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ABSTRACT 

Self-organizing maps have been used extensively for 
condition-based maintenance, where quantization errors of 
test data referring to the self-organizing maps of healthy 
training data have been used as features. Researchers have 
used minimum quantization error as a health indicator, 
which is sensitive to noise in the training data. Some other 
researchers have used the average of the quantization errors 
as a health indicator, where the best matching units of the 
trained self-organizing maps are required to be convex. 
These requirements are not always satisfied. This paper 
introduces a method that improves self-organizing maps for 
anomaly detection by addressing these issues. Noise 
dominated best matching units extracted from the map 
trained by the healthy training data are removed, and the rest 
are used as healthy references. For a given test data 
observation, the k-nearest neighbor algorithm is applied to 
identify neighbors of the observation that occur in the 
references. Then the Euclidean distance between the test 
data observation and the centroid of the neighbors is 
calculated as a health indicator. Compared with the 
minimum quantization error, the health indicator extracted 
by this method is less sensitive to noise, and compared with 
the average of quantization errors, it does not put limitations 
on the convexity or distribution of the best matching units. 
The result was validated using data from experiments on 
cooling fan bearings. 

1. INTRODUCTION 

Anomalies are patterns in data that do not conform to a 
defined notion of normal behavior (Chandola, Banerjee, & 
Kumar, 2009). Anomaly detection is used in the prognostics 
and health management (PHM) of mechanical and 
electronic systems to detect the existence of a fault before 
failure happens. The performance of currently available 

anomaly detection methods leaves room for improvement 
because some systems are still failing without warning. For 
example, even though maintained regularly, bearings remain 
the top contributor to failures of systems like computer 
cooling fans (Tian, 2006) and induction motors (Bianchini, 
Immovilli, Cocconcelli, Rubini, & Bellini, 2011). 

The data used in anomaly detection for mechanical and 
electronic systems are signals that are sensitive to faults. For 
example, in rotating machinery, time series like vibration 
signals and motor current signals have been used because 
they are sensitive to faults, widely available, and non-
intrusive. Some other signals like acoustic emission signals 
were found to be sensitivity to a fault at an early stage (Oh, 
Azarian, & Pecht, 2011), and they have been used as 
precursor parameters in the health monitoring of cooling fan 
bearings (Oh & Shibutani, 2012). 

Sensor signals may not be adequate for users to identify an 
anomaly of the system so fault features have been extracted 
from the sensor signals to increase separation of the normal 
and abnormal behavior of the system. For time series 
signals, commonly used features include peak-to-peak, rms, 
and kurtosis of the signal’s amplitude in the time domain, 
characteristic frequency components, wavelet coefficients, 
and empirical mode decomposition energy in frequency and 
time-frequency domains. Some researchers have introduced 
more sophisticated features (Tian, Morillo, & Pecht, 2013). 

The extracted features need to be transformed to 
understandable information to determine if a test 
observation is an anomaly or not. There are two approaches 
to perform this task. One is the physics-of-failure (PoF) 
approach. Variables of PoF models are monitored and 
compared to the calculated value from the model. When 
deviation of the monitored value from the model value 
exceeds a predetermined threshold, an anomaly is identified. 
Another is data-driven approach, where data mining 
techniques are applied to explore the structure of the data of 
the extracted features. Based on the structure, deviation of 
the system from a normal state is estimated. The PoF 
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approach requires physical models of the system failure 
mechanisms, which are not available in many applications. 
The data-driven approach does not have this requirement, 
but it needs more data than the PoF approach. With the 
rapid development of data acquisition techniques, the 
obstacle to obtain data is weakened, and therefore data-
driven approaches are preferred in many applications. 

