more details, the interested
reader is referred to (Teolis, 1998) and references therein.

Depending on a and b, wavelet coefficients, W(a, b), can be
determined which reveal time-frequency patterns of a signal.
These characteristics, sometimes referred as the fingerprint
of a signal, can be used as an indicator of the health status
of the analyzed system, e.g. the presence or absence of rail
surface failures and the condition of other railway assets as
well (e.g. (Asada & Roberts, 2013; Molodova, Li, Nunez, &
Dollevoet, 2013; Cantero & Basu, 2015)). Technically, in this
paper normalized wavelet coefficients (against the signals
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Figure 2. Compared to the conventional data-driven approach (a) the proposed hybrid approach (b) combines data-driven

concepts

with model-based ideas

total energy Eq.(2)) are used to ensure a better comparability.

E= f If(Ddt. @)

Typically, CWT is directly applied to the raw data for the
purpose of condition monitoring. In this study, however,
CWT is combined with a model-based approach as outlined
in the next sections.

2.2. Mechanistic Model

Driving direction

knowledge of the monitored system and to gain valuable
insight for a detailed diagnosis. For instance, the response
of the vehicle dynamic can be simulated by a mechanical
vehicle suspension system. In the simplest case a single
axis movement is modeled (Fig. 3) known as quarter-car
models (Imine, 2011; Naganuma et al., 2014). The governing
equation set of this quarter-car model is presented in its
state-space form:

x=Ax+Bu
3)
y=Cx+Du
where u € 2" and y € Z" are the system inputs and the
outputs, respectively. The system states are given by x € %2"~.
The system matrices are known as the dynamic matrix A, the
input matrix B, the output matrix C, and the feedthrough
matrix D.

In case of the quarter-car model the corresponding matrices,
assuming x = [Xs, Xys, X, xus]T and y = X, are:

—_— mg

xST

,,,,, mg =L __ _ ____
ks =1 ¢ Mys

xusT

77777 My I S

Figure 3. Quarter-car model: Mechanical suspension system
describing the dynamic railway track - train interaction, e.g.
crossing track irregularities, u(f).

Beside the data-driven concepts, first-principle / mecha-
nistic models are excellent tools to take account for expert

c c ks ks
Tmg ms T mg ms
C C ks (ks+kus)
A = m_m _mus m_m B Mys (4)
1 0 0
0 1 0 0
0
kus
B = Mmys 5
5 )
| 0
ks ks
C=lw m m m (6)
D = [0] (7)

Here, the system includes the sprung mass, m;g, and the
unsprung mass of the vehicle, m,s, which are connected by
a linear spring and damper with the stiffness coefficient, kg,
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and the damping constant, c, respectively. The rail surface is
considered as the system input, u(t), and is transmitted by
a spring (ky;) to the unsprung mass (Fig.3). The numerical
values of the model parameters are given in Table 1.

Table 1. Applied model parameters of a generic railway vehi-
cle adapted from (Sira-Ramirez et al., 2011).

Model parameter Numerical value
R 9875 [kgl
Muys 1100 [kg]
ks 2.13x 10% [N/ m]
kus 1.42 x 108 [N/ m]
¢ 1.20 x 10* [N — s/m]

2.3. Model Inversion

The special feature of this study is to not directly apply the
derived vehicle model for condition monitoring but its in-
verse. In general, the basic concept of model inversion aims
at using the recorded output data of the system under study
and to reconstruct the underlying inputs by systems the-
ory principles. Various model inversion strategies exist, see
(Czop, Mendrok, & Uhl, 2011; Schenkendorf & Groos, 2015)
and references therein. In this work, the inverse simula-
tion approach is applied extending the original model by
a feedback control loop (Buchholz & v. Griinhagen, 2007;
Murray-Smith, 2011). For the purpose of illustration the
state-space model (Eq.(3)) is transferred into the transfer
function notation first, i.e. applying Laplace Transforma-
tion:

G(s)=C(sI-A)'B+D 8)

In general, the transfer function, G(s), represents the in-
put/output behavior of the system:

_X®

9= 5

9
A straightforward inversion of the transfer function is in
most practical cases not feasible as the resulting inverse
transfer function becomes non-causal. Alternatively, the
corresponding closed-loop system (Fig.4) results in:

u(s) K¢ K¢-U(s)

G'(s) = = -
U*(s) 1+K°-G(s) U(s)+KE-Y(s)

(10

U*(s)

K U(s) G(s) Y(s)

Figure 4. Control loop: Inverse simulation by a proportional
feedback strategy.

Obviously, for a large controller gain, K¢, the inverse system
can be derived according to:
U(s
lim G (s) = & an
K¢—o0 Y(s)
(Here, K¢ = 1000.) Transferred back into the time-domain,
the reconstructed input reads as:

t
u(t) =~ 0(r) =/g*(r—ﬂy(r)d1 (12)
0

As demonstrated in the subsequent section, these recalcu-
lated inputs # (rail surfaces) are a sound basis for condition
based maintenance, i.e. the machine-aided detection of rail
surface failures triggering optimized maintenance actions.

