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ABSTRACT

Redundancy is a common approach to improve system re-
liability, availability and safety in technical systems. It is
achieved by adding functionally equivalent elements that en-
able the system to remain operational even though one or
more of those elements fail. This paper begins with an over-
view on the various terminologies and methods for redun-
dancy concepts that can be modeled sufficiently using es-
tablished reliability analysis methods. However, these ap-
proaches yield very complex system models, which limits
their applicability. In current research, Bayesian Networks
(BNs), especially Dynamic Bayesian Networks (DBNs) have
been successfully used for reliability analysis because oftheir
benefits in modeling complex systems and in representing
multi-state variables. However, these approaches lack ap-
propriate methods to model all commonly used redundancy
concepts. To overcome this limitation, three different model-
ing approaches based on BNs and DBNs are described in this
paper. Addressing those approaches, the benefits and limita-
tions of BNs and DBNs for modeling reliability of redundant
technical systems are discussed and evaluated.

1. REDUNDANCY IN DEPENDABLE TECHNICAL

SYSTEMS

There are various definitions for system dependability that
differ in focus on certain systems, terminology and scope.
When it comes to dependability of technical systems, the most
common norms, such as IEC 60050-191 ”Dependability and
Quality of Service” (International Electrotechnical Commis-
sion, 1990) in the U.S., VDI 4001-2 ”Reliability Terminol-
ogy” (Verein Deutscher Ingenieure, 2006) and VDI 4003 ”Re-
liability Management” (Verein Deutscher Ingenieure, 2007)
in Germany, do not take a strong influence of software on
dependability into account, as compared to mechatronic sys-
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tems. This growing contribution of software creates a need to
consider this in the definition of the dependability of techni-
cal systems. Avižieniset al. gave a definition for the basic
concepts of secure computing (Avižienis et al., 2004), that
was adapted for self-optimizing systems, which are based on
mechatronic systems (Gausemeier et al., 2014). Self- op-
timizing systems emphasize the necessity for dependability
concepts including software because of their inherent intelli-
gence. In (Avižienis et al., 2004), dependability for computer-
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Figure 1. Dependability attributes (Avižienis et al., 2004)

based systems is comprised of the following attributes: reli-
ability, availability, safety, integrity and maintainability (see
Fig. 1). Based on these attributes, additional definitions are
made to address the threats to dependability (faults, errors and
failures) and means to achieve the attributes (fault prevention,
fault tolerance, fault removal, fault forecasting). In this paper,
only attributes with focus on reliability, availability and safety
are considered. The two remaining, integrity and maintain-
ability, cannot directly be influenced by adding redundancyto
a technical systems and are therefore neglected. Although the
definition for dependability given by (Avižienis et al., 2004)
comprises software and aspects of technical systems as well,
the given concepts for software redundancy are not consid-
ered in this paper, because analysis methods and techniques
to investigate dependability of software differ from methods
applied to technical systems such as mechanical, hydraulic
and electronic.

The availability of a technical system is comprised of main-
tainability, available resources for repair and reliability. Al-
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though safety relies on reliability, a reliable system is not nec-
essarily a safe system, since safety takes the severity of the
event into account as well. Even very rare failures of sys-
tems with high reliability might lead to catastrophic events,
e.g. train derailments, plane crashes or nuclear power plant
meltdowns.

When individual elements are built as reliable as technology
permits, but system reliability is still not sufficiently high, an
improvement of safety and reliability can only be reached by
adding redundancy to the system. Redundancy is the exis-
tence of more than one element required to successfully per-
form a certain function, but it does not imply a simple du-
plication of those elements. Since common mode and sys-
tematic failures have to be avoided, all redundant elements
should be designed and manufactured independently ((Sagan,
2004), (Birolini, 2007)). Redundancy aims to provide perpet-
ual functionality of a system even if elements fail. With fo-
cus on the bare functionality, mechatronic systems offer the
possibility to cover hardware failures by virtual elementsus-
ing analytical redundancy, e.g. an observer that covers a fail-
ure of a sensor by estimating the measures (Isermann, 2002).
Since all current mechatronic systems inherently feature some
sort of digital processing power, redundancy can be achieved
without adding hardware elements to the system. While omit-
ted hardware elements could lower cost, the savings should
not be outweighed by additional cost for design and imple-
mentation of software-based analytic redundancy. Besidesin-
creasing cost, redundancy also increases system complexity
compared to a system without redundant elements. The in-
creasing complexity is likely to make the system more prone
to errors and failures. In addition, (Sagan, 2004) names three
threats to reliability and safety of systems with redundancy:
common mode failuresas already discussed above,social shirk-
ing (individual or groups of users reduce attention to reliabil-
ity and safety due to the assumption that someone else will
take care of problems) andovercompensation(a safer sys-
tem eventually encourages individual or a group of users to
increase operation of the system in dangerous ways).