The data-driven approach is usually realized by machine 
learning techniques. Based on the use of the data, machine 
learning techniques can be classified as supervised machine 
learning techniques and unsupervised machine learning 
techniques (Pecht, 2008). To detect a fault, supervised 
machine learning techniques require healthy training data 
and faulty training data to construct regions of healthy 
conditions and faulty conditions, and then a test data 
observation is classified to be healthy or faulty depending 
on which region it falls into. In anomaly detection, 
representative supervised machine learning techniques 
include support vector machine (SVM) (Sotiris, Tse, & 
Pecht, 2010) and k-nearest neighbor (KNN) algorithms (He, 
Li, & Zhu, 2013). Application of these techniques is limited 
by the availability of training data of anomalies. 

Unsupervised machine learning techniques do not need 
training data. They group observations into different clusters 
according to their mutual similarity. For example, during 
clustering, normal data and anomalies have different 
performance. Normal data may form large and dense 
clusters, and anomalies may form small and sparse clusters. 
Popular unsupervised machine learning techniques for 
anomaly detection in mechanical and electronic systems 
include self-organizing maps (SOM) (Huang, Xi, Li, Liu, 
Qiu & Lee, 2007) and k-means clustering (Wang, Liu, & 
Cui, 2012). Success of these techniques depends on the 
assumed relationship between the characteristics of the 
clusters and the anomalies. 

In many cases, normal data are abundant and the anomalies 
that can be used for training are scarce. Semi-supervised 
learning techniques are preferred in these cases. Some 
researchers identify the class for normal data and use these 
data as references to calculate the Mahalanobis distance 
(MD) of the test data (Jin, Ma, Cheng, & Pecht, 2012). The 
test data are classified as anomalies if their MD values are 
above a certain threshold. When the normal data are 
distributed in several clusters, current applications of MD 
cannot reflect the degree of deviation of the test data from 
being normal. Some researchers have used self-organizing 
maps (SOM) to cluster the data in terms of best matching 
units (BMUs) (Huang et al. 2007). The smallest distance of 
a test data observation to the BMUs, which is called the 
minimum quantization error (MQE) is used as an indicator 
for anomaly detection. In the presence of noise, which is 
introduced into the signals via sources like other interfering 
signals and errors of measurements, MQE can be the 

distance of the test data observation to a noise-dominated 
BMU, resulting in false detection. 

In this study, the semi-supervised application of SOM in 
anomaly detection is improved. After the maps are trained 
by normal training data, some BMUs are removed to reduce 
the influence of noise, and the neighbors in the BMUs of a 
given test data observation are identified by the k-nearest 
neighbor algorithm. Then the Euclidean distance between 
the test data observation and the centroid of the neighbors is 
calculated as an anomaly indicator. 

The rest of the paper is organized as follows: in section 2, 
the theoretical background of SOM and its application in 
system health monitoring are introduced. The SOM-based 
KNN algorithm developed in this study is introduced in 
section 3, and the algorithm is validated with an 
experimental study in section 4. In section 5, conclusions 
from this study are presented. 

2. SELF-ORGANIZING MAPS 

Self-Organizing Maps (SOM), also called Kohonen neural 
network, is a type of unsupervised machine learning 
technique based on competitive learning (Kohonen, 1990). 
It creates a network that maintains information on the 
topological relationships within the training data.  

2.1. Theoretical Background of SOM 

An SOM consists of a number of neurons. Each neuron is 
represented by a weight vector that has the same dimension 
of the training data. The neurons are organized according to 
their similarity where the neurons with the similar weight 
vectors are grouped as neighbors. This neighborhood 
relationship describes the structure of the map, which 
reflects the relationship in the training data. 

To create an SOM, at first the input data is normalized per 
variable by calculating the z-score of each observation. The 
size of the map is then determined by calculating the 
number of neurons from the number of observations in the 
training data using Eq. (1). 

 NM 5≈  (1) 

where M is the number of neurons, which is an integer close 
to the result of the right hand side of the equation, and N is 
the number of observations. 

The neurons are organized in a 2-dimensional map. The 
ratio of the side lengths of the map is approximately the 
ratio of the two largest eigenvalues of the training data’s 
covariance matrix. 

