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ABSTRACT

In this work, a model-based prognostics methodology is pro-
posed to predict the remaining useful life (RUL) of compos-
ite materials under fatigue loads. To this end, degradation
phenomena such as stiffness reduction and increase in ma-
trix micro-cracks density are predicted by connecting micro-
scale and macro-scale damage models in a Bayesian filter-
ing framework. The proposed Bayesian filtering framework
also allows incorporating various uncertainties in the predic-
tion that are generally associated with material defects, sens-
ing and monitoring noise, modeling errors, etc., to name a
few. This, however, results in a explosion of search space
due to high dimensionality, and hence a high computational
complexity not conducive for real-time monitoring and pre-
diction. To reduce the dimensionality of the problem without
significantly compromising on prediction performance (pre-
cision and accuracy), a model tuning is first carried out by
means of a Global Sensitivity Analysis. This allows identify-
ing and subsequently down selecting the parameters for on-
line adaptation that affect prediction performance the most.
Resulting RUL estimates are then used to compute a time-
variant reliability index for composite materials under fatigue
stress. The approach is demonstrated on data collected from
run-to-failure tension-tension fatigue experiments measuring
the evolution of fatigue damage in CRFP cross-ply laminates.
Micro-cracks are considered as the primary internal damage
mode that are estimated from measurements obtained by ac-
tive interrogation using PZT sensors. Results are presented
and discussed for the prediction of growth in micro-cracks
density and loss of stiffness for a given panel along with the
reliability index calculation for the damaged component.

Juan Chiachı́o et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

Composites are high-performance materials used extensively
in the construction of engineering structures, with a wide range
of applications such as aeronautical, marine and mechani-
cal structures. Most of these applications involve components
subject to cyclic loads, which make them susceptible to fa-
tigue degradation. This degradation leads to a progressive de-
crease of the performance reliability of the material, and ul-
timately, to the catastrophic failure of the structure. The pre-
diction forward in time of such fatigue degradation and the
reliability of the composite structure is of a paramount impor-
tance for safety and cost reasons, however it is still a partially
understood problem.

In contrast to metals, fatigue damage in composites is gov-
erned by complex multi-scale processes driven by internal
fracture mechanisms that ultimately lead to the alteration of
the macro-scale mechanical properties (Reifsnider & Talug,
1980; Jamison, Schulte, Reifsnider, & Stinchcomb, 1984).
The inherent complexity of this process implies uncertainty,
that comes not only from the variability of loading condi-
tions and material heterogeneity, but also from the incom-
plete knowledge of the underlying damage process. This un-
certainty can increase dramatically when dealing with full-
scale structures in real environments. Nevertheless, real time
measurements of the structural performance are now avail-
able through state-of-art Structural Health Monitoring (SHM)
techniques, and a large variety and amount of response data
can be readily acquired, processed and further analyzed to
assess various health-related properties of structures. Thus a
SHM-based prognostic approach is best suited to deal with
this uncertainty, and furthermore to accurately predict the ser-
vice life and the time-varying reliability of the composite struc-
ture.

In the last few years, the topic of fatigue damage prognostics
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is slowly gaining interest. There is an increasing number of
articles dealing with probability-based approaches for fatigue
damage prognostics (Myötyri, Pulkkinen, & Simola, 2006;
Cadini, Zio, & Avram, 2009; Guan, Jha, & Liu, 2011; Zio &
Di Maio, 2012; An, Choi, & Kim, 2013; Gobbato, Kosmatka,
& Conte, 2014), most of them in the context of metals. How-
ever the number of contributions for composites materials
is still very limited (J. Chiachı́o, Chiachı́o, Saxena, Rus, &
Goebel, 2013), precisely where the benefits of the probabilis-
tic SHM-based prognostic approach can be fully exploited to
deal with the variability and complexity of the fatigue damage
accumulation process.