In order to cope with increasing complexity and to avoid com-
mon mode failures in systems with redundancy, advanced
modeling techniques are required. Thus, Bayesian Networks
(BNs) and especially Dynamic Bayesian Networks (DBNs)
have been successfully used for reliability analysis of state of
the art technical systems in current research (Weber & Jouffe,
2003), (Weber et al., 2012), (Kaul et al., 2015). These ap-
proaches need to cover redundancy concepts as well, but ei-
ther lack appropiate methods to cover commonly used con-
cepts or making the model increasingly complex, i.e. (Boudali
& Dugan, 2005), (Marquez et al., 2010), (Mahadevan et al.,
2001). However, the objective of this paper is to discuss the
use of established modeling methods for systems with re-
dundancy, i.e. Reliability Block Diagrams (RBDs), Dynamic
Fault Trees (DFTs) and Markov Chains (MCs), in contrast to

Bayesian approaches based on a comprehensive definition of
redundancy concepts.

The remainder of the paper is organized as follows: Sec. 2
introduces the different concepts of redundancy. Sec. 3 gives
an overview on established analysis methods for the reliabil-
ity of systems with redundancy. In Sec. 4 Bayesian Networks
(BNs) and Dynamic Bayesian Networks (DBNs) are intro-
duced as reliability models that is used in Sec. 5 to develop
three different approaches to model systems with redundancy.
In Sec. 6 these approaches are evaluated regarding their ben-
efits to reliability analysis. The paper ends with a short con-
clusion in Sec. 7.

2. CONCEPTS OF REDUNDANCY

The concepts of redundancy in technical systems investigated
within this work are limited to the basic structures:k-out-
of-n in hot, warm and cold redundancies innonrepairable
systems. Among the general concepts of redundancy appear
even more complex representatives, such as bridge structures
and majority redundancy in systems endowed with voting-
techniques. The intention of this work is to give an overview
on different approaches based on BN compared to established
methods where only fundamental structures are taken into ac-
count.

Each of the subsequently introduced concepts can be realized
with a k-out-of-n structure: such systems consist ofn func-
tionally identical elements, of whichk elements are necessary
to perform the required function. Accordingly,n−k elements
are redundant and remain in as spare to cover failures.

In hot redundancy, the redundant, orstandby, elements fully
contribute to operation and are subjected to the same oper-
ating conditions and loads as the operating elements. The
elements are either treated as statistically independent,which
implies that the load on each element is identical but the com-
plete load is not necessarily equally shared by all active ele-
ments, or dependent, where the load is shared among active
elements (load sharing). If elements are assumed to be sta-
tistically dependent, the load on individual active elements
increases with each failure. Thus, the load and in turn degra-
dation of active elements increases over operating time for
each failure.

In warm redundancy, the failure rate of standby elements is
assumed to be nonzero, but lower than that of active ele-
ments. If the system with warm redundancy is designed for
load sharing, standby elements are subjected to lower load
than active elements until one of the active element fails. In
systems without load sharing, the standby elements are un-
loaded, but degrade because of operating and environmental
conditions or aging. If load sharing is present, the assumption
for statistically dependent elements arises, whereas unloaded
or aged elements can be interpreted as independent.
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Cold redundancy can be seen as idealized warm redundancy,
because only active elements are subjected to load and all
standby elements are not affected by any load or degrada-
tion. Hence, the failure rate of standby elements is assumed
to be zero since only active elements are likely to fail and load
sharing is not possible.

The difference between warm and cold redundancy is not al-
ways clearly drawn when it comes to real world applications.
E.g. the spare tire in a car can be modeled as cold redundancy
since this assumption holds for sufficiently low failure rates
of unloaded or slightly loaded elements. For a more exact
approach, where degradation or aging of unloaded standby
elements should be taken into account, warm redundancy is
likely to be chosen.

3. ANALYSIS METHODS

This section gives an overview on established methods for
modeling fundamental concepts of redundancy as mentioned
in Sec. 2 and focuses on the limitations that arise for each
method. Reliability investigations for those methods are based
onBoolean(RBDs) andstate space(MCs, DFTs, BNs, DBNs)
functions. The investigation of system reliability in the state
space is split up into two different approaches:event-based
(MCs see Sec. 3.2) andtime-slice-based(DBNs).