Elements of the weight vector of each neuron are initialized 
randomly. A training data observation is then picked as an 
input vector to calculate its Euclidean distance between all 
the neurons. For each input observation, the neuron that has 

http://www.peltarion.com/doc/index.php?title=Neural_network
http://www.peltarion.com/doc/index.php?title=Competitive_learning
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the minimum distance is found. This neuron is called the 
best matching unit (BMU) of that input observation. 
Neighbors of the BMU are selected, and their weight 
vectors are updated using a neighborhood function in 
described Eq. (2). 
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where hci is the neighborhood function between the BMU c 
and a neuron i. t is the index of iterations of training. a is the 
learning rate. rc is the vector of the BMU c, and ri is the 
vector of neuron i. σ is the radius around c. 

The neighborhood function is a non-increasing function of t 
and the distance between neuron i and the BMU c so that 
the neurons close to the BMU c are moving closer to c and 
the rate of moving is decreasing over the iterations of 
training. 

The neurons are updated according to Eq. (3). 

 )]()()[()()1( tWtxthtWtW iciii −+=+  (3) 

where Wi(t) is the weight vector of neuron i at tth iteration of 
training. hci is the neighborhood function, and x(t) is the 
input observation of the BMU c. 

The SOM is trained iteratively until all the weight vectors of 
the map are grouped into clusters according to their 
distance. When the learning process finished, the SOM is 
created. The procedure is summarized in Figure1. Details of 
SOM can be found in (Kohonen, 1990). 

2.2. Application of SOM in Mechanical and Electronic 
System Health Monitoring 

Researchers have explored the performance of SOM in 
health monitoring of mechanical and electronic systems 
where minimum quantization error (MQE) of a test data 
observation to the SOM has been used as a indicator to 
evaluate the health of the system (Qiu, Lee, Jin, & Yu, 
2003). 

Quantization error describes the distance between the input 
data observation and the BMU of the SOM. MQE is 
calculated as in Eq. (4): 

 kk
BDQ −= min  (4) 

where Q is the MQE, D is a test data observation, and Bk is 
the weight vector of the kth BMU. 

To monitor health conditions, at first the SOM is trained by 
the healthy training data, and then the MQE of a test data 
observation to the SOM is obtained. Large MQE indicates 
that the test data observation belongs to a space which is not 
covered by the training data. Based on the assumption that 
any deviation from the space covered by the normal training 

data is regarded as a deviation of the system from being 
normal, MQE can be used to indicate the severity of the 
system’s deviation from normal. This assumption is 
evaluated in the studies of (Kang & Birtwhistle, 2003). 
When MQE values are calculated for different stages in the 
life cycle of the system, the trend of the system’s health 
condition is obtained. 

 

 

 
Figure 1. Flow chart of the training process of SOM 

 

In practical situations, the normal training data are 
inevitably contaminated by noise. It is likely that during the 
training process, noise may have dominant influence on 
some BMUs in the map. During the testing process, when a 
test data observation is close to one of the noise dominated 
BMUs, its value of MQE is small, and it would be classified 
as normal. As a result, false detection may occur. 

One method to reduce the influence of noise dominated 
BMUs is to use the average of all the quantization errors as 
an indicator. This is equal to the Euclidean distance between 
the test observation and the centroid of all the BMUs. 
However, if the BMUs are distributed in different clusters, 
or if they are non-convex, the centroid of the BMUs may 
fail to represent the collective information of the BMUs. 
Therefore, a method is needed to improve the application of 
SOM in anomaly detection under noisy conditions. 

Normalize the training data
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3. SELF-ORGANIZING MAPS-BASED K-NEAREST 
NEIGHBOR ALGORITHM 

As discussed in section 2, MQE is subject to the influence 
of noise in the training data, and the average of quantization 
errors fails to work for the training data that are non-convex 
or have isolated clusters. These shortcomings can be 
overcome by selecting a subset of the BMUs and calculating 
their average quantization errors as an anomaly indicator.  

