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ABSTRACT 

In the modern trains operated by the Dutch Railways 

(Nederlandse Spoorwegen) in the Netherlands, there are on-

board train management systems continuously monitoring 

the conditions of various train modules such as traction, 

climate, brake electronics and so forth. When an abnormal or 

particular situation occurs, the system will generate and store 

an event log on the local disk or on a remote disk using 

wireless data communications. These diagnostic events 

might give an indication of the train condition, and currently 

critical events are selected by business rules to give alarms 

on failure or malfunction to the control room. To give a better 

prediction on the trains status based on the condition 

monitoring data, sequences of diagnostic events instead of 

individual critical events are analyzed in this work. 

Moreover, train delays instead of train failures are used as 

targets for providing more insight on the degeneration 

behavior of trains. We have adopted the word sequence 

kernel for learning the similarity between all sequence pairs, 

where each diagnostic event is considered as a word. To 

include multi-length word interpretations, we propose to 

combine the word sequence kernels of various lengths, where 

length=1 means one word is matched, length=2 means two 

words are matched, and so on. A kernel machine or 

similarity-based model can be learned directly on this 

combined word sequence kernel. The experimental results 

demonstrate that combining word sequence kernels of 

different lengths can bring a richer description to similarity 

measurements and gives better prediction performance. 

1. INTRODUCTION 

NedTrain is the part of the Dutch Railways that is responsible 

for the cleaning, maintenance and service, and overhaul of 

rolling stock. To ensure all trains are reliable and safe to 

operate at the lowest cost, NedTrain is continuously 

optimizing the maintenance schedule to plan when and what 

to maintain (de Vos et al., 2015 & Jiang et al., 2012). Between 

2009 and 2012, 131 new SLT (Sprinter Light Train) trains of 

the Electric Multiple Unit (EMU) train type (in 

configurations of four and six coaches) were introduced for 

intensive regional rail services on the Dutch rail network. 

These modern trains are equipped with mechatronics and 

digital train management systems, and therefore much 

information and data on the technical state of the components 

is available for monitoring the train condition. Condition 

monitoring is more than detecting train failure or 

malfunctions. Continuous gathering of data allows for trend 

analysis over the entire fleet and allows for data-driven 

performance improvements for instance actual state-

dependent maintenance (Poot-Geertman et al, 2015). With 

the wealth of condition information, static and reactive 

preventive and corrective maintenance scheduling will be 

replaced by dynamic and proactive predictive maintenance in 

the future (Eker et al., 2014). 

The condition-based monitoring system sends out diagnostic 

events of various severity degrees. However, it is in general 

difficult to define what is the actual health condition of trains 

based on these events. Also, there are more than 3000 

individual events and these diagnostic events can hardly be 

interpreted as condition measures by even the most 

experienced technicians and engineers. To establish an 

automatic system predicting the actual performance and state 

of individual trains, the fleet services department of NedTrain 

decided to research on building predictive models of train 

delays based on the diagnostic events.  
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Usually there is more than one diagnostic event occurring 

within one single day on one of the monitored trains, and 

therefore methods that can handle sequences are required for 

building a predictive model based on such data. Machine 

learning methods for sequence data are most commonly 

developed in the application fields of document 

categorization and bioinformatics (Lodhi et al., 2002 & 

Cancedda et al., 2003). In the early works, documents were 

represented using the standard bag-of-word model to use 

word frequencies as data vectors. Such data vectors however 

fail to encode the sequence structure. The string kernel, one 

of the first significant departures from the vector space model 

was proposed by Lodhi et al. (2002), thanks to the fast 

development of kernel machines in early 2000. Instead of 

using word frequencies, string kernels compute the similarity 

between two sequences by comparing (in principle) all 

possible subsequences which can be considered as a dot 

product in an implicit high dimensional space. Because the 

number of all subsequences can be very high, for 

computational reasons only the subsequences that actually 

appear in the strings are considered. In 2003, Cancedda et al. 

(2003) proposed word sequence kernels to extend the idea of 

string kernels to process documents as sequences of words. 

Matching sequences of words are expected to be more 

linguistically meaningful compared to matching with 

sequences of characters. Also, the sequence length for 

computing sequence matching is greatly reduced by 

replacing characters with words and therefore the computing 

efficiency is significantly improved. 

However, the string kernel and word sequence kernel work 

on a pre-defined length of n characters or words. It is not 

difficult to imagine that a lower n means comparing 

sequences in a more general level and a higher n means 

comparing sequences in a more specific level because the 

length of subsequences is respectively shorter and longer. In 

many applications, it is difficult to determine the optimal 

value of n and often the sequences need to be compared in 

different levels. To integrate the comparison of sequences in 

different levels, we adopt the kernel combination method 

(Lanckriet, 2004) to combine the word sequence kernels of 

various lengths of subsequences. A support vector machine 

(SVM) can directly be learnt on the combined kernel to 

construct a predictive model of train delays. 