3.1. Established Methods: RBD

RBDs are the most common method to model and analyse
reliability of systems with redundancy, since those systems
are modeled with a simple parallel structure (see Fig. 2 left).
However, comprehensive modeling of basic concepts of re-
dundancy (Sec. 2) is not possible, since RBDs cannot handle
temporal dependencies between elements, i.e. in warm redun-
dancy, and are limited to binary states (operational, failed)
of elements. Ifhot redundancy is investigated using RBDs,

...
...

R1

Ri

Rn

...
...

R1

RvRi

Rn

Figure 2. RBD for parallel structures in hot redundancy (left),
RBD with voterRv for hot or cold redundancy

statistically identical but independent elements1...n are as-
sumed, which have reliabilityR over operating timet with
R1(t) = . . . = Rn(t). For common distribution functions,
i.e. Exponential, Weibull, Gaussian, analytical solutions for
reliability of systems with a hot redundancy can be deter-
mined based on the binomial distribution (Birolini, 2007):

Rsys(t) =
n
∑

i=k

(

n

i

)

Ri(t)(1 −R(t))n−i, Rsys(0) = 1. (1)

When investigatingcold redundancy, there are different ad-
ditional elements taken into account, e.g. ideal/real voter Rv

(Fig. 2 right) and measurement elements, in order to decide
which redundant element is set to operation (Birolini, 2007).
Those approaches are limited to constant failure rates, be-
cause an analytical solution is easily obtained. Considering
the restrictions stated above, RBDs are limited in practical
application, but offer an intuitive introduction to the concept
of redundancy.

3.2. Established Methods: MC

Markovian approaches investigate reliability and availability
of a system as a discrete or continuous time stochastic process
in its finite state space. Markov models are supposed to be
memoryless, a future state only depends on the present state
and not on any preceding states in the past (Markov property).

MCs describe a sequence of directed graphs, where depen-
dencies between states of the system for different time steps
are modeled using stochastic transitions, i.e. conditional prob-
abilities. To allow for analysis of time continuous MCs, the
state probabilitiesPi(t) are obtained from a system of differ-
ential equations, which is given by consecutive state changes
between two adjacent time pointst andt+ δt for δt → 0.

MCs are a comprehensive approach to model the basic con-
cepts of redundancy (Sec. 2), but face an exponentially in-
creasing number of states for additionally investigated ele-
ments (state explosion). (Birolini, 2007) proposes an approach
for modeling systems with redundancy as shown in Fig. 3 to
limit the number of states for increasingn in k-out-of-n re-
dundancy. This model is also used in Sec. 5.1. In Fig. 3, it is

Z1Z0 Z2 Zn-k Zn-k+1
...

1-v0δt

v0δt

1-v1δt

v1δt

1-v2δt

v2δt vn-k-1δt

1-vn-kδt 1

vn-kδt

Figure 3. MC for hot,warm and coldk-out-of-n redundancy
for arbitraryt (Birolini, 2007)

assumed that in stateZi, i = 0, ..., n−k elements have failed
and thus all elements have failed in stateZn−k+1. The state
probabilityPn−k+1(t) is interpreted as reliability of the sys-
tem with redundancy. The failure rates for operating elements
λ and for redundant elementsλr are assumed to be constant
and identical for all elements. The following redundancies
can be handled with this MC:

1. Hot redundancy without load sharing:νi = (n− i)λ,

2. Hot redundancy with load sharing:νi = (n− i)λ(i) and
λ(i) increases with each preceding state (failure),

3. Warm redundancy with load sharing:
νi = kλ+ (n− k − i)λr andλr < λ,

4. Cold redundancy:νi = kλ andλr ≡ 0.
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For warm redundancy, this MC approach can handle lightly
loaded or aged redundant elements as introduced in Sec 2.

Although MCs have proven to be a comprehensive approach
for modeling systems with redundancy, they are restricted to
a continuous and memoryless distribution (exponential dis-
tribution) of state transitions. This limits their practical ap-
plication, since failures of many mechanical elements follow
Weibull distribution.

3.3. Established Methods: DFT

A fault tree (FT) is a graphical representation of a set of
events and their combination that cause or contribute to the
occurrence of an undesired top event, in general a failure at
system level. In contrast to RBDs, FTs use negative nota-
tion: as the top event is defined as failure of the system,true
is used for the occurrence of failure andfalse for operating.
To allow for modeling reliability based on the combination
and contribution of events to a system failure, FTs contain
static gates (and, or), that can only handle Boolean combina-
tions of events and can thus not handle temporal dependen-
cies (Birolini, 2007).

