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ABSTRACT 

The goal of this paper is to present a practical method for the 
enhancement of systems Reliability, Availability, 
Maintainability, and Safety (RAMS) assessments. During the 
last decades Condition Monitoring (CM) methods have been 
improved and extensively implement. A method for 
integration the CM data with RAMS calculations is suggests. 
Implementing the method as a practical tool and updating 
RAMS prognostics assessment according to deterioration 
condition, is demonstrated by examples that emphasize the 
method’s contribution and advantages. The method is based 
on conducting correlations between deterioration stages and 
Remaining Useful Life. Reliability is continuously updated 
according to pre-calculated Weibull parameters based on 
historic deterioration stages accumulated data and concurrent 
CM findings. The updated assessment represents the real 
system condition along its deterioration stages. The method 
enables improved decision making operation and 
maintenance action thus lower the Life Cycle Cost (LCC). 
The method named "Condition Based-RAMS" (CB-RAMS). 
Analyzing systems by CB-RAMS in conjunction with 
Monte-Carlo Simulation software tool, and CM data, is a 
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1 Smith, D. J. (2001), CONFIDENCE LIMITS OF PREDICTION. The 
ratio of predicted failure rate (or system unavailability) to field failure rate 

(or system unavailability) was calculated e and the results were classified 

practical and efficient method to eliminate surprising 
dangerous and costly events. The paper introduces the 
method and improvements that are achievable by 
implementing it. The contribution of the paper is the 
applicable detailed procedure to use any sort of CM data to 
enhance his RAMS predictions. The significance of this 
paper is that presented approach will enhance the importance 
of implementing CM on systems to lower LCC and increase 
safety.  

1. INTRODUCTION 

Forecasting system’s behavior and managing an optimal 
operating and maintenance programs accordingly, is essential 
to be competitive. The forecasting accuracy is depended on 
data quality. Usually forecasting are based on failures 
statistics. Smith (2001) found that the ratio of predicted 
failure rate (or system unavailability) to field failure rate (or 
system unavailability) is depended on data source, he 
distinguishes between generic data, industry specific data and 
site specific data. By using site specific data, the correlation 
between calculated reliability and demonstrated reliability is 
improved1. Since data used is based on failures distributions 

in three categories: (a) Predictions using site specific data: strategy and 

equipment are largely the same). (b) Predictions using industry specific 
data:  (c) Predictions using generic data: Reliability, Maintainability and 
Risk -The results are: (a) For a prediction using site specific data One can 

be this confident that the eventual field failure rate will be BETTER than 
90% 2.5 times the predicted, and 90% confident that the eventual field 
failure rate will be in the range: 90% 3.5:1 to 2/7:1.  (b) For a prediction 

using industry specific data 
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we asked ourselves do we have a better data source to 
enhance this correlation.  

  This article presents the contribution of a new method for 
updating Reliability2, Availability3, Maintainability, and 
Safety (RAMS) assessments along the system’s life. The aim 
of this paper is to present a method based on Condition 
Monitoring (CM) data and degradation stages and not just on 
failure distributions.  The method provides more information 
to decision making through all phases of the system life cycle. 
On earlier work (Shalev & Tiran, 2007) we presented a way 
to change the failure rate according to degradation rolling 
bearings deterioration stages (DS) and recalculating an 
updated Fault Tree Analysis (FTA); we called this process 
Condition Based Fault Tree Analysis (CB-FTA). In this 
paper we extend the method to update RAMS predictions for 
failure distributions different than the exponential 
distribution function (represented by constant failure rates). 
By utilizing Monte Carlo Simulation (MCS) the method is 
generalized for any failure distribution function. 

Wesley & Usynin (2008), Heng, Zhang, Tan, & Mathew 
(2009), Gorjian, Mittinty, Yarlagadda, & Sun (2009) 
reviewed available RAMS assessment models and 
emphasized the need for improvement including the 
integration of condition monitoring (CM) and reliability data. 

The aim: a model that will resolve more accurate RAMS 
predictions based on CM deterioration data. Basic idea is to 
use instead of “time to failure” a “time to degradation stage” 
approach, and to enable implementing the model with any 
sort of CM data collected on any system that undergoes 
condition monitoring.          

By successful Condition Monitoring (CM) actual 
deterioration is detected; combining CM and RAMS results 
in more accurate predictions. RAMS predictions are essential 
knowledge about any system, initially performed during the 
system design phase. At the beginning, RAMS are based on 
data derived from available data sources or from component 
manufacturers. A common method is to use component 
failure rates for all system components according to failure 
and repair distributions. Throughout system life, failure data 
is collected and from time to time RAMS can recalculate and 
compare these data with the initial predicted RAMS. 

Frequently, before actual failures occur, component 
degradation is detected by CM that obviously affects the 
system’s current RAMS. The moment part deterioration 
starts, a stopwatch starts to run until the part’s End of Life 
(EOL) is reached, if there is no intervention. On individual 
operating system degradation, the pace is strongly influenced 
by a variety of local working conditions, i.e., loads, 

                                                 
One can be this confident that the eventual field failure rate will be 
BETTER than: 90% 4 times the predicted, and 90% confident that the 
eventual field failure rate will be in the range: 5:1 to 1/5:1. (c) For a 
prediction using generic data One can be this confident that the eventual 
field failure rate will be BETTER than: 90% 6 times the predicted, and 
90% confident that the eventual field failure rate will be in the range: 8:1 

to 1/8:1 

maintenance quality, environment, and many more individual 
situations that lead to variances between predicted and 
demonstrated RAMS values. 

Condition Monitoring (CM) is frequently conducted on 
critical systems; knowledge about the deterioration process is 
accumulated, components’ residual life can be assessed from 
CM reports. Each time that deterioration is detected by CM, 
the system’s actual RAMS is lowered. 

This article suggests a model to combine CM with 
RAMS to produce Condition Based Reliability, Availability, 
Maintainability, and Safety (CB-RAMS). The method is 
based on the assumption that if we already know that 
deterioration started at a certain time we have to intervene; if 
not, a failure may occur during a much shorter time than 
predicted by RAMS. In order to prevent these “supersizing” 
occurrences, the model offers CB-RAMS, merging CM 
information into RAMS predictions and using RAMS 
calculation methods to anticipate the optimal recommended 
action at each deterioration point. 

