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ABSTRACT Model-based systems engineering concepts provide mecha-
nisms which can simplify the process of designing suitable
I,E)crjognostics systems for engineering applications (RaFers,
reira, & Barcelo, 2012). On the one hand, the systems en-
gineering viewpoint integrates a holistic perspective hef t
roblem, which takes into account asset interrelatiorssduiol

Prognostics applications predict the future evolution of a
asset under study, by diagnosing the actual health state a
modeling the future degradation. Due to rapidly growing
interest in prognostics, different prediction technighese

been developed independently without a consistent and sy ffecycle design requirements. On the other hand, models

tematic design. In this paper we formalize the prognostes d lay an important role in the system design process because
sign process with a novel methodology entitled ADEPS (As—p y P Y gnp

sisted Design for Engineering Prognostic Systems). ADEF’éhey are able to (Rumbaugh, Jacobson, & Booch, 1999):
combines prognostics concepts with model-based safety as-
sessment, criticality analysis, knowledge engineerirtbfan ¢
mal verification approaches. The main activities of ADEPS ® Organize, examine and edit information of large systems.
include synthesis of the safety assessment model from the de  Explore feasibility of alternative solutions.

sign model, prioritization of the system failure modes,-sys
tematic prognostics model selection and verification of the

ad_equacy of the prqgnostics results with respect to design r({\J/Iany of the current industrial systems address multiple fai
quirements. By Imkmg system-l_evel safety assessmentmo re modes and theirimpact on the overall system performance
els and prognqstps result§, design aqd safety r_nodels are uHway be very different (Espiritu, Coit, & Prakash, 2007). Ac-
dated with online information about different failure made cordingly, prognostics implementations of some failuraiem

This step enables system-level health assessment ingludi%” be more cost effective than others. Therefore the selec

prognostics_ prgdictions of different failure mode§. The-en tion of an adequate prognostics technique depends on the fai
to-end application of the methodology for the design andieva re mode justification according to the system design.
uation of a power transformer demonstrates the benefits ot%

the proposed approach including reduced design time and effter the failure mo_de selection, it is necessary to chocos_e a
fort, complete consideration of prognostics algorithmd an adequate prognostics model among the available techniques

Capture and state requirements and domain knowledge.

Master complex systems.

updated system-level health assessment. So as to reduce the time and effort required to develop an ac-
curate prognostics application we implement knowledge en-
1. INTRODUCTION gineering concepts which aid in the systematic prognostics

L o , model selection process according to design requirements.
Prognostics is the ability to acquire knowledge about &Nt order to avoid undesirable consequences and for correct
before they actually occur (Vachtsevanos, Lewis, Roemer

: . . -~ ~’maintenance planning, prognostics results need to beecbrifi
H_ess, & Wu, 20.07)' In engineering, fallure_ prognostics 'Sagainst the prognostics design requirements.
aimed at foretelling the Remaining Useful Life (RUL) of an
asset taking into account the likely future evolution oféit#-  Often the system-level failure is not caused by the isolated
ure mode(s). Successful implementations of prognostietec failure occurrence of a single failure mode, but due to the si
niques provide benefits for maintenance planning and costhultaneous occurrence of interacting failure modes ([2aigl
effective operation of assets (Vachtsevanos et al., 2007).  Bregon, & Roychoudhury, 2014). Accordingly, from the sys-

tem - level perspective, it is possible to integrate indeieen

Jose Aizpurua et al. This is an open-access article distdbunder the terms ~ COmponent-level prognostics applications in the ovesadt s

of the Creative Commons Attribution 3.0 United States Lagsrwhich per-  tem design process for system-level health assessment.
mits unrestricted use, distribution, and reproductiominmedium, provided ) ) ) ) )
the original author and source are credited. Integrating all these concepts in the design flow, in thisspap
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we present a novel methodology entitled ADEPS (Assistedialidation. The approach is continued in (Cocheteux, ¥iisi
Design for Engineering Prognostic Systems). The main godlevrat, & lung, 2010) emphasizing system-level perfornganc
of ADEPS is the systematic design of prognostics applicaindicators for supporting proactive maintenance strategi
tions, by choosin@ priori an adequate prognostics algorithm Some prognostics methodologies limit their applicabitity

that meets the system requirements. We organize all the Pra cific proanostics prediction models: (Kumar, Torresich
posed activities around a system design model which acts prog b ' '

the core model for prognostics studies and system design Pecht, 2008) focuses on hybrid prognostics models; and
prog y an. similarly, (Peysson et al., 2009) formalizes the systentspe

In previous work we focused on the systematic prognostic#ication for multi component systems, but it lacks a prog-
model selection process (Aizpurua & Catterson, 2015b) andostic model selection process. Instead of focusing on a spe
formal verification of prognostics results (Aizpurua & Cat- cific prognostics algorithm which may work for some specific
terson, 2015a). The main contribution of this paper is thescenarios, a prognostics model selection process is needed
conception of ADEPS for the end-to-end design of prognosfor the general applicability of a prognostics methodology
tics applications starting from component-level analygis There are other approaches which have considered the prog-
to the system-level health assessment. The application afostics model selection process. For instance, (Lee, Liao,
the set of interconnected approaches within ADEPS enabldsapira, Ni, & Li, 2009) presented a methodology for the de-
the systematic design of prognostics applications, verific sign of e-manufacturing systems. It ranks prognostics-algo
tion of design requirements with prognostics prediction re rithms based on process properties and implements the high-
sults and evaluation of the impact of prognostics predigtio est ranked technique. However, the prognostics techniques
at the system-level. considered are a subset of data-driven techniques and ¢hey d

The remainder of the paper is organized as follows. SectiorrwlOt include model-based and hybrid prognostics techniques

2 presents the state-of-the-art analysing existing preiged  (Bousdekis, Magoutas, Apostolou, & Mentzas, 2015) does

methodologies. Section 3 defines the ADEPS methodologpot present a methodology, but they address the model selec-

and the activities undertaken within the methodology. iBact tion concept. They select a subset of prognostics techsjque

4 presents the case study to design prognostics applisatiocharacterize them in terms of available input and desirable

for power transformers. Finally, Section 5 draws conclaosio outputs, knowledge of the degradation process, and domain
knowledge embedded in a utility function. Subsequently the

2. RELATED WORK fed this information into a decision tree learning algaritko

. as to obtain a prognostics model-selection tree.
In recent years a plethora of new techniques have been pro-

posed for prognostics of engineering assets. In this confex Although the need to develop a generally applicable method-
independent and rapid evolution of prognostics technigueslogy has been recognized in the literature, most of the pro-
there have been some attempts to organise prognosticsidesigosed prognostics methodologies do not consider a holistic
steps with a common design thread. system viewpoint. Some have confined the application of the
(Uckun, Goebel, & Lucas, 2008) identified the need forauni-methOdmog.y tq specific prognostics algorithms, preventin

; . the generalization of the approach. Some of the proposed
versal methodology to design prognostics and health manage

: - approaches have used a particular solution technique (e.g.
ment systems and listed some of the key activities of ADEPS Kumar et al., 2008)), while others have not considered the

Some of these steps have been formalized by others: transf ; .
mation from high-level requirements to business case (&axe problem in the context of a methodology (€.g., (Bousdekis et
al., 2015)).