3. DEMONSTRATION

After essential aspects of the proposed hybrid concept have
been presented, their gainful interaction is illustrated via a
preliminary simulation study and compared with the tradi-
tional approach, i.e. pure data-driven analysis of acceler-
ation data. First, informative features of the signal under
study have to be extracted. In this work, CWT is applied and
the resulting wavelet coefficients (Eq.(1)) are rearranged as
feature vectors. Here, each feature vector represents a track
segment of 5 m length. These feature vectors train a classifi-
cation algorithm. In subsequent, a Support Vector Machine
(SVM) (Bishop, 2008) is used which, in theory, classifies new
incoming data according to the underlying track quality. (A
radial basis kernel is used.) Considering the standard ap-
proach, i.e. evaluating the acceleration data directly, am-
biguous data records due to variation in vehicle parameters
(e.g. mass, speed) make a proper classification difficult. As-
suming a rail segment of 240 m length with corrugation from
meter 60 to 160, four different scenarios are modeled and
analyzed, i.e. acceleration data of the unsprung mass at low
speed (40 km/h) and higher speed (160 km/h) compared to
acceleration data of the sprung mass at low speed (40 km/h)
and higher speed (160 km/h). Simulating a corrugated rail
segment, i.e. a periodic pattern on the rail surface, the re-
sulting CWT analysis is shown in Figs.(5a-5d). Obviously,
the resulting wavelet coefficients are sensitive to the posi-
tion of the installed measurement system (e.g. unsprung or
sprung mass) and the traveling speed of the train (e.g. low
or high). A proper classification based on these findings is
challenging.

Alternatively, when using acceleration data to reconstruct
the rail surface first the CWT analysis reveals similar pat-
terns compared to the original rail surface failures. In detail,
the wavelet coefficients of the original (Fig.5e) and of the
reconstructed rail surface (Fig.5f) are compared. Obviously,
there are no significant differences detectable. It should be
stressed, that independent of the sensor position (unsprung
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Figure 5. CWT analysis: Scalograms representing [W(a, b)| (Eq.(1)) with Blllow,  medium, and B high numeric values.
When analyzing acceleration data, f(t) := y(t) = X,5(£) or f(¥) := y(f) = X5(f), the wavelet coefficients vary in their values at
the different scenarios shown in (a)-(d): 1) Higher speed correlates to higher frequency contribution (c)-(d) and lower scale,
respectively. 2) Acceleration data of the sprung mass show in addition a relevant eigenmode contribution of the system,
see the high scale range of (b) & (d). However, evaluating the rail surface geometry alternatively results in similar wavelet
coefficients for the simulated (f(¢) := u(#)) and the recalculated rail surface (f(¢) := 7i(¢)) as shown in (e)-(f).
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Figure 6. Rail Surface Failure Classification:

or sprung mass) or the speed (low or high) the reconstructed
rail surface and the wavelet coefficients are equivalent.

In consequence, using a feature vector based on wavelet
coefficients of the reconstructed and non-ambiguous inputs
the actual classification step becomes easier. For the pur-
pose of demonstration, a track segment of 500 m length is
simulated showing two different kinds of rail irregularities:
(1) a corrugated part from meter 50 to 150; (2) long-periodic
irregularities from meter 250 to 450. A properly trained SVM
is used to identify these irregularities based on the recal-
culated input (rail surface), i.e. incorporating simulated
sprung mass acceleration data indirectly. As illustrated in
Fig.6, except for the transition zones the critical parts of the
rail segment are correctly identified.

4. CONCLUSION

In this study it is shown how a model inversion strategy can
be usefully combined with machine learning techniques
forming a hybrid approach. In this way, the original gathered
acceleration data are first transferred back into an unam-
biguous rail surface profile which is used for further analysis
and classification purposes. Preliminary results of this hy-
brid approach are derived by a simplified simulation study.
Here, under ideal assumptions (i.e. perfect measurement
data and no process noise) the critical track segments are
identified correctly. In future, the proposed concept will be
extended in the following way: (1) incorporating real (non-
simulated) data; (2) extending the quarter-car model to a
full car-model to distinguish between rail surface irregulari-
ties and structure-borne noise; (3) applying special forms of
Kalman Filtering for the purpose of model inversion and rail
surface reconstruction, respectively.

ACKNOWLEDGMENT

The financial support by German Aerospace Center (DLR
e.V,, Cologne) under grant TrackScan is gratefully acknowl-
edged.

Perfect Condition;

Corrugated Part; Long-Periodic Irregularities

NOMENCLATURE

system dynamic matrix

system input matrix

system output matrix

system feedthrough matrix

energy of a signal

transfer function

inverse transfer function

wavelet coefficient matrix

wavelet scaling parameter

wavelet translation parameter
damping constant

signal/data vector

spring stiffness coefficient sprung mass
us  spring stiffness coefficient unsprung mass
mg  sprung mass of the vehicle

mys unsprung mass of the vehicle

~ O T 9 ggomoow>

o
P

u system input

/] recalculated system input

X system states

Xs position of the sprung mass

X velocity of the sprung mass

Xs acceleration of the sprung mass

Xys  position of the unsprung mass

Xys  velocity of the unsprung mass

Xys  acceleration of the unsprung mass
y system output

v mother wavelet function

¥*  complex conjugate wavelet function
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