The presented model suggests options to express detected 
wear conditions in terms of component reliability and using 
it to update RAMS calculations and get actual system 
predictions, rather than retain generic RAMS predictions 
based on generic data that could be accurate statistically for a 
group of the same systems but might be erroneous for the 
individual system that we operate and maintain in our specific 
conditions. 

Using CM one accumulates additional updated knowledge 
that can be used to update RAMS predictions—a method that 
quantifies the findings in terms that are suitable for providing 
an updated RAMS prediction. 

The basic idea behind the new method is updating RAMS 
calculations based on deterioration behavior and distributions 
as an alternative to the traditional RAMS calculations that are 
based on failure distributions, failure rate, or Weibull 
distribution parameters, Dodson (1994), Abernethy (2000). 
The major difficulty in utilizing the model is that 
deterioration distributions, and failure rate for each 
deterioration stage, are not accessible and can be generated 
from local data accumulated by CM. The deterioration 
process shortens the component’s remaining life. During 
deterioration, the component becomes less and less reliable. 
By accumulating deterioration data, distribution can be 
determined and used in CB-RAMS predictions. When the 
deterioration rate and distribution are not available we 
suggest using the exponential function (i.e., constant failure 
rate) as first order approximation, i.e., the component's 

2 “Reliability” is the probability of components, parts, and systems to 
perform their required, intended functions for a desired specified period 
of time without failure in specified environments with desired 
confidence.  
3 “Availability” is defined as the probability that the system is 
operating properly when it is requested for use. 
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known constant failure rate is altered and accelerated by an 
empirical growth factor. 

The presented model is appropriate to use in conjunction with 
components that deteriorate over a long duration, Rabinowicz 
(1981), and for those components where the deterioration is 
detectable by any CM method (i.e., Vibration monitoring and 
analysis, Thermography, Oil analysis, Noise monitoring, 
etc.). Using CM methods, trending is performed over time. 
The monitored part's condition is updated from the time that 
initial deterioration is detected until the EOL when a 
functional break occurs. For those components that break by 
acute force during a very short time and without any prior 
detectable signs, the CB-RAMS model is invalid. 

Luckily, the majority of component and equipment failures 
occur due to the wear process. Wear is a general name for 
deterioration by a contentious process along time and 
therefore it is potentially detectable by CM. The CB-RAMS 
model is not valid for equipment that fails because of a 
sudden occurrence; about 15% of total equipment failures 
occur very fast, Blanks (1992), therefore trending by CM is 
not an option. Unluckily for safety, such occurrences can 
cause surprising events. 

RAMS calculation aims to predict what would be the average 
reliability and availability of a large group of identical 
systems working under normal conditions. Essentially it does 
not predict the reliability and availability of one particular 
specific system, working under specific conditions, and 
maintained by local procedures, unless local data is used. 

Researchers such as Blanks (1992), O'Connor (1991), Smith 
(2001), Lycette (2005) have shown that in reality, often the 
correlation between calculated reliability and demonstrated 
reliability is poor. Mean Time Between Failures (MTBF) is 
defined as the reciprocal of the failure rate (λ) Logistics 
Engineering Technology, Branch (1998) and Bazovsky 
(1961). Blanks (1992) shows the inaccuracy of reliability 
prediction by comparing predicted and demonstrated MTBFs 
on real systems representing different technology disciplines. 
In the majority of studied cases, the demonstrated MTBFs are 
shorter than the predicted MTBFs. Decisions based on 
theoretical figures with poor correlation between systems’ 
real MTBFs and predicted MTBFs lead to dangerous 
outcomes and safety incidents and cause economic losses. 
Knowing these traditional RAMS calculations’ limited 
accuracy, leads to expensive conservative design with wide 
safety margins, in order to reduce risk. This fact explains why 
many analysts are reluctant to use system RAMS figures after 
passing the system design phase, especially for mechanical 
systems that are exposed to irregular maintenance. 
Recommendations and practical conclusions are to use the 
reliability calculations with great caution. A main benefit of 
reliability calculation and a good way to implement RAMS 
is to use the results as relative figures to compare alternatives 
and to make improvements mainly, but not only, during 
design or system change. 

By implementing CB-RAMS, assessments of RAMS in 
conjunction with CM findings are improved; the involved 

personnel can produce more objective recommendations. A 
major advantage of CB-RAMS is to support system operators 
and maintenance personnel in real time decisions. CB-RAMS 
method is also suitable for automated condition-based 
decision processes. We use MCS by RAPTOR to solve 
examples and to demonstrate the concept. Thus emphasize 
the strength of CB-RAMS together with MCS as a practical 
applicable efficient tool to improve the confidence levels of 
RAMS assessments on real working systems. 

We estimate that in the near future, manufacturers of 
monitored critical components that undergo CM (e.g., rolling 
bearings) will have to support CM and provide deterioration 
progress distribution and reliability data as a function of a 
component’s detected condition. Such data will dramatically 
improve the accuracy of RAMS predictions. 

In reality, working system degradation occurs for many 
reasons and the pace is not always precisely anticipated. 
Unpredicted accelerated ageing can be due to ageing 
accelerators such as: abnormal environmental conditions, 
excessive usage factors, abnormal temperatures, throughput 
rate, mechanical stress or vibration, mishandling, and many 
other factors that are not easy to predict. CM and trending can 
provide the real system condition. 

Some research and earlier works on modeling degradation 
processes can be found in Stock, Vesely & Samanta (1994), 
Gorjian et al. (2009). Some early works present methods and 
models to incorporate degradation into component level 
reliability and to predict system reliability under a variety of 
presumed conditions. These models can be used to evaluate 
different maintenance options. In this work we present a 
method to use real collected data and incorporate it into 
reliability calculations, rather than using any presumptions 
about the degradation process. This article presents the 
general model and its benefits to produce more accurate 
reliability predictions than those obtained without using 
components’ real conditions. 

The degradation process along time can be of any type; the 
path from start to End of Life (EOL) can be a decelerated, 
constant, or accelerated process. The Weibull distribution is 
the most popular means to describe those behaviors. For 
simplicity, in introducing the model we start by first 
presenting an example assuming exponential failure 
distribution and a constant failure rate. 

Using an exponential failure distribution density function 
with constant failure rate (λ) eliminates the need to use 
complicated mathematical methods since it can be solved 
analytically, unlike more general Weibull distribution that 
MCS has to use (Dubi, 1999, 1986). This constant λ enables 
performing system fault tree analysis, FTA, a very common 
and popular reliability prediction technique. 