et al., 2012); metric selection (Saxena et al., 2008); atid va
dation and verification tests (Tang, Orchard, Goebel, & Yach Inthe area of maintenance modeling, there have been method-
sevanos, 2011). A key step that the methodology must inteslogies focused on the systems engineering viewpoint so as
grate is the quantification of metrics as a means to conside implement lifecycle maintenance concepts (Takata et al.
tently compare alternative techniques. 2004). For instance, (Ruin, Levrat, lung, & Despuijols, 2014
presented an engineering centered methodology for the quan

(Cocheteux, Voisin, Levrat, & lung, 2009) presented regtuir tification of complex maintenance programs.

ments for prognostics design including failure mode s&act
and prognostics model selection. To select failure modes thHowever, there is no generally applicable methodology tvhic
concept of FMAP (Failure Mode Analysis for Prognostics) suggests a prognostic technique according to the useresqui
is presented, which is inspired from the traditional FMECA ments, verifies that the obtained results are coherent héth t
(Failure Mode, Effects and Criticality Analysis) (US Depar design requirements and re-evaluates the impact of the re-
ment of Defense, 1980) including influential variables, ob-sults at the system-level. Therefore, the main originadity
servable indicators and properties. No explicit approach i ADEPS arises from the systematic integration of these -activ
proposed for prognostics model selection and for requirgsne ities through model-based systems engineering, knowledge
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engineering, safety engineering and formal verification apThe methodology starts from theystem desigmodel spec-
proaches taking into account prognostics-specific comssta  ification. This model specifies the functional behavior @& th
system describing dependencies and nominal operatiosof sy
3. ADEPS METHODOLOGY : ASSISTED DESIGN FOR tem components. It is comprised of connected components
ENGINEERING PROGNOSTIC SYSTEMS via input and output ports. Simulink (MathWorks, 2016) and

. . SysML (Weilkiens, 2011) are two examples of well-known
ADEPS focuses on model-based systems engineering con- . s .

. ; L model-based system design specification languages. In this
cepts and integrates the following properties:

paper we focus on Simulink for subsequent tool support for
model-based safety assessment (see Subsection 3.1)isout it

e Design of monitoring system architectures including dif- possible to repeat the same process using other approaches.
ferent design options, e.g., number and type of sensors. _ . _ -
We extendthe system design model with failure specifica-

* Failure mode and prognostics model selection gwdanceﬂons, defining for the system design components all passibl
e Formal verification of the resulting prognostics systems.deviations from normal operation. The failure specificatio
defines for each component its internal failure modes and the
relation between input and internal failure modes, i.dl; fa

ADEPS links system-level design with the design of failure-u.re propagauon logic. The failure propagathn I_og|c Spec
o ) 2 fies the failure responses of a component to its input failure
mode specific prognostics applications through modeldase

safety assessment (Joshi, Heimdahl, Miller, & Whalen, 2006m0des_. Figure 2a shows two assgts.wnh failure propagation
) = ...~~~ and failure transformation properties: Assptopagateshe
Papadopoulos et al., 2011) and prognostics-specific aesvi . .
. . input failure mode FM to the output port, whereas Asget
(Aizpurua & Catterson, 2015b, 2015a). Besides, we add th . .
. ) . ransforms=M, into another failure mode FM
capability to update the system-level perspective usiog{pr
nostics information. Figure 1 shows the ADEPS methodol-
ogy including different modeling and analysis activities. Internal Failure 1 Internal Failure 2

e Prognostics-updated system-level health assessment.

___________

—pIn, Out1—>AIn1 Out—p

.
[ ( ) 1
[N N
1 'y Internal 1,
]

I
:
I
FMa FM FMg |
I
I
I
I

oo Failure 2,
Asset, Asset, ] Asset) ~ Kssét,
@) Example System (b) Example System

Figure 2. Example system: (a) failure propagation and trans
formation; (b) FTA synthesis.

Component output responses can be specified with relation-
ships between input failure modes and internal failure &ven
(Papadopoulos et al., 2011):

Juawssassy A1ojes paseq-[spon |

Update
Criticality
Assessment

Ranked
Failure modes

Fault Coverage

FM of
interest

Prognostics output F'M—out1 =Logic(internal fail, input FM—ini) (1)

Requirements
Specification

Engineering
resources

whereinput F'M —in; covers the input failure mode(s) (resp.
output) of the component at part,, internal fail denotes
internal failure events aricbgic links failure modes using the

(Mode! Selection) boolean and temporal logic functions displayed in Table 1.
Prognostics | _|Data Acquisition .
Model [ |HW Specification™ Table 1. Logic gates.

Logic Logic Function Behavior Symbol
7N
Y=AND(A,B) If A occurs andB occurs, therY occurs
Meet
No: reconsider regs:~Reds; Y=OR(A,B) If A occurs orB occurs, therY occurs (\

Ye!
Verified Model

_ If A occurs before the occurrence®br 7N\
Y=PAND(A,B) at the same time, thevioccurs /N
_ If A occurs for longer or equal thah ()
Y=DURq(A) time units, therY occurs

Figure 1. ADEPS methodology.
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For instance, we can annotate the example system in Figu& Catterson, 2015a). The verification step includes theceffe
2a with the failure specification shown in Table 2, where out-of the possible failures arising from the data acquisitiardh
put deviations are defined according to Eq. (1). ware architecture (see Subsection 3.4).

If the selected prognostics model does maet the prognos-

Table 2. Failure specification of the components in Figure 2atiCS requirementsthe designer may need to reconsider design

Com tornal EM Output Deviations dECISIO.nS. R§V|S|on _of design requwe_ments may re_sulten th
p- Output Lonical C reconsideration of failure mode selection, prognosticd@ho
_ FM ogicat t-auses selection or verification activities. Otherwise, if the idged
Asset 1] Internal Failure 1) FMa-Outl - (FMA model meets requirements, it is possibleipalatethe system
. R(FMa-In1, i i i -to-
Asset 2| Internal Failure 2| FMg-Outl | | =0 W o 2) design and failure models with up-to-date health assestsmen

information via prognostics prediction results (see Satise

3.5). The designer can repeat the process with other failure
After specifying all the system components with their cerre modes, establishing a set of prognostics prediction mddels
sponding failure behavior, thextended modé$ analysed by  the different failure modes of the system under study.
applying Model-Based Safety Assessment (MBSA) concepts.

This process results in the automatic synthesisabéty mod-  3.1. Model-Based Safety Assessment

els from the extended design model. The MBSA paradigm

enables the automatic transformation of the design mottel in

a safety assessment model in order to evaluate the influen®&0CesS of safety-related systems (Papadopoulos et all; 20
of alternative design decisions on system failure proftgbil 2°SNi €tal., 2006). Namely, it enables the (automaticysynt
(Joshi et al., 2006; Papadopoulos et al., 2011). sis of safety assessment models from operational design mod

els. This process has advantages such as alleviating the nee
In this paper we focus on Fault Tree Analysis (FTA) mod-for creating architecture-specific safety models mantfally
els (Vesely, Dugan, Fragola, Minarick, & Railsback, 2002)each design alternative. As a result, MBSA introduces 4 shif
for the system safety model specification although othéstoo in the design process from being manual, tedious and failure
may also be suitable. The FTA model defines the effect Obrone towards an automated and reusable approach.

failure modes on the system-level failure expressed wattm{t i i L
poral) combinatorial logic (cf. Table 1). The lowest level The integration of MBSA concepts within ADEPS enables

basic-events model captures all possible failure modeiseof t [0 frame from a system-level perspective the design of prog-

system under study and at the highest level the top-event mo&©Stics applications. This is achieved through safety rtsode
els the system failure occurrence through the combination 0Wh|ch define how the combination of different failure modes

basic events. Assuming that the system in Figure 2a is ann&ause th.e.systenj failure. I_n turn, for eac.h of these failure
tated with the failure specification shown in Table 2, FiguremOdeS' it is possible to design a prognostics model system-

2b shows the automatically synthesized FTA model. atically according to ADEPS. MBSA plays a pivotal role in
ADEPS by providing a centralized system design framework.

