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ABSTRACT 

Current trends in the design of new aircraft components and 

high level innovations in the older type of aircraft are clearly 

pointing to automation and integration of all aircraft systems 

to give increased cost efficiency in the aircraft operation. The 

same trend can be observed in the design, operation and 

maintenance of aircraft structures where advanced Structure 

Health Monitoring (SHM) systems are about to enter into 

service. These advanced systems are designed to provide both 

diagnostic and prognostic information enabling application 

of Condition Based Maintenance (CBM) or even Prognostics 

Maintenance (PM) concepts into the maintenance of the 

aircraft structures. To make this CBM/PM concept a reality, 

an accurate, reliable and robust method to predict the 

Remaining Usage Life (RUL) of the structure is the foremost 

step. 

This paper presents a probabilistic method for RUL 

prediction. A hybrid approach is used, comprising of two 

different algorithms. The first algorithm adopts fracture- 

mechanics based fatigue crack growth model. This approach 

uses physics of failure to predict the crack growth curve and 

underlying degradation process. It calculates the accurate 

value of Stress Intensity Factor (SIF) to calculate the crack 

growth curve. The second algorithm is a mathematical model 

which quantify various sources of uncertainty such as future 

loading, crack length, model parameters etc. The process 

described in this paper results in enhanced remaining usage 

life estimation by compensating for the aforementioned 

modeling uncertainties. The model results were verified and 

validated on a typical aero structure with experimental, FEA 

simulation and fractography data.  

1. INTRODUCTION 

Structural Health Monitoring (SHM) is an approach to assess 

the current state of engineering structures (aerospace, & 

mechanical) by automatically detecting or diagnosing 

damage. In aerospace structures, fatigue or structural damage 

can be expected anytime during its operational life. To 

account for this problem, in modern aerospace vehicle 

structural design, two philosophies are frequently used to 

achieve a minimum satisfactory operational life; safe life and 

damage tolerance. The presented research study is proposed 

mainly for damage tolerant structures. The damage tolerance 

philosophy states that during the service life of a structure, 

any fatigue crack or damage will not progress to a 

catastrophic condition prior to detection during regular 

inspection intervals. In other words it assumes that readily 

detectable damage due to fatigue or any accidental 

occurrence will remain in somewhat stable condition till the 

next maintenance check. In modern aircraft maintenance, this 

concept covers a majority of primary structures, and is 

increasingly becoming popular. For aircraft structures, the 

current crack size estimation can be in future provided by a 

SHM system, alternatively this information can also come 

from NDT and visual inspection methods. This when 

combined with a robust structure prognostics RUL model can 

predict the crack growth in the due time of its operation and 

therefore help scheduling the maintenance when the need 

arises. This maintenance is performed when there is an 

indication of a structure fail or fast deterioration than the 

fixed scheduled maintenance checks. This is known as the 

Condition Based Monitoring (CBM). It would allow the 

maintenance personnel to minimize spare part cost, system 

downtime and time spent on maintenance leading to huge 

cost benefits. However uncertainty always exist in the RUL 

estimates due to uncertainty in the structure defect (crack 

size), material and geometric properties, crack growth model, 

environmental effects and most importantly future loading. 

This offer major challenge to any CBM/PHM system 

designer because of the fact that it entails large uncertainty 

which needs to be quantified. Hence a robust uncertainty 

quantification method in prognostics holds the key for a 

successful application of PHM as key enabler in industrial 

applications. Inappropriate and inefficient approaches to 

solve this problem will result in high false alarm rates, 

inaccurate predictions leading to wrong decisions and an 

overall PHM system that is not very reliable. Mudit Rastogi et al. This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 United States License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 

original author and source are credited. 
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Past research studies tried to solve this problem by focusing 

mainly on natural variability in geometry and material 

properties. Some of them accounted for future loading 

uncertainty too. Additionally they used either physics based 

or data driven models, which have their own shortcomings 

when applied to practical applications. Physics based method 

(Newman 1984, Ray et al., 2001) includes physical 

understanding of the fatigue process. It is governed by series 

of dynamic equations defining relationships between damage 

at a given time or load cycle. They are usually 

computationally expensive to run requiring complete 

knowledge of physical processes. Data driven models 

(Gebraeel et al., 2004, Goebel et al., 2007, Amin et al., 2005) 