In a previously published paper (Shalev et al.,2007) we 
presented a method to change the constant failure rate 
according to degradation stages and to recalculate the 
updated FTA accordingly; we called this process Condition 
Based Fault Tree Analysis (CB-FTA). 
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By extensive Condition Monitoring (CM) with trending, 
there is a good probability that when a component starts to 
deteriorate it will be noticed. Identifying the component’s 
concurrent condition and utilizing pre-known deterioration 
behavior is the basis for assessing the component's residual 
life at each deterioration stage. This deterioration can be 
expressed by terms that are used to predict the part’s 
reliability and influence on the whole system’s reliability. 
Since we know the component's state more accurately, we are 
able to narrow the general generic failure distribution for the 
specific component. Using CB-RAMS, model recalculation 
of the whole system’s RAMS values is done to produce 
concurrent predictions that are relevant to the real condition 
of a particular system; thus the safety predictions become 
more realistic and measures can be taken well before 
catastrophe occurs. 

During the design phase RAMS predictions help to identify 
system weaknesses and to improve design by choosing more 
reliable components or by enhancing redundancy. 

The CB-RAMS model is a prognosis process that 
enables choosing between several alternatives during the 
operational phase and during the design phase. 

CB-RAMS can be a better design tool during the design 
phase since it enables prediction of availability and reliability 
of a system after deterioration will be detected, i.e., to choose 
parts that will result in sufficient residual time to failure. 
Simulating alternative designs, pre-known values for each 
deterioration stage, and conducting CB-RAMS calculations 
result in figures that represent more precisely the anticipated 
system behaviors. By utilizing the model, we can assign the 
optimal component during the design process in order to get 
the needed system availability, to compare redundancy 
alternatives, and to get the needed maintainability and safety, 
taking into account the fact that we collect the real 
deterioration stages and can use the data to make more 
reliable predictions. 

One can change the design to select a more reliable 
component if additional alarm time is needed before stopping 
the system, or a less expensive substitute if the projected 
deterioration will provide sufficient time needed to take 
action (i.e., time from early warning until scheduled stop); 
thus, anticipating in advance the system’s future behavior 
assists in improving the system's life cycle cost (LCC), (Berry 
,1997). 

The models also have the potential to enhance system safety. 
By detecting degradation on a critical component and 
updated system CB-RAMS figures, the results represent 
precisely the system’s probability to operate without failure 
for a certain defined period of time. Surprising failures can 
be eliminated if we know the limits of RAMS predicted time 
to fail usually presumed by reliability parameters based on 
generic failure distribution of those components. 

2. CB-RAMS model formulation 

The CB-RAMS model is applicable to systems that fulfill all 
of the following characteristics: 1. Critical component 
deterioration processes are not random but rather a systematic 
process. 2. Detection of deterioration processes is possible by 
any condition monitoring method. 3. Degradation process 
can be a continuous process or a stage-by-stage process. If 
the process is continuous it can be divided into stages; we 
denote each degradation stage by i. Degradation stages can 
be presented as predefined recognizable stages or as points 
on a predefined curve made according to previously known 
data.  

Representative figures can be assigned for each degradation 
stage or monitored condition. New failure rate or narrow 
failure distribution presents each degradation stage. This 
figure corresponds to the Residual Time to Total Failure 
(RTTTF). When all these characteristics are fulfilled CB-
RAMS is feasible. 

When we deal with the exponential failure distribution, i.e., 
constant failure rate each time that deterioration is detected, 
a new higher failure rate is used to calculate the reliability for 
the residual time. 

By conducting CM for each critical component, the 
degradation stage is detected and a new component failure 
rate λDSi = λDS1 to λDSn is assigned, where λDSi stands for 
failure rate of degradation stage i. 

Applying the new λDSi rate to the system’s RAMS or to the 
system’s structured fault tree results in an updated system 
failure rate and reliability values. This process is the CB-
RAMS model. 

The upper block diagram in Figure 1 describes the traditional 
RAMS calculations, while the lower block diagram describes 
the Condition Based-RAMS (CB-RAMS). 
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Figure 1. The CB-RAMS model versus traditional RAMS. 

Systems consist of several machines working together, in 
parallel, in series, or both, with or without redundancy. Those 
machines contain components; machine number k will be 
denoted by mk, and component number j will be denoted by 
cj. Some components are more sensitive and degrade faster 
than others. By condition monitoring we detect sensitive 
components’ wear; component degradation stage will be 
denoted by DSi. A component without wear will be denoted 
as being in degradation stage 0, DS0. During the degradation 
process it will move from DS0 to DS1, DS2, in general DSn 
until the final stage DSf, when a functional failure occurs and 
the component is at End of Life (EOL). 

System theoretical reliability Rsys is a function of all its 
machines’ and components’ failure rates. In reality, the 
components’ conditions and related degradation stages 
determine the system’s actual reliability: 

                                               (1) 

The terms mk, cj, DSi mean that component number j in 
machine number k is in degradation stage i. 

All system components are classified by their inherent 
sensitivity and their criticality to the machine function. For 
each component in the whole system a monitoring policy is 
assigned. Methods for condition monitoring are assigned 
especially for all critical components. The monitoring 
frequency for each component is based on number of cycles, 
operation hours, previously known condition, etc. For those 
critical components that are more sensitive than others, or 
less approachable, the monitoring is done continually by on-
line sensors; we then get the component’s condition as a 
function of time, while for less critical components the 
monitoring is done by off-line systems (e.g., hand-held 
instruments). Individual Monitoring is performed at a certain 
time interval or at a certain number of accumulated working 
cycles. As a result of the condition monitoring (CM) 
procedure, the component can be at the same stage that was 
detected at the previous round or in an inferior degraded 
condition that will be represented by degradation stage DSi. 

Each time that any deterioration change is found, the system 
is presented with a new reliability value. 

Therefore, we can express system reliability at time t as a 

function of , ,
i

DSk jm c   . If any of measured , ,
i

DSk jm c    

at time ti, changed to 
1

, ,
i

DSk jm c 
    at time ti+1, then new 

system's reliability is calculated. 