Applying criticality assessmenéchniques on the FTA model ) . :
(Van der Borst & Schoonakker, 2001), we sort asset fai)-The design and safety models evolve dynamically to include

ure modes according to their criticality. Thesaked fail- design decisions adopted at different stages and progsosti

ure modesare then connected with tHault coveragestep results obtained at different prediction times. On the one
to select a failure mode for prognostics studies. The fail-hand' ADEPS makes use of the synthesized safety models

ure mode selection is performed according to the critigalit to rank failure modes according to their criticality. Thiayy

of the failure mode, requirements specification and aviilab 2nY architectural design decision will impact the undextyi
engineering resources, i.e., run-to-failure data or kedgé safety model, and it will affect the criticality analysisjltire
of physics-of-failure model (see Subsection 3.2) mode ranking and prognostics model selection. On the other

_ _ hand, the links between safety and prognostics modelsenabl
Subsequently we undertake theognostics model selection the continuous update of safety models with prognostics re-
according to the process presented in (Aizpurua & Cattersults. As a result, the designer obtains an up-to-dategisyst

son, 2015b). For the selected failure mode, we analyse progevel) health assessment including future degradatiomite

nostics requirements and available engineering reso(sees ) . .
Subsection 3.3). Once we select the prognostics model, thikhere are different MBSA approaches which extract differen

model is used to perform different predictions and estimaté“'"’“,ySis models from design specifif:ations (see (Aizpuru.a &
the remaining useful life of the asset under study. Muxika, 2013) for an overview). In this paper we use the HiP-

. . HOPS approach because it provides flexibility and suppeort fo
In order to verify the adequacy of the model with respect tospecifying the design model and extracting (temporal) FTA

design requirements, we implement fhregnostics verifica-  models (Papadopoulos et al., 2011). As shown in Figure 3,
tionapproach based on formal verification concepts (Aizpurua

Model-Based Safety Assessment (MBSA) aids in the design



EUROPEANCONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2016

the specification of the design model in HiP-HOPS is doneet al., 2009)). However, FMECA is a qualitative cause-dffec
with hierarchical block diagrams which can include differe approach which requires a thorough understanding of the fai

design alternatives (e.g., alternative redundancy sfied} ure mechanisms. Even with a perfect understanding of the
failure modes, sometimes it is difficult to determine theicri
System Degn cality of failure modes due to intermediate events.
% Syicis Systan paliire FTA is an effect-cause approach which can integrate qualita

Algorithm
—_—

CJ tive and quantitative assessments. If the link betweerchasi
( events and top-event failure occurrence is identified, & ha
potential to automate the criticality analysis through amp
tance measurements (Van der Borst & Schoonakker, 2001).
Accordingly we can classify failure modes into two groups:

e Critical failure modes: system breakdown occurs when
the component failure mode occurs.

S e Non-critical failure modes: system breakdown does not
stuck at 0_[omisson-ou [ oRgstuck at o, ANDI(o 1, omissin-in 2 Component Failures occur when the component failure mode occurs.

Failure
Annotations

Figure 3. System design, failure annotations and Fault TreAccording to this logic we use the FTA model so as to weight

synthesis step in HiP-HOPS. the contribution of each component to the system-levelfail
occurrence. Namely, we evaluate when the occurrence of a

For each component in the design model its failure behavfailure mode causes the system-level failure and extract th

ior is specified including internal malfunctions and theitog failure criticality index (Hilber, 2008): the ratio betwe¢he

that links internal failures with the incoming failures¢deq.  number of system failures caused by the failure mode to the

(1) and Figure 3). HiP-HOPS takes the design model withtotal number of system failures.

failure annotations and analyses the failure propagatigic| After ranking all the failure modes with respect to theit-cri

from basic causes to the system-level failure occurrene. T © o .

. ; . . . icality, we select the most critical one and check if ther ar
component connections in the desigh model with the failure naineering resources available for this failure modedfe
propagation logic enable the automated synthesis of FM EcCANY 9

and FTA models from the extended system design model. are engineering resources, we _proceed with the next activit
of the methodology. However, if there are no resources, we

take the next ordered failure mode until finding a failure mod
3.2. Fault Coverage . : . .
with available engineering resources.
Engineering systems are comprised of different assetshwhi
work in cooperation to perform a system-level function. feac
of these assets has different failure modes which have a di
ferent impact on the system-level failure occurrence. Prog
nostics applications may prioritize a single fault typeingg
behaviour or a number of important failure modes. The fault
coverage activity focuses on failure mode selection togtesi Prognostics prediction models can be classified into the fol
a prognostics model. lowing high-level groups: data-driven, model-based and hy

In the proposed methodology the failure mode selection isbrld approaches (Aizpurua & Catterson, 2015b).

driven by three parameters: criticality of the failure mpde The selection of the group depends on the available engineer
available engineering resources for the failure mode undeing resources. Namely, when run-to-failure data or knowl-
study and design requirements. Ideally all the necessaiy en edge of the system’s degradation equation is available; dat
neering resources (run-to-failure data and/or physicgibf f driven or model-based approaches are selected respgctivel
ure models) for all the failure modes of the system will beWhen both engineering resources are available, the smbecti
available for the designer. Given the open choice to select af the high-level group incurs a trade-off decision between
failure mode for prognostics studies, we focus on the extracavailability of statistically significant run-to-failuréata and
tion of indicators to assist in the failure mode selection. complexity of the degradation equation. If the complexity

The failure mode criticality has been considered as a use- manageable and there is enough run-to-failure datadybri

R : . . prognostics techniques can be selected.
ful design indicator for prognostics failure mode selettio
FMECA is a valid approach for criticality assessment andin (Aizpurua & Catterson, 2015b) we presented ordered de-
failure mode selection (e.g., (Uckun et al., 2008), (Coetet  sign decision points to choose a prognostics model using the

“This fault coverage process assures the prognostics assess
pwent of the most critical failure mode for which there are
available engineering resources.

3.3. Prognostics Model Selection
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failure mode under study, design requirements and availablpattern. If satisfied, the results can be used as argumamtati
engineering resources. The decision points for each of thef verified design requirements.
high-level groups are different (Aizpurua & Catterson, 20t

Asset Prognostics
e Data-driven: RUL format, data monotonicity, prediction Under| |Data Architecture
horizon, knowledge of degradation states, availability of Study| | Spedifications
expert knowledge, Markovian degradation process anal-  <Aassets Hassets Torev> + +<Mcs, Aceus Herus Asensors-++>

ysis, availability of multiple run-to-failure data. . . CRUL T
Model-based: availability of observations, linearity of 3

Prognostics
Prediction [——Jp»|
the degradation trend, assumptions about Gaussian noisgAlgorithm

Hybrid: availability of expert knowledge, complemen-

Probabilistic
Model-Checking
Prognostics Pattern

tary parameter estimation, combination of features. Formal S
Regs Probabilistic
. . . . S ec' Model -Checking
Data-driven approaches include more decision points secau pec.

there are simply more of these techniques to choose between.
Model-based techniques are more specific to the field of study
Namely, physics of failure models are specifically designed
to predict the degradation of a particular failure mode. Hy-
brid prognostics models include the systematic combinatio
of data-driven and model-based prognostics techniqués wit
complementary properties.