on the other hand use pattern recognition and machine 

learning techniques to detect and forecast damage in a 

structure. They require large amount of correct training data 

which can be challenging at times. This makes the 

applicability of both the models in real-time and practical 

scenarios somewhat limited, if not impossible. This paper 

describes a hybrid approach (combination of physics based 

and statistical model) to predict the RUL using three different 

algorithms. The first algorithm adopts fracture- mechanics 

based fatigue crack growth model. This approach uses 

physics of failure to predict the crack growth curve and 

underlying degradation process. It calculates the accurate 

value of Stress Intensity Factor (SIF) with every crack 

increment and uses PREFFAS model to calculate the crack 

growth curve.  

The second algorithm manages the “Aleatoric” uncertainty 

which is inherent statistical variability in the process that may 

be characterized by experiments. A mathematical model 

based on Bayesian Statistics quantifies the input data 

uncertainties i.e. initial state (damage) estimate, variability in 

the material, manufacturing variability, crack growth model 

uncertainty. 

The third algorithm manages the “Epistemic” uncertainty 

which is unknown level of uncertainties arising due to lack of 

knowledge information. Estimating future loading and 

quantification of this immense uncertainty falls in this 

domain. We used Dempster-Shafer Theory, based on 

subjective probability model, which are simply considered to 

be degrees of belief and quantify the extent to which the 

statement is supported by existing knowledge and available 

evidence. 

1.1. Proposed Integrated SHM & PHM Model Concept 

The PHM model discussed here can either be used as a 

standalone system or can be integrated with Structural Health 

Monitoring (SHM) system (Tinga et al.) as shown in Figure 

1. The difference in the two approaches being that while in 

the former case the current crack size estimation will come 

from NDT methods, the latter uses SHM algorithms to do the 

same. 

Once the damage reaches a detectable size, various 

SHM/NDT techniques can be employed to evaluate the 

current state of structural health by estimating the crack size. 

This together with the loading profile information would 

serve as input to the PHM model. The final output would be 

a probabilistic RUL range. 

 
Figure 1. SHM/PHM Model Concept 

 

1.2. Formulation of the Problem 

The Figure 2 below shows the bottom flange of wing main 

beam stiffened by stringers of uniform space and sizing on 

both the sides. The stringers are attached to the flange with 

equally spaced rivets. This represents one of the most 

common aero structures found in real life i.e. riveted 

structures with unequal cross section thickness and therefore 

is used for PHM model results demonstration. 

 

 

Figure 2. Specimen Geometry 

 

The loading sequence used represents a series of loading 

cycles affecting the structure. Duration of the loading cycle 

is constant for all the sequence, i.e. 1/3s. Each cycle is 

described by its maximal and minimal stress levels [σmin, 

σmax]. The maximal and minimal stress levels are expressed 

as multiples of a nominal stress σ0. Thus, we have a pair of 

numbers {nmin, nmax} so called load factors for single loading 

cycle. The whole sequence of the loading cycles is defined by 

series of minimal and maximal load factors 

A typical flight spectrum for particular aircraft is used in 

order to define typical flight loading sequence. The typical 

flight spectrum was defined according to FAA AC 23-13A. 
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Figure 3. Loading Cycle 

 

The program block from the full-scale fatigue test of the wing 

was applied in the simulation. One program block consists of 

199 basic program cycles followed by one extended program 

cycle, (Figure 4). Basic program cycle representing one flight 

contains 6 constant amplitude (CA) cycles of ground loads 

followed by 9 CA cycles of vertical gusts on two load levels 

and 6 CA horizontal gust cycles. Extended program cycle 

contains also one extra 7.5 m/s vertical gust cycle. 