   ( ) , ,1, , , 1 1t f m c DSR isys k j i k j i
 
             (2) 

This updated reliability value represents the system condition 
at time ti+1 at a higher confidence level and enables making 
better quality decisions. 

A procedure with three steps is describe to explain the 
method: First step: Calculating system reliability according 
the usual/traditional way, assuming the known failure 
distributions and failure rate parameters for all components. 
Second step: Determining which are the most sensitive 
components and assigning CM policy including monitoring 
procedures and techniques to those components, which will 
be monitored and trended along the system’s life. Third step: 
Calculating a series of system reliability figures starting from 
the baseline, and presuming that the most sensitive 
component is undergoing a deterioration process, from DS0 
to DSf. At each time t that degradation is detected in the real 
working system, we get Rsys(t) corresponding to this situation 
and we know what the Rsys(t+1) will be when the next 
deterioration will be detected at t+1, if the system continues 
to work as is or if any other operational alternative will be in 
place. 

When analyzing a redundant system, at each time t when we 
get new evidence that any component cj has deteriorated from 
stage DSi to DSi+1 we are facing branching in the decision 
tree. The immediate question is what the recommended 
optimal reaction is. We have to choose at each branching 
whether to continue to operate the same machine or to change 
the operating machine and to switch to the standby machine. 

Elementary  Components Failure Rates 
 (statistical data taken from data sources) 

[Site specific data, failure rate data book  , generic data sources ] 

Reliability Availability 
Maintainability  and Safety  

[RAMS]  

Constant 
system 

RAMS values   

CB-RAMS 

Condition‐Based Maintenance  (CBM)   
Condition Monitoring (CM) 

Prior knowledge  [& correlations] 
 about component degradation stages [DSi] 

and residual  life   
New corrected 

failure rate  value 
assigned to 
degraded   
component 

Updating 
system's 
RAMS 

values 

New model: Condition Based‐ RAMS (CB‐RAMS)   

Traditional RAMS calculations  

 ( ) , ,t f m c DSR sys k j i  
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The decision function maximizes the system reliability Rsys 
between operational alternatives for the next deterioration 
step. For simplicity of the model explanation, we use an 
assumption that at each time step the most critical component 
on the system will deteriorate to its next deterioration stage. 
Maximizing the Rsys reliability is done by recalculating Rsys 
for each alternative, and comparing the alternatives. 

Alternative 1: Rsys1 is the system predicted reliability if we do 
not change from primary operating machine m1 to standby 
machine m2, and assume that the most sensitive component cj 
in m1 will deteriorate to

11 , ,
i

DSjm c 
   . 

Alternative 2: Rsys2 is the system predicted reliability result if 
we decide to stop machine m1 and to start machine m2 and 
assuming that the most sensitive component cj in m2 will 

deteriorate to
12 , ,

i
DSjm c 

   . 

If change in deterioration is detected, an operational decision 
is made by comparing Rsys1 at t+Δt to Rsys2 at t+ Δt. The 
system will be set to operate in the alternative that will result 
in maximal reliability. 

 
 

( ) , ,1 1 1

( ) , ,2 2 1

t t f m c DSRsys j i
MAX

t t f m c DSRsys j i

 
   

 
   

                          (3) 

In general, we calculate system reliability for all next 
deterioration alternatives, for all components, and for all 

possible deterioration stages and
1

, ,
i

DSk jm c 
   . The 

optimal operation scheme will be the one that has the best 
probability to result in maximum reliability at time t+ Δt 
when the next monitoring procedure will be done. 

 ( 1) , , 1Max t f m c DSRsys k j i
 
                           (4) 

CB-RAMS method is applicable to systems analysis if the 
described three characteristics are fulfilled: 

Deterioration process is Repeatable and not random; it 
can be Continuous or a Step-by-step process (i.e., 
deterioration of rolling bearings, majority of bearings 
deterioration is a four-stage process as described in Figure 2). 

Detection of each stage is possible: Detection of the 
bearing deterioration stage is done by vibration measurement 
and FFT spectral analysis as detailed in Figure 2. 

For each failure stage, the residual time to total failure is 
definable or can be calculated from previous accumulated 
data. 

For many critical components (such as rolling bearings), the 
degradation can be translated to a new failure rate, which is 
the degradation stage failure rate (λDSi). 

Figure 2. Typical Vibration spectrum for rolling bearing 
failure stages 

(Berry,1991, 1997, 1999), (Berggren, 1988), (Shreve, 2010)  

Figure 3. Theoretical expected useful life as predicted by 
regular RRMS, and shortened life after component wear is 

detected by CM and bearing is in degradation stages. 

The common traditional reliability calculations that presume 
exponential failure distribution are based on constant failure 
rate; this simplifies the reliability calculations but does not 
always accurately describe the real failure behavior. For lot 
of real cases the optimal choice to describe the failure 
distribution is the Weibull distribution, Sung (1996).  

3. Implementing the CB-RAMS method 

Weibull distribution is used for the reliability calculations: 

0

0

( )

( ) 1 ( ) 1
t t

tF t R t e







                        (5) 

Parameters: 
F(t): Failure Probability 
R(t): Reliability (or Survival Probability) 
t: Statistical variable (load time, load cycle, act.) > 0 
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η: Scale parameter, Scale factor, Characteristic lifetime, For 
t=T, F(t)=63.2%, R(t)=36.8%, T>t0  

β: Shape parameter, Shape factor, Failure slop. Determines 
the curve shape > 0  

t0: Location parameter, Failure free time. Point in time that 
failures starts. Shifting of the failure behavior along time axis, 
if t0 > 0 then t >t0 

In order to explain the method, we examine how a change in 
typical rolling bearings’ Weibull parameters will influence 
the reliability. By looking at the graphs (Figure 4) we can 
understand how a change in each of the parameters will 
influence the reliability and the failure rate.

  
Figure 4. The influence of changes in Weibull parameters on the reliability. 

This graph is based on arbitrary generic parameters. 

The blue vertical arrows represent lowering the β parameter 
value while leaving the value of parameter η constant. The 
red horizontal arrows represent changing location t0-factor 
(location parameter) while leaving values of η and β constant. 

The black vertical arrow represents lowering the value of the 
parameter η while leaving the β parameter value constant. A 
change can also be any combination of change of these 
parameters. A method to determine Weibull parameters for 
each DSi by using CM accumulated data is presented. This is 
done by the following steps: The CM historic data for each 
part is organized according to working hours and detected 
deterioration stages DSi. 