Argumentation:
Probabilistic
Case

Figure 4. Verification activity of the methodology.

In this paper, we use the PRISM tool (Kwiatkowska, Nor-

We organize these (.jeC'SIOn p_omts_strateglcally n difiere fan, & Parker, 2011) for the implementation of probabitisti
flowcharts so as to aid the designer in the prognostics mode]- : .
model-checking concepts, but other tools may also be appli-

selectlon_procgss according to design requwfements i V8 able. PRISM enables the specification of state-based proba
able engineering resources—please see (Aizpurua & Cattey-

son, 2015b) for the exhaustive list of design decision @oint Ills.tlc models |nclud.|n.g continuous and dlscrgt_e t.|m(-e Koar
chains, Markov decision processes, probabilistic timed au

tomata and Markov decision processes. Among these for-
malisms we use Continuous-Time Markov Chains (CTMC)
The verification of prognostics applications is crucialfaild- ~ for the specification of the prognostics pattern and we use
ing trust in their predictions. Prognostics engineeririg li Continuous Stochastic Logic (CSL) for the verification of
erature suggests prognostics metrics for the evaluatidn arsystem requirements—see (Aizpurua & Catterson, 2015a) for
verification of the correctness, timeliness, and confiderice the rationale and limits of the selected approach.

prognostics models (Saxena et al., 2008). The quantific
tion of these metrics requires case-by-case implementafio

3.4. Verification of Prognostics Requirements

a\figure 5 shows the probabilistic model-checking progmssti
pattern which is specified as a CTMC in PRISM (Aizpurua &

their logic with each application. A requirements verifioat
technique which is model independent would assist in doin
this task semi-automatically for any prognostics model.

gCatterson, 2015a).

[L,:Data Architecture HW

Furthermore, online prognostics applications depend ata d
acquisition hardware architecture to generate correaj-pro
nostics predictions. Accordingly, when verifying progtics
requirements compliance, it is necessary to include trexeff
of hardware failures on prognostics predictions.

SO0 (o1

H Hn

A —
u:x/vv L,:Prediction
P .

We use formal verification techniques for the integrated ver "ldI;://vvn:'
ification of prognostics applications including hardwanel a T L’I’H’vj -
software components. Figure 4 shows the overall verifica- R e, -

. . . Tay AT [L;:Asset]
tion approach (Aizpurua & Catterson, 2015a). We define a My o off 3

probabilistic model-checking pattenwhich is used to syn-
thesize prognostics prediction results, asset informaditd
the data architecture specification. This pattern is folymal
expressed with prognostics requirements. The probadbilist Figure 5. Probabilistic model-checking prognostics patte
model-checking engine performs an exhaustive verification

to check if the requirements are satisfied by the prognosticEhe probabilistic model-checking pattern takes as input:

e (F)

Masset
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e Specification of thedata architecture hardwarénclud- Table 3. Examples of CSL properties.
ing the combination of component failures that cause the _
tem failure, i.e. Minimal Cut Set (MCS) (Vesely et st Meaning
SYysS v i y 1 P_;[F<t prop] Prob. ofprop; is true eventually before
al., 2002) and failure X) and repair rate() values of 2| PGl prop] Brob. globallypropy is true within the
system components. =151t L] propy time instant [t, t]
. . . . . _ Prob. ofprop; not being true untipro
e Prognosticpredictionresults including the prognostics | 3| P=elProp. U<=t prop,] is n%t tr:zue in the i%terval [O,tt)] .
prediction time () and RUL estimation. 4| R{"opef'}=; [C<=1] Expected cumulativeperationaltime
. . . 5] R{"tme}= [F A latedti til is satisfied
e Information on the asset under study including groun {{time’ }-- [F prop] ceumiiatecimeun™ prop IS saiste

truth data fasse), mean time to repair the assetalse)
and periodic preventive maintenance periogldy). We can define conditions (rewards) in PRISM to evaluate
False Positive (FP) and False Negative (FN) metrics. As-
The MCS defines the performance of the data acquisitiosuming thalsset=1identifies failed stateasset=2identifies
hardware §nw, thw). Under nominal conditions, the pre- maintenance stat@red=2 identifies hardware down state in
diction module performs predictions at different instafigs ~ the prediction module, an@ly identifies the confidence in-
The result of these predictions is the estimation of the RULferval of the evenk, whereX={FP, FN}; we define the fol-
which in turn, can be transformed into a maintenance interlowing conditions:
val Ty taking into account a Safety Factor (SF);FRUL-
SF. After each prediction, the prediction module goes back
to Off state with time Tz. The asset module takes into ac- FN = (asset=1)A(RU L+Tp > Aasset—CIrn )V(pred=2) (2)
count ground truth data and it is repaired after a constang ti
interval.
At every prognostics prediction instant we update pattern p FP=(asset =2)AAswer=(RULHT,)) > (Clrp) - (3)

rametgrs with prognostic_s predictip_n _results. Then wefyeri \when reward Equations (2) and (3) are satisfied by the prog-
if requirements are met via probabilistic model-checkiRg:  ,ostics pattern in Figure 5, they will be increased by a unit

guirements are formally expressed using the CSL formalis”ﬂt;uantifying the occurrence of these events.
as a function of the parameters in Figure 5. The outcome o

the verification of prognostics results is the quantificaid

i i 3.5. Update System Design with Prognostics Results
prognostics metrics.

. Traditionally MBSA is used early in the design phase, wherea
CSL formulas are interpreted over the states of the CTMC tqyqgnostics predictions are performed after the asset-is de

check if the stated formula is satisfied (Katoen, Kwiatkosysk ployed for some time. However, it is possible to align both

Norman, & Parker, 2001). The main operators for property;nnraaches by updating the extended design model and safety
specification areP for .the specification of th_prpbabnltythat model parameters according to prognostics predictiortgesu
the observed execution of the model satisfies a given speg; gifferent prediction time instants. The main benefit é th

ification; S to computesteady-stateprobabilities; andR 10 g4ep s the up-to-date consideration of the system heaith st
expresgeward-basedproperties. Thd® operator is used in including prognostics prediction results.

conjunction with temporal operators defined over a state or a
path of the CTMC model. Prognostics results (i.e., RUL estimations) can be seesmas r

] .. dom variables which can be categorized into three groups:
The main operators for temporal state or path specifications

are: G for properties that need to be satisfigidbally, F for

properties that become tr@wentually X for properties that
become true in thaext stateandU for properties that are not
satisfieduntil another property is true. e A probability density function.

e A deterministic value.
o A deterministic valuet a confidence interval.

The S operator is used to reason about the steady-state op
ation and it has no timed-variants. As for tReoperator it is
possible to combine it witlr for reachability properties,C
for cumulativeproperties, andl for instantaneougroperties.

hese values can be used for failure specification or argalysi
of maintenance strategies. For failure specification, posg

tics predictions constitute the basic failure unit of thaé-fa
ure mode or asset under study. It is possible to propagate
All these operators have time-bounded extensions. Table these values for further reliability evaluations usingtigvel
displays some examples of formal properties expressed iapproaches such as FTA. To this end, it is necessary to pa-
CSL and their informal meaning. Note thptop denotes rameterize prognostics results with an equivalent Prdibabi
property, which is a condition defined over the CTMC model,Density Function (PDF). The deterministic RUL can be ap-
e.g. in Figure 5prop=(Prediction=0ffA Asset=F). proximated with the exponential distribution calculatiing
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bounds for the confidence interval (Banjevic & Jardine, 2006 provides an effective magnetic flux. The winding provides
As for RUL results specified as a PDF, they can be approxias output effective output current at the designed level and
mated using a parameterized PDF with regression techniquesircuit temperature for monitoring purposes.