 

Figure 4. Variable loading sequence for typical flight 

 

2. CRACK GROWTH MODEL 

2.1. Calculation of rivet forces 

Crack propagation in any structural components require 

calculation of stress intensity factors for cracks subjected to 

complex stress fields as accurate as possible. Its significance 

in the crack propagation can be estimated from the fact that it 

is present as exponential term in any crack model equation, 

and hence a small variation in its value can give absurd result. 

The variety of crack configurations and the complexity of 

stress fields occurring in engineering components require 

more versatile tools for calculating SIF than available 

handbook solutions. These empirical SIF formulae obtained 

are good for a limited geometry and load combinations but 

not for in service aero structures as shown here in Figure 2. 

Finite Element Analysis can be used to calculate SIF of 

complex geometry with growing crack length. However this 

method is impractical because of huge time demand, in 

modeling and running the simulation. 

Therefore an analytical method for calculating SIF for cracks 

subjected to nonlinear stress field and complex geometry is 

developed and discussed here in this section. The method is 

based on the use of the weight function technique developed 

by (Bueckner, 1970) and (Rice, 1972).  

The SIF for mode I problems can be calculated by integration 

of the product of the weight function, m(x, a), and the stress 

distribution σ(x), normal to the potential crack plane.  

  K =  ∫  σ(x)m(x, a)dx
a

0
  - (1) 

 

There are numerous weight functions of different 

mathematical forms available in technical journals and 

handbooks. However it has been found that weight functions 

for crack in mode I can be represented by one general 

expression in the form of equation below 

 

m =  
2

[2π(1−
x

a
)]

1/2   [ 1 + M1 (1 −
x

a
)

1

2
+ M2 (1 −

x

a
)

 

+

M3 (1 −
x

a
)

3

2
]    - (2) 

 

The parameters M1, M2, and M3 depend on the geometry of 

a cracked body (Shen et.al 1991, Zheng et.al 1996, Wang et. 

Al 1995). To calculate the SIF using the weight function 

technique the following tasks were carried out in steps: 

 

1. Determine the stress distribution σ(x) in the prospective 

crack plane using the linear elastic analysis of uncracked 

body. The total nonlinear stress field is calculated by 

superimposing the stresses due to rivets in the crack vicinity 

and applied uniaxial stresses (Poe, 1971) 

 

2. Apply the uncracked stress distribution σ(x), to the crack 

surface as tractions. 

 

3. Choose an appropriate generic weight function as per the 

specimen geometry. 

4. Integrate the product of the stress function σ(x) and the 

weight function m(x, a) over the entire crack length or crack 

surface. 

 

Once the SIF is calculated for a particular crack length, 

PREFFAS model is used to find the crack increment. It is a 

simple model based on the Elber crack closure concept. The 

crack closure is calculated with a cycle-by-cycle approach. 

The model was developed for stationary variable amplitude 

loadings with a short recurrence period. However, it is 

difficult to include the negative loads in the model and 

therefore all the compressive stresses are truncated to zero. 

To evaluate the crack growth model effectiveness, we 

compared the results with experimental values and NASGRO 

simulation model as shown in Table 1 and Figure 5. The first 

crack of 5mm length as observed visually during the fatigue 
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test is used as initial crack length in the model. Whereas for 

NASGRO simulations, an initial crack length of 1.27 mm is 

used to forecast RUL. 

The crack growth model was run in two steps. First as center 

crack originating from both the sides of loaded rivet till one 

crack reaches the flange end. After that, in the second step we 

assumed it to be as one single end crack. 

 

 Table 1. Crack Growth Model Results 

 

Damage 

Model 

No. of cycles 

to  critical 

crack length 

Percent difference 

to Exp. value 

Experiment 166015  

NASGRO 3 48000 71.08 % 

NASGRO 4.23 132500 20.18% 

Current 

Model 

152500 8.2% 

Figure 5. Crack Growth Model v/s Lab Test Results 

 

Though the results from the developed crack model is quite 

impressive, the same has not been used for the uncertainty 

quantification as described in the next section. This is due to 

the fact that the computation time to generate “n” no. of 

curves is very demanding and hence a simpler version, “Paris 

Law” is used. However in future, the model would be made 

computationally less time consuming so that it could replace 

Paris Law model. 