To overcome this limitation, FTs are combined with a Marko-
vian approach using dynamic gates to allow for modeling
states and time dependencies. The most popular dynamic
gates (see Fig. 4) are: priority AND (PAND), warm spare
(WSP) and probabilistic dependency (PDEP). A PAND gate
fails, if all input eventsE1...n have occurred in a preassigned
order (in graphical notation from left to right). The output
eventO of a WSP gate occurs, if the number of spare ele-
mentsS1...n is less than the minimum requiredP . In PDEP
gates, a trigger eventT causes the conditional occurrence of
other input eventsC1...n in order to define a failure of the
gate. Those dynamic gates require continuous time Markov
process to allow for quantitative analysis of DFTs. The Markov
process is solved to obtain state probabilities, which willbe
used as occurrence probability for the output event of the
gateO. DFTs were comprehensively investigated for mod-

P S1 Sn...

WSP

O

T C1 Cn
...

PDEP

O

PAND

E1 En
...

O

Figure 4. Dynamic gates in DFTs

eling reliability of systems with redundancy (Montani et al.,
2006), (Dugan et al., 1992), (Ren & Dugan, 1998) and have
proved to sufficiently model the concepts of redundancy as
introduced in Sec. 2.

Although DFTs have been successfully applied to reliability
investigation of complex systems, the use of a Markovian ap-
proach limits their practical application for the reasons stated
in Sec. 3.2 for MCs.

4. BAYESIAN MODELS

Directed acyclic graph (DAG) models, also known as Bayesian
or belief networks, are used for causal modeling and interpre-
tation of static data or systems. To do so for dynamical sys-
tems or temporal data, dynamic DAG models (DBNs) can be
used. In this section BNs and DBNs are introduced and their
application to model system reliability is shown briefly.

4.1. Bayesian Networks

BNs are DAG models with nodes representing a set of stochas-
tic variablesµ = {X1, X2, ..., Xn} that are endowed with
distributions. A directed graph model is fully defined for a
given DAG and Conditional Probability Distributions (CPDs)
for every node. Each stochastic variable of{X1, X2, ..., Xn}
represents a set of a finite number of possible states. A vari-
able can only have one of its states at a time. Variables can be
endowed with individual probability distributions, e.g. Weibull
or Exponential. BNs set up forµ specify a unique joint prob-
ability distributionP (µ) given by the product of all CPDs:

P (µ) =

n
∏

i=0

P (Xi | Pa(Xi)) (2)

whereXi represents nodei andPa(Xi) is the set of its par-
ents. If the variables{X1, X2, ..., Xn} are discrete, they can
be represented by a Conditional Probability Table (CPT), which
lists the probability that the child nodeC takes on each of its
different states for each combination of states of its parent
nodesP (C|Pa(C)) (Nielsen & Jensen, 2009). The probabil-
ity table of a root nodeK (nodes without parents) is reduced
to an unconditional probability tableP (K) that includes only
a priori probabilities.

BNs can be seen as causal networks to be used for reasoning
about relevance and causal analysis for propagation of beliefs
throughout the network. Therefore they can be used to model
the causal dependencies in functionality in a technical sys-
tem, e.g. is a failure of elementA relevant for functionality of
elementB?

4.2. Reliability Modeling: BN

In a reliability model for technical systems, the set of vari-
ablesµ represent a set of elements of the technical system. In
a first approach it is assumed for all elements to have binary
states: truetr representing an element inoperable stateand
falsefa representing an elementfailure.

The probability tablesP (A) for an elementA and conditional
tableP (B|A) for an elementB in a Bayesian Network as
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system reliability model as shown in Fig. 5, represent ele-
ment reliabilityRA(t) andRB(t) as well as causal failure
propagation represented by binary table entries. It is still as-
sumed that both elements have binary states andB condition-
ally fails when a failure ofA occurs. Thus,B eventually fails
on its own account with1 − RB(t) whenA is in operable
state. Considering Eq. (2), the joint probability distribution

A

B

P(A=fa) P(A=tr)

1 0
1-RB(t) RB(t)

P(B=fa)A

fa
tr

P(B=tr)

1-RA(t) RA(t)

Figure 5. BN with CPTs used as system reliability model

of the Bayesian NetworkP (A,B) can be interpreted as sys-
tem reliabilityRS(t). The Bayesian Network as set up above
represents system and element reliabilityRC(t) andRS(t)
only at a particular operating timet. System reliabilityRS(t)
has to be evaluated over system lifetime to obtain a discrete
graph.

4.3. Dynamic Bayesian Networks

A DBN is a BN extended by a temporal dimension to model
discrete-time stochastic processes for dynamic systems. If a
system evolves over time, a DAG is used to model the sys-
tem for each discretetime slice. These slices are connected
through temporal probabilistic links to constitute a full model.