2. PREDICTIVE MODEL OF TRAIN DELAYS 

In this paper, we concatenate a series of diagnostic events 

occurring within one day into a sequence and then compute 

the similarity between all pairs of sequences using the 

combined word sequence kernel. The sequences of a 

monitored train that will get a delay within two days are 

labeled as DELAY. All other sequences are labeled as NO-

DELAY. The derived combined kernel matrix is directly used 

as the input data for support vector machine to build a 

predictive model of train delays. Support Vector Machine, 

String Kernel and Combined Word Sequence Kernel will be 

introduced briefly in the following sections.  

2.1. Support Vector Machine 

Support vector machine (SVM), motivated by the results of 

statistical learning theory, is one of the most popular kernel 

machines (Vapnik, 1995). Most of the kernel combination 

research is based on it. In an SVM, the decision boundary that 

is separating classes is represented by a small subset of 

training examples, called the support vectors. Unlike the 

traditional methods that minimize the empirical training 

errors, support vector machines implement the structural risk 

minimization principle. By adopting this principle, SVM can 

find the optimal discriminant hyperplane minimizing the risk 

of an erroneous classification of unseen test samples. In the 

following, we introduce the support vector classifier for 2-

class problem with class label +1 and -1, and 𝑥𝑖  and 𝑦𝑖  

represent 𝑖 th input datum (a vector) and its corresponding 

class label. Extension to multi-class problems can be 

achieved by training multiple support vector machines. 

To control both training error and model complexity, the 

optimization problem for SVM is formalized as follows:  

 

Minimize 
1

2
< 𝑤, 𝑤 > +𝐶 ∑ 𝜀𝑖

𝑛
𝑖=1 , 

subject to < 𝑤, 𝑥𝑖 > +𝑏 ≥ +1 − 𝜀𝑖, for   𝑦𝑖 = +1, 

                   < 𝑤, 𝑥𝑖 > +𝑏 ≤ −1 + 𝜀𝑖, for   𝑦𝑖 = −1, 

                                                                   𝜀𝑖 ≥ 0, ∀𝑖.         (1)         

 

By using Lagrange multiplier techniques, Eq. (1) could lead 

to the following dual optimization problem: 

 

Maximize ∑ 𝛼𝑖 − ∑ ∑ 𝛼𝑖

𝑛

𝑗=1

𝛼𝑗𝑦𝑖

𝑛

𝑖=1

𝑦𝑗 < 𝑥𝑖 , 𝑥𝑗 >

𝑛

𝑖=1

, 

 subject to ∑ 𝛼𝑖𝑦𝑖 = 0 𝑛
𝑖=1 ,      

                          𝛼𝑖 ∈ [0, 𝐶].                                                         (2)         

 

Using Lagrange multipliers, the optimal desired weight 

vector of the discriminant hyperplane is 𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑛
𝑖=1 . 

Therefore, the best discriminant hyperplane can be derived as  

 

𝑓(𝑥) =< ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑛
𝑖=1 , 𝑥 >+b 

         =∑ 𝛼𝑖𝑦𝑖 < 𝑥𝑖
𝑛
𝑖=1 , 𝑥 >+b,                                                     (3) 

 

where 𝑏 is the bias of the discriminant hyperplane. 
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When input data cannot be linearly separated in the original 

space, they can be mapped into a high dimensional feature 

space φ(·), where a linear decision surface separating the 

training data can be designed. The computation does not need 

to be performed in the feature space since SVM depends on 

the direct application of the kernel function over the input 

data. A kernel function is a function that calculates the inner 

product between mapped data objects 𝑥𝑖 and 𝑥𝑗 in the feature 

space, that is for any mapping φ(·), K(𝑥𝑖, 𝑥𝑗)=<φ(𝑥𝑖),φ(𝑥𝑗)>. 

Therefore, the kernel function is a key component of SVM 

for solving nonlinear problems, and the performance of SVM 

classifiers largely depends on the choice of the kernels. 

2.2. String Kernel 

A string kernel compares pairs of sequences of diagnostic 

events by the subsequences they contain, and more 

subsequences they share, more similar they are. In order to 

deal with non-contiguous subsequences, a decay factor ∈
(0,1) was introduced to weigh the presence of a certain event 

in a sequence.  

Let  be a finite set of diagnostic events, a string is a finite 

sequence of events from , including the empty sequence. 