At first, a threshold is applied to the BMUs to remove the 
noise dominated BMUs. The normal training data contains 
information of both the dynamics of the system and noise. 
The dynamics of the system are stable and the data should 
concentrate on certain neurons in the SOM. As a result, 
some neurons become BMUs multiple times. The noise is 
random and the data from the noise do not concentrate on 
any neuron. As a result, even if some neurons become 
BMUs because of the noise, these neurons do not become 
BMUs very often. By removing the BMUs with relatively 
few hits, the influence of noise can be reduced. 

A subset of the BMUs is then selected. The average 
quantization error of a test observation to the BMUs in the 
subset is calculated as an anomaly indicator. Using the 
subset of BMUs has two benefits. First, by calculating the 
average of the quantization errors of the subset, the 
influence of noise is further reduced. Second, for a certain 
size of the subset in a local region, the data of the subset can 
be confined to the same cluster and be approximately 
convex, and therefore, the centroid of the subset is 
representative of the health condition of this subset. 

A main task is to select the BMUs that form the subset as 
the normal reference. In this study, the BMUs in the subset 
are selected as the nearest neighbors of the test data 
observation. If one nearest neighbor is selected, the health 
indicator is the MQE. If k nearest neighbors are selected, the 
health indicator is calculated as the average of the MQE, the 
second minimum quantization error, and up to the kth 
minimum quantization error. By including multiple nearest 
neighbors, the influence of noise is reduced. 

Identification of the nearest neighbors is performed by the k-
nearest neighbor (KNN) algorithm. In most cases, KNN is 
used as a classification technique, where a test data 
observation is classified to a class if it is closer to the 
nearest neighbors in that class. In this study, KNN is used as 
a semi-supervised learning technique, where KNN is only 
used to identify the nearest neighbors in the reference 
BMUs. The distance of the test data observation to the 
centroid of the identified neighbors is calculated. In this 
study this distance is called KNN distance. It is used as the 
health indicator. The use of KNN in this study is illustrated 
in Figure 2. 

 
Figure 2. KNN distance of a test data observation when k=3 

A flow chart of the method developed in this study is shown 
in Figure 3. 

 

 
Figure 3. Flow chart of the SOM-based KNN Algorithm 

In anomaly detection, the method is first applied to the 
healthy training data to get the sample of the value from the 
health indicator of the healthy system. A percentile of the 
sample is then selected as the anomaly threshold. 

4. EXPERIMENTAL STUDY 

The data from a cooling fan accelerated life test was used to 
validate the method developed in this study. The data have a 
tendency to form several clusters and they contain noise, 
which can present difficulties when used with conventional 
methods. The SOM approaches which involve either 
directly using the MQE or taking the distance to the centroid 
of multiple BMUs as the healthy reference produce 
erroneous detection results when used with this type of data 
or with non-convex data. The method developed in this 
paper was designed to address these two issues, which is 
demonstrated using data collected from the cooling fan 
bearing in the experiment. 
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4.1. Setup of the Experiment 

A new cooling fan with ball bearings was tested. The ball 
bearings were designed to be lubricated by grease and oil. 
To accelerate the degradation, the bearings were only 
lubricated by oil. After an initial measurement, the cooling 
fan was run at its rated speed of 4,800 rpm in a chamber at 
the fan’s maximum rated temperature of 70 °C. The cooling 
fan under test is shown in Figure 4. 