According to Murphy’s two-slice temporal Bayes Net (2TBN)
respresentation of DBNs (Murphy, 2002), the value of a vari-
able can be calculated from the immediate prior and the in-
ternal regressor.

A set of stochastic variablesξt = {Z1, Z2, ..., Zm} is in-
creased for every additional time slicet and, based on 2,
P (ξt | ξt−1) is given as follows:

P (ξt | ξt−1) =

m
∏

j=1

P (Zj
t | Pa(Zj

t )), (3)

where the notation is similar as introduced in Sec. 4.1;Zt
j

is thejth node at timet andPa(Zt
j) are the parents ofZt

j .
The parents of the investigated nodePa(Zt

j) can either be
in the same time slicet or in the previous time slicet − 1.
Thus, assuming a first-order Markov process, time slicet is
conditionally independent of its predecessor (Murphy, 2002).

GivenT observations ofξt, a DBN withT time slices is ob-
tained. The resulting joint probability distribution for theun-
rolled DBN (see 3) is given by:

P (ξ1:T ) =

T
∏

t=1

m
∏

j=1

P (Zj
t | Pa(Zj

t )). (4)

In addition to the modeling of causal and probabilistic depen-
dencies of technical systems in BNs and calculation of system
reliability, DBNs offer the possibility to model temporal de-
pendencies between elements and can thus be seen as a more
extensive modeling approach for the reliability of technical
systems.

4.4. Reliabilitiy Modeling: DBN

The assumptions made in Sec. 4.2, regarding the reliability
modeling of technical systems with BNs, still hold for DBNs.
The set of variables introduced in Sec. 4.3,ξt, represents a
collection of elements of the system at two time slicest and
proceeding time slicet+∆t.

Hence, DBNs can be used to model temporal dependencies
among elements and to estimate the dynamic behavior of sys-
tem or element reliability (Weber & Jouffe, 2003). Consider-
ing the system as shown in Fig. 5, it is assumed that element
A evolves over time due to degradation. A DBN is set up
accordingly in Fig. 6.

At

B 1 0
1-RB(t+∆t) RB(t+∆t)

P(B=fa)At+∆t
fa
tr

P(B=tr)

At+∆t 1 0
1-RA(∆t) RA(∆t)

P(At+∆t=fa)At
fa
tr

P(At+∆t=tr)

P(At=fa) P(At=tr)

1-RA(t) RA(t)t
t+∆t

Figure 6. A DBN with CPTs in 2TBN representation used as
system reliability model for exponentially distributedRA and
RB

The CPT of elementAt gives thea priori reliability RA(t)
and probability of failure1 − RA(t). In the proceeding time
slice t + ∆t, the CPT for elementAt+∆t is given for the
conditional dependency onAt: At+∆t fails, only if At has
already failed in the previous time slice with

Pr(At+∆t | At) =
Pr(At+∆t ∩ At)

Pr(At)
=

Pr(At+∆t)

Pr(At)
. (5)

If exponential distribution is assumed for elementsA andB,
thenPr(At+∆t | At) simplifies withPr(At+∆t) = RA(t+
∆t) to

RA(t+∆t)

RA(t)
=

e(−λ(t+∆t))

e(−λt)
= e(−λ(∆t)) = RA(∆t). (6)

ElementB is basically not infected by the temporal depen-
dency of elementA, since Markov process is assumed and is
thus accordingly defined as in Sec. 4.2.
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5. MODELING APPROACHES

The methods introduced in Sec. 3 have limitations in mod-
eling even the basic concepts of redundancy. Thus in this
section, three different approaches, all based on standardand
dynamic Bayesian models, are proposed and discussed con-
sidering limitations, efforts and requirements that arisefrom
the chosen models.

5.1. Markovian Approach

The intention of the Markovian approach1 is, to take advan-
tage of the comprehensive modeling of reliability using BNs
on the one hand, and, on the other hand, make use of estab-
lished methods for modeling systems with redundancy, i.e.
Markovian models.

The proposed method uses BNs for modeling the reliability of
arbitrary technical systems and MCs to cover redundant sub-
systems. The BN is evaluated for discrete time (see Sec. 4.2),
while the MC is evaluated for continuous time. To allow for
modeling of a redundant subsystems, a MC is set up that com-
prises only elements that contribute (active or standby) tothat
redundancy. Afterward all contributing elements are identi-
fied and redundancy concept is chosen, the MC is evaluated
and the obtained subsystem reliability is given to the CPT of
the corresponding node in the BN.