3. CRACK DETECTION AND CRACK SIZE EVALUATION  

For diagnostics and estimating the crack size we used the 

SHM algorithms (Hedl et al. 2012) developed during the 

scope of previous projects. PZT sensors were placed 

strategically on the structure to get the data. Sensors are 

excited by 3 cycles of sinusoidal wave weighted by Gaussian 

window. Frequency of the wave is 200 kHz.  

The obtained signals are the values of voltage on the sensors 

recorded with respect to time. The algorithm is based on 

mainly two methods namely artificial neural network and 

linear regression. The results of the crack estimation in time 

have shown really good conformity with real crack growth 

curves, because 40% of measured signal of this test was used 

for ANN training and all data for Linear Regression 

coefficient calculation. Damage indices are computed for all 

measured signals by comparing to the baseline signals. The 

observed variability represent the structural damage and is 

computed as overall energy extracted from Short Time 

Fourier Transform. The visualization of the damage is 

consequently based on the computed damage indices and 

processed by adjusted version of, Weighted Spatial Mapping 

of Signal Difference Coefficients using Triangulation 

(WEMAT) algorithm (Hedl et al. 2012). 

The Figure 6 below shows the broken specimen after 166973 

flight cycles with installed sensors used for diagnostics. 

 

Figure 6. Cracked Specimen 

For input to our PHM model a crack of length 18 mm as 

detected by SHM system after 1.5 X 105 Program Cycle (PC), 

is used. SHM system detection uncertainties is included in the 

formulation of likelihood function as described in later 

section.  

4. UNCERTAINTY QUANTIFICATION 

There are two broad categories of probability interpretations 

which are referred as “physical” and “subjective” 

probabilities. Physical probabilities are associated with the 

random physical systems such as rolling the dice. Each trial 

of an experiment will lead to an event which is nothing but a 

subset of the sample space. In the long run of repeated trials 

or when no. of trials, “n” tends to infinity, each event will 

occur at a persistent rate calculated merely by dividing the 

no. of favorable events by total events. Thus physical 

probabilities can be defined only in the context of random 

experiments. Subjective probabilities on the other hand can 

be assigned to any statement in the absence of random 

experiments. Bayesian and Dempster Shafer Theory are 

based on subjective probabilities, which are simply 

considered to be the degrees of belief and quantify the extent 

to which the statement is supported by existing knowledge 

and available evidence. Both methods can be used for 

different probability problems. However in the present 

context of SHM, there is only one structure which is being 
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monitored, and so at any time instant, there is no physical 

randomness in the SHM result associated with the structure 

from a frequentist or physical point of view. As a result it is 

not appropriate to represent any system quantity, no matter 

how uncertain it is with a probability distribution, using the 

physical interpretation of probability. We therefore use 

subjective probability method to quantify the major 

uncertainties in the RUL prediction. While Bayesian 

Statistics is used for uncertainty in crack size & model 

parameters, Dempster Shafer theory is used to tackle the 

future loading.   

4.1.  Bayesian Inference 

Bayesian Inference is a normative and rational method of 

updating beliefs when new information in the form of SHM 

system crack estimation is made available (Karandikar et. al, 

2012).In this method, initial crack size and model parameters 

are treated as uncertain random variable, which can be easily 

characterized by a uniform probability distribution. The next 

step is to generate n no. of crack growth curves from the joint 

distribution of initial crack length (a0) and model parameters 

(m, C). The probability that one of this n curves represent the 

true crack growth curve is equally likely and hence can be 

written as 1/n. These sample curve simulations are used as 

the prior when applying Bayesian Inference. 