Operation hours until each DSi is detected are calculated from 
operation log, or, if available, directly from working hours 
counter. 

The time span from initial deterioration findings until 
failure is divided into intervals, DSi. The intervals are 
according to known deterioration steps (e.g., in rolling 
bearings) or a value defined by the machine manufacturer or 
known from local experience (such as an initial warning 
threshold, the value of alerts, and an unacceptable value 
requiring an immediate halt). 

An updated reliability calculation is carried out based on 
known Weibull parameters corresponding to the DSi; at each 
time that a new or worsening deterioration is diagnosed the 
result is updated component reliability. 

Based on known Weibull parameters for each DSi, 
reliability and availability calculations are done for the 
component, the machine, and the whole system. Calculation 

process and determining Weibull parameters is based on the 
graphic solution of the Weibull equation,  Dodson  (1994), 
Abernethy  (2000): Weibull equation failure probability, 
Equation (5), is transformed to a form that is suitable for 
graphical solution. 

 
1

ln ln ln( ) ln( )
1 ( )

t
F t

  
         

               (6) 

This equation looks similar in form to a straight line equation 
(y=ax+b), where the dependent variable (y) is: 
 

1
ln ln

1 ( )F t

  
    

                            (7) 

The free variable (x) is: ln(t). β is the line slope and ln(η) β is 
the intersection (b) with the y-axis. We present a method 
based on local equipment CM to determine the Weibull 
parameters for each deterioration stage DSi. And further, 
recalculating updated RAMS based on known adjusted 
parameters for each DSi. 
  
4. Applications 

Some practical applications of CB-RAMS method is 
presented and demonstrated by 3 examples:  

Example 1: Bearing reliability- Calculating Weibull 
parameters according to historic CM data and calculating 
bearing reliability at each degradation stage DSi.  
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Example 2: Pump reliability - Calculating the individual 
pump (Figure 9) reliability and availability at each 
degradation stage DSi in each of the pump’s bearings. 
Example 3: Two-pump system reliability - Calculating 
reliability and availability for a system (Figure 10) for each 
degradation stage DSi in each of the pumps’ bearings. 

The source of this data is based on preformed CM on 
redundant six feed pump system, which supplies pressurized 
hot water to steam boilers. Same completion of missed points 
was done by extrapolation. All pumps are interchangeable 
and working in the same operation and maintenance 
conditions. All pump bearings are CM on a frequent basis. 

Data is collected along several years and documented 
according to pump serial number and summarized in Table 1. 

Example 1: Bearing reliability at each degradation stage:  

Calculating Weibull parameters according to historic CM 
data and calculating individual bearing reliability at each 
degradation stage DSi. 

The method consists of fitting Weibull parameters for each 
DSi separately as explained. The time parameter t [hr] is 
defined from the beginning of DSi to total failure (TF). 
Calculation steps are: calculation of time data (Table 1) and 
calculating the Weibull parameters by building a linear trend 
line (Figures 5 and 6) for each degradation stage 

 
Table 1.  Cumulative operation hours from initial start until diagnosing each DSi. 

 
Elapse hours from detection each DSi 

to total failure (TF) 
Δt = tTF - tDSi 

Hours from 
new to total 
Failure tTF 

cumulative hours from initial start to 
detecting each DSi 

Monitored 
component 

ΔtDS4 ΔtDS3 ΔtDS2 ΔtDS1 t0DS4 t0DS3 t0DS2 t0DS1 Bearing 

96 216 624 1632 4296 4200 4080 3672 2664 Pump 1 

960 1440 2064 2784 13920 12960 12480 11856 11136 Pump 2 

600 624 1560 2592 5760 5160 5136 4200 3168 Pump 3 

720 1224 2232 4776 9624 8904 8400 7392 4848 Pump 4 

696 1392 2376 3984 12480 11784 11088 10104 8496 Pump 5 

792 1848 3168 5616 15288 14496 13440 12120 9672 Pump 6 

168 816 2040 4128 19032 18864 18216 16992 14904 Pump 7 

576 1080 2009 3644 11485 10909 10405 9476 8704 Average 

299 516 722 1277 4873 4828 4579 4398 3891 STD 

 
 
First we calculate the bearing reliability using the traditional 
way, from new to total failure. The data for this calculation is 
presented in Table 2 and the results in Figure 5 and Table 
 
Table 2.  The values used for the least mean square Weibull 
parameters calculations. 
 

ln H(t) ln(t) H(t) 
h(t)= 

1/Reverse 
Rank 

Reverse 
Rank 

Rank 
Ascending 
order, [hr] 

New to 
Failure, 

[hr] 

-1.95 8.36 0.14 0.14 7 1 4296 4296 

-1.175 8.66 0.31 0.17 6 2 5760 13920 

-0.675 9.17 0.51 0.2 5 3 9624 5760 

-0.28 9.43 0.76 0.25 4 4 12480 9624 

0.09 9.54 1.10 0.33 3 5 13920 12480 

0.47 9.63 1.60 0.5 2 6 15288 15288 

0.95 9.85 2.59 1 1 7 19032 19032 

 
 

By graphical presentation of the calculated results and linear 
trend line, we get the Weibull parameters for each 
deterioration stage. 

  
Figure 5.  Graphical presentation of calculation of Weibull 

parameters, from new to Total Failure. 

Weibull parameters according to bearing time to failure are: 
β =1.79, y0 = -16.9, and η = exp (-y0/β) = 12598. 
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According to those parameters, the bearing reliability is 
calculated. These results are bearing reliability Weibull 
parameters. The results are the calculated traditional bearing 
reliability, without considering the deterioration stages. 
Results are shown in Figure 5. 

 
Table 3.  Traditionally calculated bearing reliability without 

deterioration stages, denote as R(t)DS0. 
8000 7000 6000 5000 4000 3000 2000 1000 t(hr) 

0.64 0.71 0.77 0.83 0.88 0.93 0.96 0.99 R(t)DS0 

Note: Reliability value obtained at t = η corresponds by 
definition to default of 63.21% of the population. The value t 
= L10 corresponds by definition to failure of 10% of the 
population. It is generally assumed that the ratio between L10 
and η is about five, Barringer (2001). 