 

 
Figure 4. The cooling fan under test 

 

4.2. Data Acquisition 

The vibration acceleration signal and the motor current 
signal have been identified as sensitive to bearing faults 
(Immovilli, Bellini, Rubini, & Tassoni, 2010). The two 
signals were monitored in this study. The measurements 
were collected while the cooling fan was run at room 
temperature for a brief time between stressing periods. 
Signals collected at each measurement have a time span of 
10 seconds and consist of 1,024,000 observations, where the 
sampling rate is 102,400 Hz. Before the accelerated life test, 
three measurements of signals were collected as training 
data, which form a 3,072,000 by 2 matrix. Each row is an 
observation, and each column is a signal. Test data were 
collected after 0 hours, 8 hours, 16 hours, 24 hours, 48 
hours, and 72 hours of accelerated life testing, which form 6 
stages of the test. At each stage there was one measurement 
of the signals, which form a 1,024,000 by 2 matrix. The 0 
hour signal was one of the three measurements from the 
training data. 

The data were cut into segments sequentially. Each segment 
has 0.2 seconds of data, each containing 20,480 
observations. For one measurement, there are 50 segments. 
Features were extracted from these segments. The structure 
of a measurement is shown in Table 1. 

Table 1. Structure of a measurement 

 

4.3. Feature Extraction 

Some commonly used fault features were extracted from the 
segments of the data for both the vibration signal and the 
current signal. These features include peak-to-peak, rms, 
standard deviation, skewness, and kurtosis of the amplitude. 
For each signal, there are 5 features, and for both the 
vibration and current signals, together there are 10 features. 
After feature extraction, the data of each measurement is a 
50 by 10 matrix, where the row is an observation of the 
features, and the column is a feature. 

4.4. Analysis Result 

All the data were normalized by calculating z-scores 
referring to the mean and standard deviation of the training 
data. The size of the SOM was determined according to Eq. 
(1). The training data have three measurements, each of 
which has 50 observations, so there are 150 observations for 
training. According to Eq. (1), the map size was determined 
as 9 by 7 with 63 neurons. Each neuron is a vector with 10 
elements, corresponding to the number of features. 

After training, BMUs were identified in the map, as shown 
in Figure 5. Each lattice cell represents a neuron, and the 
number in a cell is the number of times the neuron has 
become a BMU, or the number of hits. The map shows the 
data tend to form several clusters. 

To determine the threshold to remove noise dominated 
neurons, hits of the neurons were sorted in a descending 
manner. The percentage of the cumulative sum of hits was 
plotted in Figure 6. 

The x axis is the index denoting the neurons with the same 
number of hits. For example, 3 denotes the neurons that 
have 3 hits. There are 9 such neurons, and altogether they 
account for 45 hits in the map. The y axis is the cumulative 
fraction of hits for the neurons referring to the total sum of 
hits. 

Segment index Observation index Vibration Current
1 0.06 -6.84
2 0.12 -6.66

… … …
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Figure 5. Hits of BMUs in the trained SOM 

 

 
Figure 6. Cumulative fraction of hits 

Among the 63 neurons, 52 neurons have become BMUs at 
least once. The sum of hits from neurons with more than 1 
hit account for 91.3% of the total hits. If we accept that 90% 
of the BMU neurons are not dominated by the noise, the 
neurons that have 1 hit should be removed. The remaining 
BMU neurons were used as reference data for KNN analysis. 

For each observation from the features of the test data, KNN 
found k nearest neighbors in the reference data, which are 
the BMUs. A larger k reduces influence of noise better, but 
it makes the algorithm more sensitive to the convexity of the 
data. Also, an odd value of k can help the algorithm to avoid 
tied votes. In this study, k was set to 3, considering that one 
neighbor is too sensitive to noise, and the next odd number 
is 3. The Euclidean distance of the test observation to the 
centroid of the BMUs neighbors was calculated as a health 
indicator. Values of the health indicator for the training data 
were calculated to establish a baseline for healthy condition. 
Distribution fitting of the health indicator value for the 
training data is shown in Figure 7. The Kolmogorov–

Smirnov goodness-of-fit test verified that the data could be 
fitted with a lognormal distribution. Using the 99.7 
percentile as the threshold to separate healthy data and 
anomalies, the anomaly threshold on the health indicator 
was found to be 3.6. If the value of the health indicator of a 
test observation is higher than this value, the observation is 
classified as an anomaly. 