Baye’s rule in this context can be written as 

P (curve= true crack growth curve | SHM output)   

= 
P (SHM output | curve = true crack growth curve)

P (SHM output)
 x P(curve =

true crack growth curve) 

      - (3) 

Here, P (curve = true crack growth curve) is the prior 

probability, which as described above is simply 1/n for each 

sample curve. P (SHM output | curve = true crack growth 

curve) is referred to as the likelihood. P (curve= true crack 

growth curve | SHM output) is the posterior probability that 

the given curve is true crack growth curve given a SHM 

output at any time. P (SHM output) is the normalization 

constant for the posterior distribution. It is nothing but the 

summation of the non-normalized posterior values. This step 

is needed because from the axioms of probability theory, the 

area under a probability density function in a continuous case 

should be equal to unity. In this way, Baye’s rule can be used 

to update the probability that a sample curve is the true crack 

growth curve each time after SHM/NDT detection results are 

provided to the model. Eventually the posterior calculated at 

a given time becomes the prior for the next time step. 

The uncertainty in the SHM system detection capabilities is 

incorporated in the model, by calculating the likelihood 

function. The user estimate the uncertainties in the crack size 

measurement based on his/her belief about the robustness of 

the SHM system. This value is subjective and changes with 

the diagnostics algorithm, senor layout and specimen. The 

likelihood function takes into account the above information 

and is expressed as following 

l = e
−(a−𝑎𝑚𝑒𝑎𝑠 )2

k             - (4) 

 

where l is the likelihood function, ameas is the measured crack 

size, a is the crack size for a sample fatigue crack growth 

curve at measurement N, and k is a parameter that describes 

the function spread. The likelihood function is expressed as a 

non-normalized normal distribution, where the parameter k = 

2σ2 and σ is the standard deviation of crack size (due to 

measurement, material, and model uncertainty). The value of 

k is estimated by the user based on his/her beliefs. Based on 

the assumptions on the robustness and reliability of our SHM 

system, we took k = 2, in this paper for demonstration 

purposes. This assumption comes from the preliminary lab 

tests done on metallic structures. 

Our SHM system detected damage after 1.5 X 105 PC and 

estimated a crack length of 18 mm. This is considered as the 

triggering point, and the RUL value is estimated hereafter at 

this point. The posterior distribution is calculated by the 

multiplication of the prior and likelihood functions as 

described in Eq. (3). Figure 8 below shows the posterior cdf 

of crack size at 1.5 X 105 PC. 

 

 
Figure 8. Prior & Posterior cdf at 1.5 X 105 PC 

 

From the Figure 8 above it can be seen that it is highly likely 

that the crack length is less than the critical crack length of 

38mm. Likewise, the posterior cdf is updated for each cycle 

interval of 1 X 105 PC and consolidated to give the 

Probabilistic RUL graph.  

Figure 9 shows the posterior probability that the crack size 

will be less than the critical crack length as a function of PC 

(no. of cycles) 

This gives us the probabilistic value of RUL while including 

the initial crack length, SHM system and model parameters 

uncertainty. The y- axis signifies the probability that the 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

6 

crack length is less than critical crack length, while the x- axis 

depicts the loading cycle. 

 

Figure 9. RUL Probabilistic Curve 

 

To get a definite RUL value, user can fix the probability value 

as per his needs. In our paper, we used a conservative 

approach and define the RUL value for the 99% probability 

i.e. 1.75 x 105 PC. This RUL value would now be used in 

Dempster Shafer model to account for loading uncertainties, 

which will give us the final RUL estimation. 

4.2. Dempster-Shafer Theory 

Future loading uncertainty has a significant impact on 

prognostics and the RUL estimation. Future loading 

conditions, flight maneuvers, operating conditions etc. are 

highly uncertain and impossible to predict, which put the 

estimated RUL value in jeopardy. We included uncertainties 

associated with model parameters in section 4.1 for the given 

variable amplitude loading (Figure 4). This loading profile is 

calculated by the OEM and is quite conservative. However in 

reality we don’t know, how the future loading will look like, 

which give rise to the uncertainty in future loading. 

Dempster-Shafer Theory (DST) is a powerful mathematical 

theory to handle this kind of uncertainty which contains 

incomplete information. The primary object of this theory is 

the primitive function called the Basic Probability 

Assignment (bpa). This is usually calculated by the empirical 

data or experts’ belief. In this paper bpa is calculated using 

the triangular fuzzy number concept. Contrary to the classical 

crisp sets, fuzzy sets do not have any sharp boundaries, which 

mean being a member of a fuzzy set is not a simple matter of 

being definitely in or definitely out. In the given context, this 

concept can be used to say, that at a given time there can be 

different RUL values, each compatible with a future loading 

scenario. Each of these RUL values are calculated from three 

different loading profiles.  