The feature mapping φ(s) for a string s measures the number 

of occurrences of subsequences in the string s weighting them 

according to their lengths. Therefore, for each dimension u of 

φu(s), which is a subsequence in the string s with length n, 





][:

l(i) )(
isui

u s 

, 
                     (4) 

where l(i) is the length of s[i] and n is length of subsequence.  

Hence, the inner product of the feature vectors for two strings 

s and t give a sum over all common subsequences weighted 

according to their frequency of occurrence and lengths as  
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The string kernel in Eq. (5) needs to be further normalized 

with the following equation 
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                    (6) 

For instance, given three diagnostic sequences S1=[ATB01, 

ATB02, TRC02], S2=[ATB01, TRC02] and, S3=[ATB02, 

ATB01, TRC02], where ATB01, ATB02, TRC02 are 

diagnostic events describing abnormal behaviors of 

automatic braking systems and traction systems. If we 

consider only subsequences of length two, we can obtain a 4 

dimensional feature space, where the sequences are mapped 

as given in Table 1:  

 

Table 1. Feature representation of sequences using mapping 

function 𝝋(·). 

 

ATB01- 

ATB02 

ATB01-

TRC02 

ATB02-

TRC02 

ATB02-

ATB01 

𝝋(𝑺𝟏) 


𝟐 
𝟑
 

𝟐
 0 

𝝋(𝑺𝟐) 

0 
𝟐
 0 0 

𝝋(𝑺𝟑) 

0 
𝟐
 

𝟑
 

𝟐
 

Hence, the unnormalised kernel between S1 and S2  is 

𝑲𝟐(𝑺𝟏,𝑺𝟐) = 
𝟓

 and the unnormalised kernel between S1 and 

S3 is 𝑲𝟐(𝑺𝟏,𝑺𝟑) = 𝟐
𝟓

 . Hence the normalized kernel 

between S1 and S3 is �̃�𝟐(𝑺𝟏,𝑺𝟑) = 𝟐
𝟓

/(𝟐𝟒 + 
𝟔) , given 

𝑲𝟐(𝑺𝟏,𝑺𝟏) = 𝑲𝟐(𝑺𝟑,𝑺𝟑) = 𝟐
𝟒

+ 
𝟔
 . 

In the application of train condition monitoring, some 

modules might be more critical in safety than the other 

modules, for instance the automatic braking system and the 

traction system which are more related to safety will have a 

higher impact on the train condition compared to the 

passenger information system. Typically, the diagnosis 

events are also divided into different categories of severity. 

Therefore, in this kind of application, the decay factor  can 

be assigned with various values for different modules or 

different severity categories. However, for the ease of 

simplicity in this study the decay factor  of all events are 

assigned with the same value. 

2.3. Combined Word Sequence Kernel 

Kernel combination (Lanckriet, 2004) is meant to improve 

the performance of single kernels and avoid the difficulty of 

kernel selection. Most kernel combination methods average 

the kernel matrices in one way or another. Suppose p original 

kernels are given as K1, K2, ..., and Kp and the empirical 

feature functions of these kernels are φ1(s), φ2(s)..., and φp(s), 

combining kernels by summing up all the kernels is 

equivalent to taking the Cartesian product of their respective 

empirical feature spaces as shown in Eq. (7)  

The summed kernel needs to be further normalized using Eq. 

(6).   

.)(),(),(
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3. EXPERIMENTAL RESULTS 

From October 2013 to March 2015, a total of 27,365 data 

sequences from 131 SLT trains are collected, in which 5,133 

sequences are labeled as DELAY due to their close proximity 

to train delays in time and the other 22,232 are labeled as NO-

DELAY. In the experiments, 3 lengths, i.e., 1, 2 and 3, of 

subsequences are considered and combined. The 

computation of word sequence kernels grows exponentially 

with the increase in the length of subsequences, and therefore 

length ≥ 4 is not discussed in this work. Please note that when 

the length=1, the empirical feature space of word sequence 

kernel is the same as the bag-of-word representation. Also, 

all sequence data were collected during daily operations and 

therefore there were various human influence and 

interactions to the data. For instance, all trains are inspected 

daily in either a service or maintenance depot and therefore 

sometimes trains having critical diagnostic events might 

already be repaired before a delay occurs. Moreover, besides 

technical issues, train delays can also be caused by 

infrastructure, logistic or other external causes, and the 

registration on the cause of a delay is not always available. 

Due to the complexity and noisiness of this real-world 

application, none of the previous studies had delivered 

satisfactory results. 

In the following experimental results, 80% of the SLT 

sequence dataset was randomly chosen as the training data, 

and the rest 20% was used as the testing data. The process is 

repeated 50 times, and the experimental results presented are 

averaged over 50 runs.  