After the parameterization, it is possible to recomputesifse

tem level failure probability through the FTA model. To this () — Cureent p{current

end, the failure specification of the failure modes need®to b |nu"en Tomp |——plTemp

updated through conditional probabilities. There arewital In .

formulations that integrate conditional probability faioos, ¢ Transformer ~  DataArchitectureHW

e.g., Bayes theory (Gelman, Carlin, Stern, & Rubin, 2003). / h

There are also simulation based approaches which can up- (b),/ Curent O~

date distribution parameters during simulation, e.g.clS4s- ICnput ‘ é’u“rﬁzﬁ—b S

. .. urren Tem|

tic Activity Networks (SAN) (Sanders & Meyer, 2001). Cuﬂ:em — ~
Magn. Flux Magn. Ir]put ) Outpgt

4. CASE STUDY P :'\Flujnetlc Magn;ﬂi

Power transformers are important assets in electrical powe /. Winding S o Core —|

grids with a direct impact on the reliability of the grid. The , ~C

main goal of power transformers is to transfer the electric e / A

ergy from one voltage level to another under magnetic induc- (c) ~

tion reaction. One of its main benefits is the reduction of e = oil loi  insutation

power transmission cost by increasing the transmission vol Torp.  Tomp. [ P{Temp.  Temp. [ P{Temp. el

age and reducing the required current for transmission. Cooling Oil Paper

Circ. Insulation
Temp Health

Output Input ¢ -

Current Current

The main components of the transformer are the tank, wind-
ing, core, tap changer and bushings. The tank is the assembly
and physical protection for the active part of the transiemm

Current In
i.e. winding and core. Winding is a conductor material which Temp LR B
aims to satisfy the increase in power rating and voltage re- Magn. Flux Circuit Moo Flox

quirements. Windings are arranged as shells around the core

where each strand is wrapped with insulation paper. Core is Gigure 6. Transformer design: (a) high-level dependencies
magnetic circuit which reduces core losses. Tap changer re§P) active part of the transformer; (c) winding block diagra
ulates the voltage level by transferring electrical powent

one tap winding to the adjacent one and bushings are the eleEigure 6c shows the winding block diagram. The oil and pa-
trical isolation between tank and windings. The failuremja per act as insulators materials for the winding. The cooling

of these components can cause the transformer failure.  system keeps the oil temperature at acceptable levels and th

paper insulation degradation process depends on the il tem

Transformers are the most expensive assets in the power n%térature (CIGI, 2015). The paper acts as an insulation ma-

work with a costly and time-consuming repair process. ASgyia| of the winding circuit which produces a magnetic flux

a resuIF, the |mplementat|on.of gond|tlon-b§sed mamteean to which travels through the core and an output current which
strategies through prognostics is a potential solutionxto e is produced using the effective magnetic flux
tending their useful life. The tank is a cornerstone part of

the power tr_ansf_orm_er de_sign, bu_t its degraqlati_on can be_ 81 1 Model-based Safety Assessment (MBSA)

sessed easily with visual inspection. The winding is a-criti

cal subsystem of the transformer which initiates most of thdn order to apply the MBSA concepts, first we extend the de-
transformer failure events and its health assessmentresqui Sign model in Figure 6¢ with failure annotations. Table 4
investigation of all root causes (CIG;ER 2015). As aresult, displays the functional failure modes and their deviations

in this case study we will focus on the winding analysis.  gjg re 7 shows the propagated failure modes after anngtatin

Figure 6a shows high-level dependencies between the trangie winding design model in Figure 6¢ with failure deviation
former and its data acquisition hardware system. The dati Table 4.

acquisition hardware system monitors the generated QUITER gre adding the failure specifications (which are subject t

and temperature of the winding circuit (see Subsection 4'4)expert knowledge) to the design model, we synthesize auto-

Figure 6b shows the block diagram of the active part of thematically from Figure 7 the winding FTA model shown in
transformer. The winding generates a magnetic flux Whicrlzigure 8 via HiP-HOPS

travels within the core. The core increases efficiency and it
Winding failure (or equivalently Omission-Magn. Flux e¥en
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Table 4. Failure specification of the winding subsystem —~ajure 6c¢.

Output Deviations
Component|  Internal FM Output FM LCogical Causes
Cooling Pump Failure Omission-Cool Temp. Pump Failure
. Low Oil Level, . . OR(Omission-Cool Temp., Low Oil Level,
(o] Moisture PaperDegradation-Qil Temp. Moisture)
Excelsrils\ﬁelaPt?g)r?L'Deeégltrﬁdatlon- DURg(PaperDegradation-Oil Temp.)
Paper Partial Discharge ElectricArc-Insulation Health DURGq(Partial Discharge)
PaperDegradation-Insulation Health PaperDegradation-Oil Temp.
. PAND(Short Circuit,
Cireu Short Circi Deformation-Output Current PaperDegradation-Insulation Health)
Ircurt ort Circuit ExcessivePaperDegradation- - - -
Output Current ExcessivePaperDegradation-Insulation Health
ElectricArc-Output Current ElectricArc-Insulation Health
OR(Deformation-Circuit.OutputCurrent,
Winding - Omission-Magn. Flux ElectricArc-Circuit.OutputCurrent,
ExcessivePaperDegradation-Circuit.OutputCurrent)

O: Omission; PD: peformation. ...~~~ - - - - - - - - - --== - — — — — - T T~-==
Winding Failure

ED: Excessive Degradation;

Paper Degradation; D:
EA: Electric Arc;

) 1
| 1
Low oil level, | 1
Pump failure Moisture Partial Discharge | :
1
| 1
1
Circuit Cool {o}‘ Cool Oil {PD} Oil Insulation| : < et |
™ e S Y b e tovel e A N BN Bl il i ey Bt
Ui T (I, 1T [T Inteeti 1 Excessive paper| : Winding |I —= - '; !
11 degradation |1 Deformation| '' | |Electric Arc| ' |
i i Paper
Cooling Qil P! 1 : :I | : 1
Short Circuit 1l . -: \ \ !
[ 1 ! | I
Tt T T TSt Y 1
Circ. Insulation {ED,EA,PD} it I| ! ]
Temp Health : : . : ! :. ! 1
I 1 I
Putput Inputl @ N , oy i
Current  Current C%t)ln P | :: I partial : !
i [ ) !
{D,ED,EA}{Magn. Effective ! | ', | Discharge
Flox_ Magn. Flu] @ (2) N I o 2NEE
—— Effective 'R | :' Paper !
Cirouit Magn. Flux 1y | |:
[ | 1 I
v vy Oy Winding R | :: !
1
@ @ @ : : , : Moisture ! n \
Temp Current Magn. Flux T | 1 [
out v ! : O 1 !
| 1 1

. .y [ Pump ~ Low Short
Figure 7. Extended model of the winding subsystem. o | Fails | Ol | Circuit 1! !
T Cocling Level | vl |
|1 o — _ Ceoling ~° " | " 1
I,' ________ ol ______________h |
II________EiLCliit ________ I |
. . . . !_________gape_r _______________ 1
occurs either because wfinding deformationelectric arg Winding

or because the paper degradation lasts more than a predefined
period ofd time units and reaches axcessive degradation
level The root causes for excessive paper degradation are oil
moisture, pump failure or low oil level. The winding defor- Table 5 displays the failure and repair rates of the basioteve
mation happens when first the paper degradation event occusbown in Figure 8 extrapolated from (CI(ERZOlS) assum-

and then the short circuit failure happens. Finally, thetele  ing exponential distributions for failure and repair ewerithe

arc occurs as a result of a partial discharge event which lastluration of the events causing excessive paper degradation
more than a time period aftime units. and electric arc are assumed to be 5 and 10 years respectively

Figure 8. FTA model of the winding subsystem.