We assume three RUL values; most likely, worst and best 

case. The most likely RUL value comes from the section 4.1 

above as 1.75 X 105 PC.  Calculation of these worst and best 

case loading profiles and subsequently their RUL values need 

comprehensive study and research, which is not included in 

the scope of this paper. For demonstration purposes, in order 

to find maximum and minimum RUL values we multiplied 

the most likely RUL with a factor of +/- 25% to get 2.1875 X 

105 and 1.3125 X 105 PC respectively. The present index of 

+/- 25% comes after the discussion and assumption by OEM. 

However this value is highly subjective and cannot be 

claimed as a benchmark. In future, these values should be 

calculated by studying the load spectrum, flight frequency, 

airplane usage etc. 

Now we can express the RUL parameter as a triangular fuzzy 

number with [max, min] as the support with the most likely 

value in the center. We now assume n no. of equally spaced 

α cuts which will give us n nested intervals. These nested 

intervals are nothing but the focal elements with each interval 

having a bpa of 1/n. The focal elements are given by the 

alpha-cut as αAi = {x: μ(x) ≥ αi} =[ αAilower , αAiupper ], 

(i=1,2,3…..,n), where α Є [0,1]. If we now consider a finite 

number and discretize the fuzzy number, the bpa can be 

calculated by first integrating the membership function 

between different α cuts 

∫ 𝜇(𝑥)𝑑𝑥
𝐴iupper

α

𝐴ilower
α   - (5) 

Then, by normalizing procedure the BPA for αAi is defined 

as 

M (αAi) = 
∫ 𝜇(𝑥)𝑑𝑥

𝐴iupper
α

𝐴ilower
α

𝛴𝑖 ∫ 𝜇(𝑥)𝑑𝑥
𝐴iupper

α

𝐴ilower
α

 - (6) 

We now consider our RUL fuzzy number A= [1.3125, 1.75, 

2.1875] X 105. We can define this fuzzy set by assigning to 

each value a number between 0 and 1, which indicates the 

degree or grade of membership in the set. The assignment of 

0 to a particular value means that this value definitely does 

not belong to the set; the assignment of 1 means that the value 

definitely does belong to the set. The following membership 

function is used to describe the concept. 

 

  (x – 1.3125) /.4375; 1.3125 < x < 1.75  

µ(x) = 

(2.1875 – x) /.4375; 1.75 < x < 2.1875 

 

BPA is then calculated using the method described above 

with corresponding alpha cuts chosen as α0 = 1, α1= 0.8, α2= 

0.6, α3=0.4, α4=0.2, α5 =0, as shown in Table 2 

 

Table 2. BPA obtained from triangular fuzzy number 

 
Focal 

Elements 

[1.7175, 

1.7875] 

[1.6325, 

1.8675] 

[1.5525, 

1.9475] 

[1.4725, 

2.0275] 

[1.3925, 

2.1075] 

[1.3125, 

2.1875] 

BPA 0.039 0.111 0.168 0.208 0.232 0.240 
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From these mass assignments, the upper and lower bounds of 

a probability interval can be defined. This interval contains 

the precise probability of a set of interest and is bounded by 

two non- additive continuous measures called belief and 

plauibility: 

Bel(A)  ≤ P(A) ≤ pl(A) 

The belief bel (A) for a set A is defined as the sum of all the 

masses of subsets of the set of interest: 

 

The plausibility pl (A) is the sum of all the masses of the sets 

B that intersect the set of interest A: 

 

Figure 10 below depicts the calculated cumulative 

Plausibility and Belief measures.  