3.1. Performance of Individual and Combined Kernels 

Figure 1 shows the ROC (Receiver Operating Characteristic) 

curves of SVM models built on different kernels. K1 is word 

sequence kernel with length=1, K2 is word sequence kernel 

with length=2, K3 is word sequence kernel with length=3, 

K1+K2 is the normalized combination of K1 and K2 as given 

in Eq. (6) and Eq. (7), K2+K3 is the normalized combination 

of K2 and K3, and K1+K2+K3 is the normalized combination 

of K1, K2 and K3. The decay factor  is assigned to 0.2 for 

computing all string kernels. Type I error, aka False Positive, 

is a negative test object misclassified as positive, whereas 

Type II error, aka False Negative, is a positive test object 

misclassified as negative. From the ROC curves, it is clear 

that K1 gives significantly the worst performance at all times 

and this indicates the utilization of subsequences is necessary 

for building a predictive model in this application. Combined 

word sequence kernels K1+K2 and K1+K2+K3 often 

outperforms individual kernels K1, K2 and K3. However, the 

difference between the two combined kernels are not 

significant. One of the explanations could be that K2 often 

performs better than K3 and therefore adding K3 to K1+K2 

might not give much advantage. Moreover, the performance 

of the combined kernel K2+K3 is very similar to the 

individual kernel K2 which suggests that K1 actually carries 

essential information and is necessary to be included in the 

combination. 

Please notice that an SVM built on K1 can be considered as 

an SVM using linear kernel in which the input vectors are 

bag-of-word representation.  

 

Figure 1. ROC curves of SVM models built on different 

kernels. 

 

When the Type 1 Error (False Positive) is 6%, 45% of the 

delays can be correctly predicted by a SVM built on the 

combined kernel K1+K1+K3. In general, trains that are 

predicted to encounter a delay within 2 days can be fully 

inspected in the service or maintenance depot to fix any 

technical issue to avoid possible train failure or train delays. 

However, the aim of such a prediction system is to help the 

control center and maintenance technicians better detect 

possible defects and then prepare for a solution. In our 

prediction system, when a sequence is predicted as DELAY, 

the diagnostic events of the sequence will be ranked by their 

severity degree and then the most severe ones will be shown 

together with short descriptions to allow the engineers and 

technicians further understand the problem and decide 

whether there is a need for action. 

3.2. Lower Bounds on Bayes Error of Overlapping 

Sequences 

The diagnostic sequences collected in this study were events 

happening during daily operations and there was external 

interference such as maintenance activities and driving 

behavior of train drivers. The delay records used as labels are 

manually registered and it is not always clear whether a delay 

is caused by train defects or operational issues. All these 

factors result in a high percentage of overlapping sequences 

which means identical sequences have different labels. For 

instance two identical sequences S1=[ATB01, ATB02, 
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TRC02] and S2=[ATB01, ATB02, TRC02]  might be labeled 

as DELAY and NO-DELAY separately.  

To evaluate the nature of our problem, we have computed the 

Bayes error of our dataset for further investigation. The 

Bayes error is the irreducible probability of misclassification 

caused by the inherent overlap between the two classes. The 

computation of Bayes error consists of 2 steps. The first step 

is to find out all groups of overlapping sequences, and each 

group is the collection of the same sequence occurring on 

different days and/or on different trains. In the second step, 

the inherent error of each group is computed. For each group, 

the maximum risk happens at when all NO-DELAY 

sequences are classified as DELAY and vice versa. This 

maximum risk is used as the inherent error of a group and in 

this case the Type I Error and the Type II Error, respectively. 

The Bayes error is therefore the sum of all errors generated 

by all groups.   

Figure 2 shows the ROC curve of the K1+K2+K3 kernel and 

a lower bound of the Bayes error based on overlapping 

sequences. The Bayes error suggests the problem itself is 

highly overlapped and difficult to solve, and the K1+K2+K3 

kernel performs reasonably well considering the nature of the 

problem.    

 

Figure 2. ROC curves of the SVM model built on K1+K2+K3 

kernel and the Bayes error of overlapping sequences. 

 

4. CONCLUSIONS 

In this paper, we have studied the application of (combined) 

word sequence kernel on prediction of train delays based on 

sequences of diagnostic events. The experimental results 

have demonstrated that the combination of different lengths 

of subsequence kernels can enrich the SVM model but the 

contribution of individual diagnostic events are relatively 

significant. The Bayes error on the overlapping sequences 

gives a lower bound on our classification task, and gives a 

comparative reference to the performance of combined word 

sequence kernel.  
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