The algorithm was applied to the data at all six stages of the 
test. Results are shown in Figure 8. 

 
Figure 7. Distribution fitting of the health indicator of the 

healthy training data 

 
Figure 8. Health indicator for the test data 

The health indicator values of the test data at each stage are 
shown in box plots. For each box, the central mark is the 
median, the edges are the 25th and 75th percentiles, and the 
whiskers extend to the most extreme data observations not 
considered outliers.  Outliers are observations which are 
outside 2.7 standard deviations from the mean value of the 
data and are marked as crosses. The circles are the means. 
Means at different time intervals are linked by straight lines. 

According to the health indicator value at each stage, the 
cooling fan bearings began to have anomalies after 8 hours 
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of test. The health indicator indicates that the bearing 
degraded monotonically until the end of the test after 72 
hours of test, where the bearing failed with audible sound 
emitted. The results are consistent with the observations in 
the experiment. The increase of the health indicator, which 
is the distance between the test data to their nearest 
neighbors in the reference BMUs, occurred because the 
reference BMUs established a region representing healthy 
conditions of the bearings. Larger distances to this region 
indicate a larger deviation from the healthy conditions of the 
bearings. As the bearings degraded, their condition deviates 
from being healthy, so the distance to the healthy region, 
which is the health indicator, increased. 

Besides the mean value, the standard deviation of the health 
indicator value is also increasing with the degradation of the 
bearings. This observation can be directly seen in Figure 8. 
The standard deviation of the health indicator value at each 
stage of the test is shown in Figure 9. 

The increase of the standard deviation can be explained as 
occurring because, as bearings degrade, random fluctuations 
become more frequent and intense in the vibration signal 
and the current signal. Values of the fault features extracted 
from the signals are distributed in a wider range due to these 
fluctuations, and as a result, the health indicator has a larger 
standard deviation as it combines the information of the 
features. 

 
Figure 9. Standard deviation of the health indicator 

In summary, although the data tended to form clusters, and 
contained noise, the method monitored the degradation of 
the bearing, and successfully detected the anomalies.  The 
unsupervised learning method employed in this study has 
the benefit of reduced sensitivity to noise in the data and the 
ability to accommodate data non-convex distributions 
including data with multiple clusters.  The requirements of 
this method are that training data are needed that sample the 
full range of healthy behavior (i.e., represent all the possible 
healthy clusters and the complexity of their distribution).  
This can impose practical limitations on the use of this 
method, since it can be costly or time consuming to collect 
this type of data for some systems.  Furthermore, this 

method needs to be combined with other algorithms for 
diagnostic or prognostic functions, since it is limited to 
anomaly detection. 

5. CONCLUSIONS 

This paper presents a self-organizing maps-based k-nearest 
neighbor algorithm for anomaly detection, which is applied 
in the health monitoring of mechanical and electronic 
systems. BMUs of the SOM trained by the healthy training 
data are extracted as healthy references. BMUs with small 
hits are removed from the references to reduce the influence 
of noise. For a test data observation, its Euclidean distance 
to the nearest neighbors in the reference BMUs is calculated 
as its health indicator value. 

The algorithm provides a measure of health monitoring and 
anomaly detection of bearings where the influence of the 
noise from the monitoring signals is reduced by removing 
noise dominated BMUs and by averaging neighboring 
reference BMUs. The influence of the distribution of the 
healthy training data is reduced by using KNN to take a 
subset of BMUs in a local region as references. Outputs of 
the algorithm include a health indicator that monotonically 
increases with the degradation of the system, and an 
anomaly detection threshold on the value of the health 
indicator. Moreover, the standard deviation of the health 
indicator can also be used as a measure of degradation for 
the system.  

The algorithm can be implemented in applications where the 
healthy training data are non-convex, for example, the data 
have several clusters. The algorithm can also reduce the 
influence of noise. 
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