Considering a MC as shown in Fig. 5, letA be the represen-
tative of a system with redundancy and its children,B, an
arbitrary nonredundant element with givenRB(t) that func-
tionally rely onA. Then,RA(t) is the reliability of the re-
dundant subsystem that is determined by solving the MC for
the state probability of the last node (Zn−k+1). The analysis
of the BN as model of overall system reliability can be done
using standard algorithms without further inquiries.

The DAG is unaffected by this Markovian approach, because
the BN keeps the compact structure of a system without re-
dundancy, while the MC covers only the redundant subsys-
tem with a minor number of states than the overall system.
As shown in Sec. 3.2, the basic concepts of redundancy can
be modeled using the proposed MC, anyhow it is restricted to
the inherent limitation of MCs.

In Fig. 7 the reliabilityR(t) for exponentially distributed fail-
ures of an1-out-of-3 redundancy is shown for a set of basic
concepts.

Reliability R(t) is computed fort = 0...500h, overall con-
cepts forλ = 1/50, in hot redundancy with load sharing for
λ(i) = (i+ 1/n)λ and in warm redundancy forλr = 0.2λ.
The results are obtained by using the Bayes Net Toolbox for
Matlab by Murphy (Murphy et al., 2001). In real-world ap-
plication, the influence of dynamic load situations on the life-

1This approach was developed by L. Bathelt in his bachelor thesis at the
University of Paderborn in 2015 and was supervised by W. Sextro.

0 100 200 300 400 500

t/h

0

0.2

0.4

0.6

0.8

1

R
(t
)

Cold
Warm, with load sharing
Hot, without load sharing
Hot, with load sharing
Single element

Figure 7. ReliabilityR(t) modeled with Markovian approach

time and failure rateλ of an element is rather complex and
might be nonlinear, i.e. Arrhenius Model. So, the calcula-
tion ofλ(i) is only a rough estimate to illustrate the modeling
approach. However, considering the graph of the hot redun-
dancy with load sharing, the system is at first almost as reli-
able as the system with hot redundancy without load sharing.
When the first element fails, load is increased on the remain-
ing elements and reliability is accordingly lowered because
λ(i) is assumed to increase by1/3 for each element failurei.

5.2. BN Approach

The modeling of systems with redundancy using BNs fol-
lows the general approach for modeling reliability of sys-
tems as introduced in Sec. 4.2. Since BNs cannot handle
temporal dependencies in a straight forward approach using
only component reliabilities, different approaches has been
proposed to overcome this limitation. To enable BNs to ap-
propriately model systems with temporal or event-based de-
pendencies, different approaches have been proposed either
based on discretization of operating time (Boudali & Dugan,
2005), (Marquez et al., 2010) or focusing on correlation be-
tween system components (Mahadevan et al., 2001). How-
ever, those approaches require additional computation efforts
to obtain conditional probabilities and are therefore neglected.
In fact, only hot k-out-of-n redundancies can be modeled
straight forward using BNs as exemplarily shown for an1-
out-of-3 redundancy in Fig. 8.

In hot redundancy without load sharing all elements contribute
by the same amount and fail independently from each other
because load on remaining elements is the same in occurrence
of element failures.

System reliabilityR(t) is investigated for the same parame-
tersλ andt as used in Sec. 5.1. Perpetually, element reliabili-
ties are assumed to be exponentially distributedRA,B,C(t) =
e−λt. The results are shown in Fig. 10 and identical to the
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B

Sys

CA
P(A,B,C=fa) P(A,B,C=tr)

1 0

0 1

P(Sys=fa)C
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A
fa

tr

0 1trfafa

P(Sys=tr)

1-RA,B,C(t) RA,B,C(t)

...

...
...

...
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Figure 8. BN for a hot 1-out-of-3 redundancy without load
sharing

results obtained from the Markovian approach. However, the
use of standard BN for modeling systems with redundancy
restricts the possible scope of redundancy concepts to hot
spares without load sharing.

5.3. DBN Approach

DBN are used in a wide field of providing an appropriate
analysis method for DFTs such as in (Montani et al., 2006),
(Marquez et al., 2010). Montani describes a transformation
algorithm to convert DFTs into DBNs with focus on handling
dynamic gates inherent to a DFT in order to provide an ex-
hausting analysis method. To do so, Montani describes an
approach for modeling commonly used redundancy concepts
that is applied to the introduced concepts in Sec. 2.