The quantification of the FTA model in Figure 8 requires im-
plementing the logic of the gates in Table 1. Since there isn
available solution in HiP-HOPS for the duration gate, we optFor the failure mode study, we take all the failure modes in
for implementing stochastic Monte Carlo simulations by ex-the winding FTA model (Figure 8) and assess the criticality
tending previous work with Dynamic Fault Trees (Aizpurua, of these failure modes. Making use of the Monte Carlo sim-
Muxika, Papadopoulos, Chiacchio, & Manno, 2016) includ-ulations for the FTA solution, we have extended the failure
ing repairable basic events and the duration gate logic. criticality index presented in (Aizpurua et al., 2016) fer r

O4.2. Fault coverage
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Table 5. Failure and repair rates of the analysed failure
modes.

Failure Mode X (years™ 1) u (years™")
Oil moisture 0.00038 0.25 ez
Pump failure 0.000272 0.25

Low Oil Level 0.000987 0.25 Sk
Short Circuit 0.000955 0.25

Partial Discharge 0.0104 0.25

Unscented
Kalman
Filter

pairable systems.

Table 6 displays ordered failure models with respect tarthei
criticality and available engineering resources: ruriaiture Figure 9. Model-based prognostics algorithm selection.
data (D), or knowledge of physics of failure equations (K).
Table 6. Ranked failure modes. 2011). The standard defines an aging acceleration factedbas
on the hotspot temperature. This equation can be rearranged

Failure : ; ; S i it
Failure Mode Criticality évallable to give a partlcle_ filter process model, by_convertmg it iato
Index esources recurrence relation for remaining paper life (Cattersor)-M
Exc. Paper Degradation 0.5408 K,D one, & Garcia, 2016):
Electric Arc 0.4331 K,D
Winding Deformation 0.0021 - 15000/383— 15000/ (27340
Short Ciroutt 0.0021 - Li=Liq—e® [@T8TOm) Ly (4)
Partial Discharge 0.0012 K,D ) ) ) ) ) )
Paper Degradation 1.019e-5 K, D wheret is the time index,L, is the RUL at timet, O, is
Low oil 6.052e-6 - hotspot temperature at tinieandu; is the process noise.
Oil moist 2.39%e-6 - . . . . . .
Igun;nogsf:i[e 1 755(;6_6 - Equation (4) is updated with measurement information that i
: the hotspot temperature measured by:
As we can see in Table 6 the most critical failure mode is
®Ht = ®to + (80 — A@to/a,R) X K2m (5)

the excessive paper degradation followed by the electcic ar
Accordingly, we select excessive paper degradation for sub

wherem is related to the cooling model of the transformer
and Ay, /., is the difference in temperature between top

sequent prognostics assessment.
oil and ambient at rated current.

4.3. Prognostics Model-selection
According to the prognostics model selection process (df-S At each simulation step we calculate the degradation state
section 3.3), first we choose a high-level prognostics algotEd. (4)) and the weight of the likelihood of each particle—
rithm group. We focus on model-based approaches becaug¥ease see (Catterson et al., 2016) for more details. Fiure
observation data and know|edge of physics of failure equaShOWS estimated RUL values at different predlctlon Insgtant

tions are available (cf. Table 6). We proceed as follows in(Tp) based on the Particle Filter equations and available ob-
the model-selection process with the flowchart in Figure gservation data (ambientand top oil temperature, load nt)rre
(Aizpurua & Catterson, 2015b):
"l .
a ——RUL at Tp, =40 m

035
—o—RULatTp,=44m
—+— RUL at Tp, =48 m

]

S ¢ 60— O F

The degradation equation and observation data are avail-
03F

able. Besides, the process is Markovian and therefore,
Bayesian tracking solutions are considered.
The degradation of the transformer aging is not linear.

N
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Therefore, we choose thearticl e Filter algorithm. o - S
. . . . . 970 975 980 985 990 995
Transformer aging involves deterioration of the paper-insu RUL (months)

lation due to temperature. A model for paper aging is given o ) o
in IEEE standard C57.91 (IEEE Power and Energy Society,/igure 10. RUL predictions at different prediction timgs T

10
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Transformer RUL predictions results (in months) are as fol- Data Hardware Architecture Fail |
lows: Ty, (36m) =992.5+ 2.89m; T, (40m) = 987+ 2.64m;
Tp, (44m) =984.3+ 2.76m; and J, (48m) =979.3+ 3.05m.

O‘Temp. Sensors DownHCurrent Sensors Down

Redundancy fail

4.4. Verification of Prognostics Results

PI Historian

In order to perform the verification of the prognostics appli
cation we need to take into account the hardware archiectur \

which acquires the necessary data and calculates prognosti C \J (

estimations (cf. Figure 6&ataArchitectureHW. 4 Sensor_T1Sensor T2 Sensar_I1 Sensor_12

For high criticality transformers, a typical data acqudsitar- C ) )

chitecture will use temperature and current sensors. [@éta c Networ_aster Femte

lection will employ a High-Frequency Network (HFN) where o

available (e.g., critical substations), supported by tveer Figure 12. FTA model of the data architecture hardware.

frequency SCADA network. The SCADA platform includes
a Remote Terminal Unit (RTU) in the substation reportingTable 7. Failure and repair rates of the hardware components
to the central Master Station (MS). Both SCADA and higher
frequency data are then archived, using a system such as a|pl____€omponent Ayears™") | p(years™)
Historian. Figure 11 shows the inner architecture of tha dat Pl Historian 0.001 0.25

. . . Ti, i, MS, RTU, HFN 0.01 0.25
architecture hardware block shown in Figure 6a. Network 00001 055

Current 11

Sensor_| =

High Freq
Current Network
Current 12}

\ A 4

itive metrics, respectively. For the transformer we hawedus
the following reliability figures (in months)A,ss.;=1/1038
m (transformer failure rate);,,=0.1 m (maintenance time);
::IIT ool o] [ roced g%:fnl] (r:af(éfy?ai‘:: tt(i)r:;e);CIFp=1o m; CIpy=4 m, and
—>(Temp T1:|: Remote  Network Master ’

Sensor_|2

Terminal Station

unit After specifying FP and FN rewards in PRISM using the prop-

erty #4 in Table 3, Figures 13 and 14 show the obtained re-
ensor_T. sults. If the designer has a threshold for an acceptable rate
of false positive or false negative events, it can be idextifi
whether these values are acceptable or not.