Pump bearings whose data in the example above were 
designed to be L10 = 25 khr, given the results of the actual η, 
a bearing wears out if the design was based on the value of 
L10 = 12598/5 = 2520 hr. One possible explanation for this 
situation is problematic working conditions. Feed water 
pumps work at high temperatures, ball bearing cooling is 
performed by flow from a cooling tower. By this calculation 
we can see that the cooling system is not effective, it is 
clogged by lime scale deposits and not always able to 
maintain the required temperature in the bearings, so the 
actual bearing life is shorter than originally planned. 

According to actual failure distribution, correction 
alternatives must be considered. Enhance reliability and 
reduce maintenance activities by: using cooling water treated 
better, selecting pump bearings housing where cooling is 
more efficient, purchase of a more expensive pump 
characterized by better reliability level. 

Decision should be made by comparing the LCC life cycle 
costs of each alternative system. A second possible 
explanation for this situation is the quality of maintenance: 
Quality replacement bearings while overhauling the pumps. 

Weibull parameters for each DSi are calculated according to 
CM records. Determining the Weibull parameters for each 
DSi based on the total time t [hr] from beginning of DSi until 
part reaches total failure (TF), or very close to this point. 

Table 4.  Calculated Weibull parameters according to hours 
from detection of each DSi to total failure (TF), data taken 

from Table 1. 

ln 
H(t) 

ln(t) H(t) 
h(t) 

=1/Reverse 
Rank 

Reverse 
Rank 

Rank 

ΔtDS1 [hr] 
arranged 

in 
ascending 

order 

ΔtDS1 
[hr] 

-1.95 7.40 0.14 0.14 7 1 1632 1632 
-1.17 7.86 0.31 0.17 6 2 2592 2784 
-0.67 7.93 0.51 0.20 5 3 2784 2592 
-0.28 8.29 0.76 0.25 4 4 3984 4776 
0.09 8.33 1.09 0.33 3 5 4128 3984 
0.47 8.47 1.59 0.50 2 6 4776 5616 
0.95 8.63 2.59 1.00 1 7 5616 4128 

By repeating the same procedure, we calculate Weibull 
parameters for DS2, DS3, and DS4. The results are presented 
in Figure 6 and summary Table 5. 

 

 

 

 

Figure 6.  Weibull parameters β and η for each Degradation 
Stage DSi. 
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Table 5.  Calculated Weibull parameters β and η for each 
DSi. 

DS4 DS3 DS2 DS1 DS0 DSi 
0.97 1.29 1.75 2.30 1.79 Weibull parameter β 
-6 -9.18 -13.53 -19.4 -16.9 Weibull parameter y0 

501 1203 2249 4655 12599 η=exp(-y0/β) 

Bearing reliability for a bearing found to be in DS1 will be 
according to time when DS1 is detected until total failure: R(t) 
@ DS1: t(DS1) to t(TF). 

Table 6 shows the difference in the bearing reliability values 
with and without repair by the mode to corrected values for 
bearing detected and found at DS1 by CM. By using those 
parameters, we calculate the bearing’s reliability at each DSi. 
After we know the updated Weibull parameters for the 
individual deteriorated part, we perform updated RAMS 
calculations for the machine and for the whole system. Those 
system values remain relevant until a new deterioration stage 
is detected by CM. 

Table 6.  Bearing Reliability values for each DSi detected by 
CM. 

R(t) @ 
DS3: 

t(DS3) to 
t(TF) 

R(t) @ 
DS2: 

t(DS2) to 
t(TF) 

R(t) @ 
DS1: 

t(DS1) to 
t(TF) 

Bearing’s reliability 
without 

compensating to DSi t 

0.455 0.785 0.971 0.989 1000 

0.145 0.443 0.866 0.964 2000 

0.038 0.191 0.695 0.926 3000 

0.009 0.064 0.494 0.880 4000 

0.002 0.017 0.308 0.826 5000 

0.0003 0.004 0.167 0.767 6000 

5.7E-05 0.001 0.078 0.705 7000 

9.1E-06 9.6E-05 0.0312 0.642 8000 

 

 

 (8) 

 

 

Figure 7.  Bearing Reliability values as a function of DSi. 

When diagnosing DS1, level of reliability will reduce only at 
t = 1100 hr to below a value of 0.95. 

When diagnosing DS2, the reliability level at t = 1100 hr will 
drop to below about 0.8. 

That is, the probability of a bearing at DS1 to survive 1000 
hours without failure is much greater than that of the bearing 
that was diagnosed at condition DS2. 

This is also clear intuitively, but by utilizing the model, 
reliability values can be obtained depending on the hours of 
work and degradation and using the calculated figures to 
compare various alternatives. 

Comparing these reliability results to analytical calculation of 
a component’s reliability and Monte-Carlo simulation shows 
that the difference is less than one percent (Table 7). 

 

Table 7.  Bearing Reliability and Availability at a detected degradation stage DSi. Reliability values obtained by Raptor; 
MCS are similar to those calculated analytically. 

R(t) = exp [-(t/η)^β)]   

DS4 DS3 DS2 DS1 
Without DSi 

correction 
  

R(t)[DS4] R(t)[DS3] R(t)[DS2] R(t)[DS1] R(t)[DS0]   
0.9653 1.294 1.753 2.297 1.79 β β, Shape parameter 

-6 -9.1 -13.53 -19.4 -16.9 y0  
500 1203 2248 4655 12598 η=exp(-y0/β) η, Scale parameter 

0.142 0.455 0.785 0.971 0.989 t=1000 [hr] R(t), Reliability 
(analytically 
computed) 

0.022 0.145 0.443 0.866 0.963 t=2000 [hr] 
0.003 0.038 0.191 0.694 0.926 t=3000 [hr] 
0.149 0.463 0.786 0.971 0.987 t=1000 [hr] R(t), Reliability 

(Results by MCS) 
(n=2000) 

0.0175 0.151 0.461 0.861 0.960 t=2000 [hr] 
0.0025 0.034 0.195 0.686 0.924 t=3000 [hr] 
0.436 0.730 0.919 0.990  t=1000 [hr] A(t) Availability 

Results by MCS 
(n=2000) 

0.250 0.507 0.764 0.954  t=2000 [hr] 
0.169 0.365 0.616 0.897  t=3000 [hr] 

 
t

R t e





 
   
   
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Without the use of aggregated CM data, it was not possible 
to determine the corresponding Weibull parameters for each 
DSi. Table 5 shows the adjusted Weibull parameters for this 
example. β and η values are fitted according to CM data for 
each DSi. 