 

 

Figure 10. Cumulative Belief and Plausibility 

5. VERIFICATION AND VALIDATION 

For our RUL model comparison we used three different 

methods: 

Lab Tests 

The fatigue test experiment, with the described loading 

(section 1.2) was conducted on INOVA fatigue testing 

machine with a hydraulic motor SAVAD 2-200-100 having 

max force of 200 KN and max. stroke length of 100mm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Fatigue Test 

 

Fractrography 

The fractography analysis was also done on the flange 

specimen. The specimen was adjusted according to the JSM 

840A electron microscope chamber size. Internal and 

external crack were analyzed separately and measurement 

lines were marked in the directions of cracks growth.  Crack 

surfaces were observed by an electron microscope, and all 

overloading markers were identified. Next, coordinates of a 

marker intersection with the measurement line and surfaces 

were measured. All intersections of each marker are 

interspersed with Bezier curves, (Figure 12). The position of 

each marker is measured from the edge of the rivet hole. 

 

 

Figure 12. Crack Growth Marks (Fractogrpahy) 

 

FEA Analysis  

It is based on the boundary element model prepared and 

solved in the FRANC3D/BES code and on the NASGRO 

crack growth rate equation. The computational model of the 

bottom flange crack was prepared using the software 

FRANC3D developed at the Cornell University. FRANC3D 

calculates the stress intensity factors using the displacement 

correlation technique. NASGRO version 4.23 and 3 is used 

to analyze the crack propagation thereafter. The initial crack 

length of 1.27 mm is used to calculate the RUL for NASGRO 

simulations. 
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The Table 3 below summarizes the result using different 

models and techniques to estimate RUL. 

Table 3. Results Table 

 

RUL Methods RUL Value (X 105) 

Experimental Lab 1.66015 

NASGRO 3 .48000 

NASGRO 4.23 1.32500 

Fractography 1.65828 – 1.66270 

Current Model (90% Prob.) 1.58 – 2.11 

 

6. CONCLUSION 

The contributions of this research study can be summarized 

in two points: the first is the crack growth model 

(section2).The model is able to find unique SIF for complex 

aero structures and uses PREFFAS model to calculate crack 

increment. The results from this model was compared to the 

lab tests for a flange. Although, the computation time is quite 

demanding, but accurate crack growth with less than 10 % 

difference in the end life from lab test values can be achieved. 

The second is the RUL value predicted by the model. The 

paper describes a new and simple way to quantify all the 

major uncertainties in the model. The RUL value as predicted 

by the model matches quite well with the experimental and 

fractography tests. It also proved to be a better estimation 

than the commercial software NASGRO values, which is 

commonly used in industries.  

However, the model needs to be verified and validated on 

other specimens and loading scenarios, before anything can 

be said on its credibility and robustness. Future work also 

includes methods to reduce the computation time of the crack 

growth model. 
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NOMENCLATURE 

σmin Minimal stress level 

σmax Maximal stress level 

nmin Cycle minimal load factor 

nmax Cycle maximal load factor 

RUL Remaining Usage Life 

SHM Structural Health Monitoring 

PC Program Cycle 

SIF Stress Intensity Factor 

BPA Basic Probability Assignment 

cdf Cumulative Density Function 

CBM Condition Based Monitoring 

a  Crack Length 

x Variable distance along x- axis 

N No. of cycles 

m,C Paris law model constants  

OEM Original Equipment Manufacturer 

REFERENCES 

Amin, S., Byington, C., Watson, M. (2005). Fuzzy Inference 

and Fusion for Health State Diagnosis of Hydraulic 

Pumps and Motors. Proceedings of the Annual Meeting 

of the North American Fuzzy Information Processing 

Society. 

Ali, T., Dutta, P. (2012). Methods to obtain Basic Probability 

Assignment in Evidence Theory. International Journal 

of Computer Applications, vol. 38(4), pp. 46-51 

Bueckner, H. F. (1970). A novel principle for the 

computation of stress intensity factors. Z Angew Math 

Mech 50, pp 529-546 

Gebraeel, N., Lawley, M., Liu, R., and Parmeshwaran, V. 