According to the verification process defined in Subsectiorf0r FP events we have used different prediction results from
3.4, we need to identify the failure condition of the data ac-Figure 10 including their deviation (see Figure 13). Affes t
quisition hardware architecture, i.e., Minimal Cut Set (§)c ~ Prediction atT,=Tp,-deviation the prognostics predictions
function. To this end, we repeat the process with HiP-HOP$ecome accurate enough to avoid false positive occurrences
failure annotations for the data acquisition hardwareigagch

ensor_T

Temperature

»llemp T2

Figure 11. Transformer data architecture hardware.

0.04

ture. Figure 12 shows the FTA model of the data acquisition D UL omeanedey
. 0.0351 Toi: RUL= +d
hardware architecture. e Tp RUL-mean-dev.

0.03F Tp,: RUL=mean

The MCS equation of the FTA in Figure 12 is as follows:

MCS=PIV(TIANT2 V(11 AI2)VIH FNAN(M SVNetvRTU)] (6)

False Positive Events

0.025F
0.02f /
0.015 .
where PI indicates the failure of the PI historiai; and I;
indicate the failure of the i-th temperature and current sen
sor respectivelyN et indicates the failure of the network, and 5 30 40 E 0 S0 8 o oo
HFN, MS, and RTU indicate the failure of the identified Time (months)
components. For the analysis we have used hypothetical fail
ure and repair rates displayed in Table 7.

Figure 13. False positive event.

Taking the prognostics pattern in Figure 5 as a reference, wEor the false negative event we have used the mean RUL pre-
use Equations (2) and (3) to evaluate false negative and posdiction value at },. Figure 14 shows the difference between

11
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the metric with and without the hardware omission failure ef 4.5. Update Design Models

fect. The incorporation of the hardware omission failure en . e R
o . =~ The failure specifications of the FTA model in Figure 8 can
ables us to account for the uncertainties that may ariseein th ; . . 2
rognostics application environment be u_pdated dynamically with prognostlcs pred!cnon ressult
P ' obtained for the paper degradation model (cf. Figure 10).

5 To this end, first we approximate the PDF values of the trans-
:}g:;ﬁﬂiﬂ:g:*”"‘”a”“re effect former degradation prediction with the correspondingridist
‘ bution. Although the PDFs in Figure 10 can be approximated

L with Gaussian or Weibull distributions, the transformerés
. per degradation process is governed by the exponential law
(cf. Eq. (4)). Accordingly, in order to adhere to the real

- degradation process, we implement the exponential degrada
.’ tion law taking the mean and standard deviation values of the
. PDFs in Figure 10. Using the resampling mechanism of SAN
. we update initial failure rate distributions (cf. Table $)-
ferent prediction times during the simulation.

N w N
T T T
A
Ay
.
Ay
Ay
Y

False Negative Events
AY
Y

N
\
\

0 20 “T(;me (momig) 80 100 Figure 16 shows the obtained system-level health assessmen
results updated with prognostics predictions g+J years
Figure 14. False negative event. and T,=4 years for the FTA model shown in Figure 8.

x107°

— — — Prognostics Updated Estimation - Conf. Interval
Prognostics Updated Estimation
Static Failure Probability Estimation

The failure of the data acquisition hardware architectareses

a failure to produce a prognostics prediction, which in turn
leads to a non-updated maintenance schedule at the agdet lev
We have defined a penalty function using rewards which in-
cludes the effects of downtime (i.e., the asset in a failatbst
incurs a penalty of 1 while in maintenance it incurs 0.5), and
false positive and negative events multiplied by the prdbab
ity of failure of the asset under study.

Winding Failure Probability

Misgion time (years)
Figure 15 shows the effect of different failure rates of both
the transformer and data acquisition hardware failuresarAp
from the uncertainty arising from the application contéxg
specification of the failure rate of the asset (or grounchjrut As shown by Figure 16, prognostics predictions provide an
has uncertainties too. The ground truth is estimated eithdfP-to-date health assessment estimation of the asset under
under some specific conditions or it is an average failure beStudy including possible changes in the deteriorationatee
havior. Therefore when using it as a reference failure modef0 environmental influences. In this case the degradatien ra
uncertainty estimations should be included. In this casdyst increases due to the harsh environmental conditions aftect
uncertainty in the ground truth value makes little diffesen  the paper degradation modelin Eq. (4).

Figure 16. Winding failure probability.

5. CONCLUSION

451 0 Penelty fu‘r‘1ction = . -
al E{R{ﬁF‘:fs";;o}S;i?vgf}<==?T[1 g<=T]+ In this paper we have p_resented a r_10ve| _methodology_ entitled
casl R{"FalseNegative"}=? [C<=T])* ADEPS (Assisted Design for Engineering Prognostic Sys-
S '3_ (R{"fail"}[C<=T}/T) tems) for the implementation of a prognostics-centred life
§2 sl cycle design process. ADEPS integrates a holistic system-
= '2_ level design process that includes systems engineering and
§1 sl a=1/1038 - HW failure reliability engineer_ing concepts through model-basedtyaf
K '1_ iﬁ:::zmggg'HWfa"Ufe assessment techniques.
0.5 Muan=1/1040 ) In ADEPS importance measurements are implemented to rank
VR T S el 90 """ o failure modes according to their criticality and aid in tlag-f
Time (months) ure mode selection for prognostics studies. Besides, inte-
. ] grated knowledge engineering and probabilistic modetkhe
Figure 15. Penalty function. ing techniques permit systematic prognostics model selec-

tion and exhaustive verification of requirements respebtiv

12
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ADEPS also includes connections between dependability and of int. conf. on enterprise information syste(ps487-

prognostics approaches so as to perform system-levehhealt 494). doi: 10.5220/0005372104870494
assessments updated with prognostics prediction results. Catterson, V. M., Melone, J., & Garcia, M. S. (2016, Jan-

ADEPS provides benefits including a reduction of the design uary). Prognostics of transformer paper insulation us-
time, complete consideration of prognostics algorithmg an

) ing statistical particle filtering of on-line dataEEE
dynamically updated system-level health assessment.

Electrical Insulation Magazine32(1), 28-33. doi:
As for our possible future work, we may focus on the imple- 10.1109/MEI.2016.7361101

mentation of the following activities: CIGRE. (2015).Transformer Reliability SurvefNo. 642).
e Evaluate the performance of ADEPS though different casgocheteux, P., Voisin, A., Levrat, E., & lung, B. (2009).

studies. Prognostic design: requirements and tools. Phoc.

e Complete the verification of requirements integrating othe of MITIP 2009.Bergame, Italy.

prognostlcs metrlcsj ) ~ Cocheteux, P, Voisin, A., Levrat, E., & lung, B. (2010).
* Refl_n_e the p_rognoshcs model ;elecnon process a.”a'YS'”g System performance prognostic: context, issues and re-
decision points and their possible dynamic organization. ) i
quirements. IProc. of AMESTLisbon: IFAC.

ACKNOWLEDGMENT Daigle, M. J., Bregon, A., & Roychoudhury, I. (2014, June).