Weibull failure rate calculation, Instantaneous failure rate, 
h(t) (also called hazard rate), for each DSi are as follows: 

(9) 

 

(10) 

 

Figure 8.  Failure rate calculation for each DSi versus time. 

Results in the area where the main wear occurs, up to 4000 
hr, are shown in Figure 8, and presents the change in failure 
rate at DS2 and the steep jump at DS3, in which practically 
the bearing reaches unacceptable reliability of 0.7 in about 
500 hours, leaving only a few days before total failure. 

Table 8.  Failure rate versus time at each degradation stage 
DSi. 

Weibull hazard rate=failure rate=hazard function  

DS3_h(t) 
[β=1.29, 
η=1203] 

DS2_h(t) 
[β=1.75, 
η=2249] 

DS1_h(t) 
[β=2.30, 
η=4655] 

DS0_h(t) 
[β=1.80, 
η=12599] 

Time t 
[hr] 

0.0002 7.8E-06 6.9E-08 2.9E-07 5 

0.0008 5.7E-05 2.6E-05 6.4E-06 250 

0.0008 0.00014 5.1E-05 1.1E-05 500 

0.0008 0.00024 7.4E-05 1.5E-05 750 

0.0008 0.00035 9.7E-05 1.9E-05 1000 

It can be seen from Figure 8 and Table 8 that failure rate at 
DS3 of 500 hours comes to a value 16 times the failure rate at 
DS1 for 500 hours. 

Note: values at DS4 have no practical significance; reliability 
decreases rapidly at this stage and when it is diagnosed, in 
practice the machine must be stopped immediately. 

Calculations by Weibull failure distribution result in failure 
rate values that vary depending on the time; this reflects the 
reality of bearing wear better than the approximation of using 
a fixed failure rate. 

Example 2: Pump reliability at each combination of 
bearings degradation stages:  

Calculating the individual pump reliability and availability at 
each degradation stage DSi in each of the pumps’ bearings. 
Once we calculate the adjusted Weibull parameters for each 
stage of a pump’s bearing, we can calculate the reliability and 
availability of the whole pump as a function of bearing 
deterioration. For all other less-critical pump components we 
will use typical reliability values, Logistics Engineering 
Technology Branch, (1998). 

We will concentrate on the decision process between 
alternatives where reliability and availability values have 
practical significance. Situations where reliability values fall 
below 0.8 are not acceptable. 

Table 9.  Input data for Raptor MCS of pump reliability for 
DS0; no deterioration is detected. 

 
Param1=β, Param2=η 

 

Figure 9.  The MCS scheme for single pump reliability. 

MCS results for one pump reliability and availability are 
shown in Table 10 
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Table 10.  MCS results for pump reliability and availability as a function of its bearings’ DSi (n=3000 runs) [values are 
presented in format: R(t)/A(t)]. 

DS4 DS3 DS2 DS1 DS0  Bearing Weibull parameters 
0.9653 1.294 1.753 2.297 1.79 β Shape parameter 

500 1203 2248 4655 12598 η=exp(-y0/β) Scale parameter 
R(t)[DS4] R(t)[DS3] R(t)[DS2] R(t)[DS1] R(t)[DS0]  Reliability/Availability 
0.36/0.62 0.71/0.86 0.91/0.97 0.98/0.99 0.98/0.99 t=500 Reliability/Availability One bearing 

is in DS0, Other bearing degrades 
from DS0 to DS4 

0.14/0.43 0.44/0.715 0.75/0.9 0.93/0.98 0.95/0.98 t=1000 
0.07/0.32 0.25/0.59 0.56/0.82 0.87/0.95 0.92/0.97 t=1500 
0.36/0.62 0.71/0.86 0.91/0.96 0.97/0.99  t=500 Reliability/Availability One bearing 

is in DS1, Other bearing degrades 
from DS0 to DS4 

0.14/0.43 0.43/0.71 0.74/0.89 0.92/0.97  t=1000 
0.06/0.32 0.24/0.59 0.54/0.81 0.82/0.94  t=1500 
0.33/0.61 0.65/0.84 0.84/0.94   t=500 Reliability/Availability One bearing 

in DS2, Other bearing degrades from 
DS0 to DS4 

0.11/0.41 0.34/0.66 0.59/0.83   t=1000 
0.04/0.30 0.15/0.52 0.35/0.71   t=1500 

 

Conclusions from this example: 

The results indicate that a pump with two bearings in DS1 
(Rt =1000 = 0.92) is superior in terms of reliability and 
availability compared to a pump where one bearing is in DS2 
(Rt =1000 = 0.75). Results indicate that a pump with two 
bearings in DS2 (Rt =1000 = 0.59) is superior in terms of 
reliability and availability compared to a pump where one 
bearing is in DS3 (Rt =1000 = 0.44). 

These results are valuable in order to predict the optimal 
operation alternative. Even for this simple example for one 
machine reliability, those results are available only by the 
new CB-RAMS model. 

Example 3: Two-pump system reliability:  

Calculating reliability and availability for a system, a set of 
several machines (Figure 10) for each degradation stage DSi 
in each of the pumps’ bearings. 

The next chosen example will emphasize one of the benefits 
of the CB-RAMS method for systems. According to CM 
findings and bearing DSi and known Weibull parameters for 
each DSi, update of the whole system reliability and 
availability is performed. By stipulating the next degradation 
stage of each critical part, reliability and availability 
calculation of any operational alternatives can be 
compared. 

This is done for systems by CB-RAMS in conjunction with 
Monte–Carlo simulation (MCS). In this example we choose 
to analyze a small redundant two-pump system shown in 
Figure 10 (m/n=1/2). Note: For simplicity of presenting the 
results we do not present the more multipart system 
(m/n=3/6). 

This pump-redundant system has two identical pumps; we 
will use the same pumps as were analyzed in the previous 
examples. Only one pump is needed for the system’s 
purposes; therefore, one pump is operating while the second 
pump serves as a stand-by. This arrangement is a typical 

subsystem used in countless industries and services, and is 
critical to safety. Each pump has sensitive rolling bearing 
components whose failures are common reasons for the 
system's premature failure. 