The DBN as shown in Fig. 9 shows the basic outline for hot,
warm and cold1-out-of-3 redundancy respectively with load
sharing and the introduced modeling approach using DBN in
Sec. 4.4. To modelhotredundancy with load sharing, the fail-
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Figure 9. DBN for an 1-out-of-3 redundancy with load shar-
ing. CPT forCt+∆t is accordingly defined toBt+∆t.

ure rate of each element depends on the number of element
failures i and is defined asλ(i) = ((i+ 1)/n)λ for expo-
nentially distributed reliabilityRA = RB = RC = e−λ(i)t

for i = 0 in time slicet. It thus follows that each element
(failure) effects all other elements, which is considered in the
DAG. Considering Eq. 6, reliabilities in time slicet + ∆t
with ∆t = 10h for one element failure (i = 1) are assumed
to beRA|C = RA|B = RB|A = RB|C = RC|A = RC|B =

e−λ(i)(∆t). If two element failures have occured (i = 2), reli-
abibility is RB|AC = RC|AB = e−λ(i)(∆t). The results for a
system with hot redundancy with load sharing obtained from
the DBN differ slightly from the results computed with the
MC approach. In fact, the maximum absolute error between
both approaches ismax(| RMC −RDBN |) = 2.8%.

To allow for modeling of systems withwarmredundancy and
load sharing, the same DAG and CPT structure is used as
shown in Fig. 9. The failure rate of active elements is as-
sumed to beλ and the failure rate for standby elements is
λr = αλ, which is invariant to element failures.α is called
dormancy or degradation factor to indicate lesser degradation
of standby elements (Montani et al., 2006). In time slicet,
element reliabilities are given byRB = RC = e−λrt for
standby elements andRA = e−λt for active element. Perpet-
ually, the reliabilities in time slicet+∆t are defined for one
standby element failure asRB|C = RC|B = e−λr(∆t) and
for failures of the active and one redundant elementRB|AC =

RC|AB = e−λ(∆t).

If warm redundancy is modeled as stated above, it becomes
obvious that the arcsBt → At+∆t andCt → At+∆t have no
influence onAt+∆t and could therefore be neglected. How-
ever, due to model consistency, these arcs are kept visible.

The results for reliability of warm redundancy also shown in
Fig. 10. Although warm redundancy behaves as expected -
it is more reliable than systems with hot spares - its relia-
bility significantly differs from the results obtained using the
MC approach. The maximum absolute error between both
approaches ismax(| RMC −RDBN |) = 3.8%.

The DBN outlined in Fig. 9 can also be used to model sys-
tems withcold redundancy. In cold redundancy, the redun-
dant elements are inactive with idealized reliability. Consid-
ering Fig. 9, elementsB andC are assumed inactive with
RB = RC = 1 until active elementA fails with RA = e−λt

in time slicet. Inherent to this modeling approach of cold,
and of warm, redundancy is an activation order for redundant
elementsB andC. After a failure ofA, B is supposed to
be activated first, whileC is only actived ifA andB already
failed. Thus, reliabilities after failure of activeA or, A and
B given byRB|A = RC|AB = e−λ(∆t). If A did not fail in
time slicet, reliability of A in time slicet + ∆t is given by
RA = e−λ(∆t); reliabilities of redundant elementsB andC
are still idealized.

As already stated for warm redundancy, arcsBt → At+∆t

andCt → At+∆t can be neglected.

The results obtained from this approach for cold redundancy
gives the same results as the MC approch. Since the activa-
tion of redundant elements is event-triggered by the failure of
active elements, the time step∆t between the time slices has
to be chosen appropriately in this DBN approach in order to
obtain sustainable results.
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Figure 10. ReliabilityR(t) modeled with Bayesian ap-
proaches

6. DISCUSSION

RBDs are, besides FTs, the most common modeling and anal-
ysis method used for systems with redundancy, because of
their intuitive representation in parallel structure. However,
RBDs and FTs have some major restrictions concerning dy-
namic or temporal dependencies among elements, which con-
tribute to redundancy, i.e. sequenced failure order, because
of the Boolean description of reliability. Hence, RBDs and
FTs are not considered for use in Bayesian approaches in this
work.

Markovian models offer various approaches to model system
reliability in discrete/continuous state space for discrete/ con-
tinuous time and are common method to investigate reliabil-
ity of complex systems. In Sec. 5.1, the state space of the
reliability of a redundant subsystem is discretized and evalu-
ated for continuous time using a MC. The obtained reliability
of the system with redundancy is afterwards given to a BN,
which is used as model of system reliability. The drawbacks
that arise from this approach are inherent to Markovian mod-
els, such as their limitation to exponentially distributedstate
transitions. State explosion is not a problem, if Bironilini’s
approach for modeling redundant subsystems is used, but is
still present for complex systems.