This work was supported by the EPSRC through grant num- Distributed prognostics based on structural model de-

ber EP/M008320/1. composition.IEEE Transactions on Reliabilitys3(2),
495-510. doi: 10.1109/TR.2014.2313791
REFERENCES Espiritu, J. F., Coit, D. W., & Prakash, U. (2007). Component
Aizpurua, J. 1., & Catterson, V. (2015a). On the use of prob- criticality importance measures for the power industry.
abilistic model-checking for the verification of prog- Electric Power Systems Researalr(56), 407 - 420.
nostics applications. IfEEE Int. Conf. on Intelligent doi: http://dx.doi.org/10.1016/j.epsr.2006.04.003
Computing and Information Systems, Symposium ofpelman, A, Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003).
Knowledge Engineering for Decision Support System. Bayesian data analysiChapman and Hall/CRC.
Aizpurua, J. I., & Catterson, V. (2015b). Towards a method-Hilber, P. (2008).Maintenance optimization for power dis-
ology for design of prognostics systems. Amnual tribution system¢PhD Thesis). KTH.
conference of the prognostics and health managemedEEE Power and Energy Society. (2011). IEEE Guide
society(Vol. 6). for Loading Mineral-Oil-Immersed Transformers and

Aizpurua, J. 1., & Muxika, E. (2013). Model-based design of Step-Voltage Regulator$£EEE Std. C57.91
dependable systems: Limitations and evolution of analJoshi, A., Heimdahl, M., Miller, S., & Whalen, M. (2006).

ysis and verification approachdaternational Journal Model-Based Safety Analys{sol. NASA/CR-2006-
on Advances in Securitg(1, 2). 213953; Tech. Rep. No. ID: 20060006673). NASA.
Aizpurua, J. l., Muxika, E., Papadopoulos, Y., Chiac-Katoen, J.-P., Kwiatkowska, M., Norman, G., & Parker, D.
chio, F., & Manno, G. (2016). Application of (2001). Process algebra and probabilistic methods. per-
the D3H2 methodology for the cost-effective de- formance modelling and verification. In (pp. 23-38).
sign of dependable systemsSafety 2(2), 9. doi: Springer. doi: 10.1007/3-540-4480427
10.3390/safety2020009 Kumar, S., Torres, M., Chan, Y., & Pecht, M. (2008, June). A
Banjevic, D., & Jardine, A. K. S. (2006). Calculation Hybrid Prognostics Methodology for Electronic Prod-
of reliability function and remaining useful life for a ucts. InIEEE IJCNN 2008(p. 3479-3485). doi:
markov failure time processMA Journal of Manage- 10.1109/1JCNN.2008.4634294
ment Mathematigsl 7(2), 115-130. doi: 10.1093/ima- Kwiatkowska, M., Norman, G., & Parker, D. (2011). PRISM
man/dpi029 4.0: Verification of probabilistic real-time systems. In
Bousdekis, A., Magoutas, B., Apostolou, D., & Mentzas, G. Proc. of CAV’11(Vol. 6806, pp. 585-591). Springer.
(2015). Supporting the selection of prognostic-based ee, J., Liao, L., Lapira, E., Ni, J., & Li, L. (2009). In-
decision support methods in manufacturing. Aroc. formatics Platform for Designing and Deploying e-

13



EUROPEANCONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2016

Manufacturing Systems. I@ollaborative Design and Changing role in life cycle manageme@IRP Annals
Planning for Digital Manufacturingp. 1-35). Springer - Manufacturing Technologys3(2), 643 - 655. doi:
London. doi: 10.1007/978-1-84882-287L0 http://dx.doi.org/10.1016/S0007-8506(07)60033-X

MathWorks. (2016). Matlab/Simulink.  Tang, L., Orchard, M., Goebel, K., & Vachtsevanos, G.
http://ww. mat hwor ks. com. (2011). Novel Metrics and Methodologies for the

Papadopoulos, Y., Walker, M., Parker, D., Rude, E., Hamann Verification and Validation of Prognostic Algorithms.
R., Uhlig, A., ... Lien, R. (2011). Engineering fail- In Aerospace Conference, 2011 IEER 1-8). doi:
ure analysis and design optimisation with HiP-HOPS. 10.1109/AERO.2011.5747583
Engineering Failure Analysj<.8(2), 590-608. Uckun, S., Goebel, K., & Lucas, P. (2008, Oct). Standard-

Peysson, F., Ouladsine, M., Outbib, R., Leger, J.-B., Myx, izing research methods for prognostics.AHM 2008
0., & Allemand, C. (2009, June). A Generic Prog- (p. 1-10). doi: 10.1109/PHM.2008.4711437
nostic Methodology Using Damage Trajectory Models. US Department of Defense. (198®rocedures for Perform-
IEEE Transactions on Reliabilifp8(2), 277-285. doi: ing, a Failure Mode, Effects, and Criticality Analysis
10.1109/TR.2009.2020123 (MIL-STD-1629A) Washington, DC.

Ramos, A., Ferreira, J., & Barcelo, J. (2012). Model-based/achtsevanos, G., Lewis, F., Roemer, M., Hess, A., & Wu,
systems engineering: An emerging approach for mod- B. (2007). Intelligent Fault Diagnosis and Prognosis
ern systems. Systems, Man, and Cybernetics, Part for Engineering Systemdohn Wiley & Sons, Inc. doi:
C: Applications and Reviews, IEEE Transactions on 10.1002/9780470117842
42(1),101-111. doi: 10.1109/TSMCC.2011.2106495 Van der Borst, M., & Schoonakker, H. (2001). An overview

Ruin, T., Levrat, E., lung, B., & Despujols, A. (2014). Com- of psa importance measuréeliability Engineering &

plex maintenance programs quantification (CMPQ) to System Safety2(3), 241-245.
better control production systemkurnal of Manufac-  Vesely, W., Dugan, J., Fragola, J., Minarick, & Railsback, J

turing Technology Managemer5(4), 491-509. doi: (2002).Fault Tree Handbook with Aerospace Applica-
10.1108/IJIMTM-04-2013-0042 tions(Handbook). NASA.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The unifiedpeilkiens, T. (2011)Systems engineering with SysML/UML:
modeling language reference manual [Computer soft- modeling, analysis, desigiMorgan Kaufmann.

ware manual].
Sanders, W. H., & Meyer, J. F. (2001). Stochastic ac-BIOGRAPHIES

tivity networks: Formal definitions and concepts. In Jose Ignacio Aizpuruais a Research Assistant within the
Lectures on formal methods and performance analysiinstitute for Energy and Environment at the University of
(Vol. 2090, p. 315-343). Springer Berlin Heidelberg. Strathclyde, Scotland, UK. He receiyed his Eng.,. M._Sc., and
doi: 10.1007/3-540-44667-2 Ph.D. degrees from Mon_dragon University _(S_pam) in 2010,
2012, and 2015 respectively. He was a visiting researcher

Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, Biy the Dependable Systems Research group at the University
Saha, S., & Schwabacher, M. (2008). Metrics for Eval-of Hull (UK) during autumn 2014. His research interests in-
uating Performance of Prognostic Technique®#M  clude prognostics, RAMS analysis and model-based systems
2008(pp. 1-17). engineering.

Saxena, A., Roychoudhury, I., Celaya, J., Saha, B., Sah&/ictoria M. Catterson is a Senior Lecturer within the Insti-
S., & Goebel, K. (2012). Requirements Flow- tute for Energy and Environment at the University of Strath-

clyde, Scotland, UK. She received her B.Eng. (Hons) and

down for Prognostics and Health Managementinin . . .
; h@A AIAA. doi: 10.2514/6.2012-9554 Ph.D. degrees from the University of Strathclyde in 2003 and
otech@Aerospac - dot- 20, e0Le 2007 respectively. Her research interests include caniti

Takata, S., Kirnura, F., van Houten, F., Westkamper, E.i-Shp monitoring, diagnostics, and prognostics for power engjine
talni, M., Ceglarek, D., & Lee, J. (2004). Maintenance: ing applications.

14