Using the CB-RAMS model and calculating RAMS for the 
whole system for several conditions: 

Nomenclature: P1-B1-DS1 means that on pump No. 1, 
bearing No. 1 deteriorated at stage DS1. We will solve and 
compare two basic conditions: 

Condition 1: One bearing only has deteriorated to DS2 in one 
pump, P1-B1-DS2, and all other bearings are in DS0. 

Condition 2: In each pump, one bearing has deteriorated to 
DS1, P1-B1-DS1, P2-B1-DS1, and all other bearings are in 
DS0. 

One benefit of the CB-RAMS method is to make 
operationally optimal decisions. By comparing the results of 
option 1 and option 2, the operator can decide what the 
optimal action is after the first bearing deterioration is 
detected. If he decides to switch between the operating pump 
and the standby pump the next deterioration will be in the 
second pump and the total system reliability will be according 
to option 2 results. 

System reliability can be calculated analytical or by MCS. 
For Weibull distribution we have to MCS is used. System 
reliability for a component in series: 

1 (1 ) * (1 ) * ....(1 ) 1 (1 )1 2
1

n
R R R Rsys n Ri

i
       


  (11) 

 

System reliability for a component in parallel: 
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Figure 10: The MCS scheme for two-pump redundant 
system. 

Table 11.  Condition 1 input: one bearing has deteriorated to 
DS2 in 1 pump, P1-B1-DS2, and all other bearings are in 

DS0. 

 

Table 12. Condition 2 input: each pump, one bearing has 
deteriorated to DS1, P1-B1-DS1, P2-B1-DS1, and all other 

bearings are in DS0. 

 
 
Results of this example: 

Table 13: MCS results for system reliability and availability  

 condition 1 condition 2 

 
P1-B1-DS2, 

all other bearings in DS0 

P1-B1-DS1, P2-B1-DS1, all 
other bearings in DS0 

t (hr) R(t) A(t) R(t) A(t) 

1000 0.9920 0.9983 0.9960 0.9992 

1500 0.9690 0.9926 0.9786 0.9958 

3000 0.8126 0.9449 0.8353 0.9598 

5000 0.6193 0.8523 0.4050 0.8275 

8760 0.2833 0.6757 0.0120 0.5307 

R(t)=System Reliability, A(t)=System Availability, n=3000 
runs 

From results we see that up to t=3000 hr, system reliability 
and availability will be higher if the next deterioration step 
will be on the second pump, and lower if the same pump will 
continue to work and the bearing will reach degradation stage 
2. i.e., R(t)SYS (P1-B1-DS1+ P1-B1-DS1)) > RSYS (P1-B1-
DS2). CB-RAMS model assists operation decisions and 
eliminates confusing intuitive decisions. In this example 
RAMS values will be superior if one bearing in each pump 
will be in degradation stage 1, rather than if one bearing in 
one pump will be in degradation stage 2.  
The operational practical decision in this case will be to 
change between the operating pump to the stand-by pump 
when DS1 is detected. This will result in maximum reliability 
and availability. 
Even this simple case is not solvable without the method. In 
practice, operators decide when to change between redundant 
pumps by personal preferences and intuition. This example 
emphasizes the benefits of the CB-RAMS model to predict 
behaviors of multipart systems. Decisions will be more 
efficient based on CB-RAMS. 
The CB-RAMS model is a tool to make optimal LCC 
decisions, enabling more precise results to maximize 
production. As shown by the example, based on local CM 
data, always on this particular system, system availability 
will be greater if one bearing in both pumps will be in 
degradation stage 1 than if one bearing in one pump will be 
in degradation stage 2. Or: ASYS (P1-B1-DS1+ P1-B1-DS1)) 
> ASYS (P1-B1-DS2). 
Lower availability means loss of working hours. This may 
cost a huge amount of revenue on a production plan. 

5. Discussion 

Initial RAMS predictions are calculated during system’s 
design phase. Condition Based RAMS (CB-RAMS) is 
recalculating RAMS according to CM findings along the 
system’s operational life.  

Using accumulated local CM historical data, the basic known 
components’ parameters (e.g. Weibull parameters) are 
calculated to represent each one of degradation stages DSi. 
Once obtaining the corresponding Weibull parameters of 
each DSi, system reliability and availability is recalculate 
along system live according to CM findings.  

Thus CB-RAMS model take into account the local operation 
and maintenance conditions. Updated CM-RAMS describe 
accurately the current deteriorated system. CB-RAMS model 
assist to reduce intuitive decisions about optimal timing for 
components replacing, shutdown and maintenance.  

CB-RAMS enable to simulate and anticipate the system's 
RAMS along parts deterioration, as a consequence of parts 
and redundancy alternatives during system’s design phase. 
The simulation is based on the component's degradation 
stages detected by CM during a system's real life. This 

* * .. . .1 2
1

S Y S

n
R R R R Rn i

i
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process enables the designer to choose optimal cost benefit 
design to achieve adequate reliability levels and optimal 
maintenance shutdown intervals. As demonstrated in the 
example, by CB-RAMS simulation the influence of chosen 
component degradation on system reliability can be 
predicted.  

The method extends the use of RAMS beyond the system 
design phase and makes it useful tool throughout system's 
life. CB-RAMS enable to decide operation and maintenance 
activities based on the whole system's reliability, thus 
preventing unnecessary maintenance work and downtime to 
get optimal LCC decisions. Implementing CB-RAMS by 
simulating degradation situations create methodical plan to 
guide the operation reactions as an alternative to typical on 
spot intuitive decisions. 

Calculating CB-RAMS data by MCS makes this method 
applicable to multipart systems that are impractical to solve 
analytically.  

Reliability calculations are based on total failure statistical 
data gathered from a large quantity of failures of the same 
components, while CB-RAMS is based on degradation 
detected by CM on individual components in a real operating 
system, and statistical knowledge about the component's 
degradation stages. 

6. CONCLUSIONS 

CB-RAMS can be implemented with any detection method. 
It can be implemented in conjunction with built-in sensors. 
Furthermore, data in real time can be analyzed to control 
system operation. Implementing CB-RAMS is applicable to 
automating safety measures based on built-in sensors Bond 
(2003). 
More research is required to support and to improve the 
proposed method. Suggested techniques necessarily need to 
be evaluated with care in practice. 
CB-RAMS connect condition monitoring with reliability, 
thus improvement in prediction accuracy and better 
forecasting enhance system's safety.  
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