(2004). Life Distributions from Component Degradation 

Signals: A Neural Net Approach. IEEE Transactions on 

Industrial Electronics, vol. 51, no 3 

Goebel, K., Eklund, N (2007). Prognostic Fusion for 

Uncertainty Reduction. Proceedings of AIAA 

InfoTech@ Aerospace Conference. Reston, VA: 

American Institute for Aeronautics and Astronautics, 

Inc. 

Hedl, R., Finda, J., Adamek, K. (2012). Structural Damage 

index mapping system and method. Patent US 

20120330570A1. 

Karandikar, J. M., Kim, N. H., Schmitz, T. L., (2012). 

Prediction of remaining useful life for fatigue-damaged 

structures using Bayesian Inference. Engineering 

Fracture Mechanics, vol. 96, pp. 588-605 

Newman Jr, J. C. (1982). Prediction of fatigue crack growth 

under variable-amplitude and spectrum loading using a 

closure model. Am Soc Test Mater STP, vol. 761, pp. 

255-277 

Poe Jr, C. C., (1971). Stress-Intensity Factor for a cracked 

sheet with riveted and uniformly spaced stringers. 

NASA Technical Report. NASA Langley Research 

Center.  

Ray, A., Patankar R.P. (2001). Fatigue crack growth under 

variable amplitude loading. Part1 &2 Applied 

Mathematics Model Journal, vol. 25 (11), pp. 979-1013 

Rice, J. R., (1972). Some remarks on elastic crack tip stress 

field. International Journal of Solid Structures, vol. 8, 

pp. 751-758 

Shen, G., Glinka, G. (1991). Determination of weight 

functions from reference stress intensity factors. 

Theoretical and Applied Fracture Mechanics, vol. 15(3), 

pp. 237-245 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

9 

Shen, G., Glinka, G. (1991). Weight functions for a surface 

semi-elliptical crack in a finite thickness plate. 

Theoretical and Applied Fracture Mechanics, vol. 15, 

pp. 247-255 

Tinga, Tiedo and Loendersloot, Richard (2014) Aligning 

PHM, SHM and CBM by understanding the physical 

system failure behaviour. In: European Conference of 

the Prognostic and Health Management Society, 08-07-

2014 - 11-07-2014, Nantes (pp. 162 - 171). 

Wei, H., Williard, N., Osterman, M., Pecht, M. (2011). 

Prognostics of lithium-ion batteries based on Dempster - 

Shafer theory and the Bayesian Monte Carlo method. 

Journal of Power Sources, vol. 196, pp. 10314-10321 

Wang, X., Lambert, S. B. (1995). Stress Intensity Factors for 

low aspect ratio semi-elliptical surface cracks in finite 

thickness plates subjected to non-uniform stress. 

Engineering Fracture Mechanics, vol. 51, pp. 517-532 

Zheng, X. J., Glinka, G., Dubey, R. (1995). Calculation of 

stress intensity factors for semi-elliptical cracks in a 

thick wall cylinder. International Journal of Pressure 

Vessel & Piping, vol. 62, pp. 249-258 

Zheng, X. J., Glinka, G., Dubey, R. (1996). Stress Intensity 

Factors and Weight Functions for a corner crack in a 

finite thickness plate. Engineering Fracture Mechanics, 

vol. 54, pp. 49-62 

Zheng, X. J., Glinka, G., Dubey, R. (1996). Stress Intensity 

Factors and Weight Functions for a corner crack in a 

finite thickness plate. Engineering Fracture Mechanics, 

vol. 54, pp. 49-62 

BIOGRAPHIES  

Mudit Rastogi earned his Master of 

Science in Mechanical Engineering from 

University of Michigan, Ann Arbor, USA 

in 2013 and his Bachelor of Engineering 

from University of Pune, India in 2008. 

He has been a R&D scientist with 

Honeywell focusing on Vehicle Health 

Management projects since 2013. His work is aimed on the 

SHM system development (Prognostics of the damage 

growth, Sensor System Optimization, SHM integration into 

aircraft maintenance plan). His interests include Structural 

Health Monitoring, Structural Analysis, Composites, and 

Design Optimization & Fatigue Design. 

http://doc.utwente.nl/view/author/215632508.html
http://doc.utwente.nl/view/author/296377449.html