Since this work employs BNs or DBNs as models of sys-
tem reliability, two approaches are introduced and their ca-
pability of investigating redundancies is discussed. The in-
troduced approach for BNs has its major limitation in han-
dling dynamic or temporal dependencies such as RBDs and
FTs. Anyway, BNs can directly be used for exact modeling
of hot spares without load sharing. To overcome this limita-
tion, the DBN approach was developed to cope with redun-
dancies featuring load sharing. The results, obtained from
DBNs, were compared to the results of the MC approach.
The computed maximum absolute error is significant because

BNs and DBNs as well cannot appropriately handle event-
based changes in state probabilities, which is necessary to
tackle redundancy concepts with load sharing. In order to
obtain sustainable results, the time step∆t has to be cho-
sen rather small, making this expensive concerning execution
time.

Boudali introduced anevent-basedBN (Boudali & Dugan,
2005) that splits the operating time in discrete intervals and
analytically computing the reliability of an element for each
interval. The conditional probabilities of the proceedingele-
ment are computed as the inherent reliability of the element
with reference to the parent element failure in a certain inter-
val of the operating time. The accuracy and execution time
depend on the number of intervals and is thus eventually an
expensive approach. Another issue might arise from the in-
creasing size of the CPTs due to increasing number of inter-
vals, which makes the handling and filling of the CPTs an ex-
hausting task. However, the proposed method to analytically
compute conditional reliabilities in systems withk-out-of-n
redundancy might become intractable for sufficiently largen.

Based on (Boudali & Dugan, 2005), Marquez extended the
idea of event-based BNs by some kind of dynamic discretiza-
tion of operating time usinghybrid BNs in order to improve
execution time (Marquez et al., 2010). Hybrid BNs use con-
tinuous and discrete variables and cannot perform exact prob-
ability updating on nongaussian distributed variables.

In this paper, only exponentially distributed variables, i.e. el-
ement reliabilties, are used for simplification purposes. Since
DBNs require a stationary process, the structure and condi-
tional probabilies are thus time-invariant, the use of exponen-
tially distributed variables is straight forward and easy to im-
plement (see Eq. 6). Arbitrary distributed variables require
more comprehensive approaches to estimate the state proba-
bilities (Nielsen & Jensen, 2009), making the described ap-
proaches increasingly complex. However, an extension for
arbitrary distributions is necessary to cope with real-world ap-
plications, i.e degradation processes that are sufficiently de-
scribed by Weilbull distributions (Birolini, 2007).

7. CONCLUSION

To allow for modeling of complex redundancy and its basic
concepts, established and advanced methods were briefly in-
troduced and three modeling approaches based on Bayesian
models were described. These approaches were discussed
and compared to the results of established Markov Chains.
The major limitations of Bayesian models were outlined in
this work and, in order to overcome these limitations, Dy-
namic Bayesian Networks can be used as an expert system
tool to investigate reliability of complex systems.

8
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Verein Deutscher Ingenieure. (2007).Vdi-richtlinie 4003:
Zuverl̈assigkeitsmanagement.Beuth.

Weber, P., & Jouffe, L. (2003). Reliability modelling with
dynamic bayesian networks. InIn 5th ifac symposium
on fault detection, supervision and safety of technical
processes (safeprocess’03), washington, dc, usa.

Weber, P., Medina-Oliva, G., Simon, C., & Iung, B. (2012).
Overview on bayesian networks applications for de-
pendability, risk analysis and maintenance areas.En-
gineering Applications of Artificial Intelligence, 25(4),
671–682.

BIOGRAPHIES

Thorben Kaul studied mechanical engineering and mecha-
tronics at the University of Paderborn. Since 2014 he is with
the research group Mechatronics and Dynamics at the Uni-
versity of Paderborn. His research focusses on the integrated
modeling of dependability and system behaviour.

Tobias Meyer studied mechanical engineering and mecha-
tronics at the University of Paderborn. Since 2011 he is with
the research group Mechatronics and Dynamics at the Uni-
versity of Paderborn. His research focusses on the use of
self-optimizing techniques to adapt system behaviour in or-
der to increase dependability.

Walter Sextro studied mechanical engineering at the Leibniz
University of Hanover and at the Imperial College in Lon-
don. After his studies he was development engineer at Baker
Hughes Inteq in Celle, Germany and Houston, Texas. Back as
research assistant at the University of Hanover he was awarded
the academic degree Dr.-Ing. in 1997. Afterward he habili-
tated in the domain of mechanics under the topic Dynami-
cal contact problems with friction: Models, Methods, Exper-
iments and Applications. From 2004-2009 he was profes-
sor for mechanical engineering at the Technical Universityof
Graz, Austria. Since March 2009 he is professor for mechan-
ical engineering and head of the research group Mechatronics
and Dynamics at the University of Paderborn.

9