Damage prognostics is concerned with determining the health
state of system components and predicting their RUL based
on predefined thresholds, given an evolutionary damage model.
As with diagnostics, prognostics methods are typically cate-
gorized as either model-based or data-driven, depending on
whether the damage model is based on physical first prin-
ciples, or, alternatively uses damage data to capture trends
of degradation. Model-based approaches provide RUL esti-
mates that are more accurate than data-driven approaches,
when suitable models are available (M. Daigle & Goebel,
2010). Specifically, model-based approaches have the abil-
ity to adapt to different systems (specimen, materials, condi-
tions, etc.) without much training, and furthermore, they can
incorporate monitoring data in a SHM context.

This paper integrates a model-based damage prognostics prob-
lem with reliability theory in application to fatigue in com-
posite materials, which distinguishes from the recent paper
presented by the authors at PHM2013 (2013 Annual Confer-
ence of the Prognostics and Management Society) (J. Chi-
achı́o et al., 2013). In that article, a model-based prognostics
framework was proposed to sequentially estimate the health
state as well as the parameters of the underlying damage model,
based on available SHM data. From this estimation, the RUL
of the estructure was computed. A Sequential Importance
Resampling algorithm (Arumlampalam, Maskell, Gordon, &
Clapp, 2002) was used for the joint state-parameter sequential
estimation, and an artificial dynamics approach (Liu & West,
2001; M. J. Daigle & Goebel, 2013) was adopted to improve
the predictability of the algorithm.

The new contributions of this research work with respect to
(J. Chiachı́o et al., 2013) are (i) the consideration of two
different-scale damage signatures to represent the health state
of the system: matrix-cracks density and longitudinal stiff-
ness reduction, and (ii) the prediction of the time-varying re-
liability of the structure, as a unified health indicator of the
system.

As a case study, SHM data from a tension-tension fatigue ex-
periment in a cross-ply CFRP laminate is used. Damage data
used in this example are taken from the Composite dataset,
NASA Ames Prognostics Data Repository (Saxena, Goebel,

Larrosa, & Chang, 2008), corresponding to laminate L1S19.
More details about these tests are reported in (Saxena et al.,
2011). Results shows the suitability and accuracy of the pro-
posed approach.

The rest of the paper is organized as follows. Section 2 dis-
cusses the theory behind fatigue damage in composites and
presents the proposed methodology for fatigue damage mod-
eling. The sequential state estimation problem by means of
particle filters is presented in Section 3. Section 4 formally
defines the prognostics problem and describes the methodol-
ogy to compute the time-varying reliability. Section 5 presents
the demonstration of the approach on real data of fatigue con-
sidering a cross-ply CFRP laminate. Finally, some conclud-
ing remarks are presented in Section 6.

2. FATIGUE DAMAGE MODELING

The progression of fatigue damage in composites involves a
progressive or sudden change of the macro-scale mechanical
properties, such as stiffness or strength, as a consequence of
different fracture modes that evolve at the micro-scale along
the lifespan of the structure (Jamison et al., 1984). In this
work the longitudinal stiffness loss is chosen as the macro-
scale damage variable, given that, in contrast to the strength,
it can be measured through non-destructive methods during
operation. This is of key importance for the filtering-based
prognostics approach proposed. At the micro-scale level, ma-
trix micro-cracking (J. A. Nairn, 2000) is selected as the dom-
inant fracture mode for the early stage of damage accumula-
tion. Matrix cracks usually initiate from internal defects in
90◦ plies during first loading cycles, and grow rapidly along
fibers direction spanning the entire width of the specimen
(J. A. Nairn, 2000). Continued loading leads to formation of
new cracks between the already formed cracks thereby pro-
gressively increasing the matrix-crack density of the ply un-
til saturation. This saturated state, usually termed as charac-
teristic damage state (CDS) (Reifsnider & Talug, 1980), is
long recognized as a precursor of more severe fracture modes
in adjacent plies, such as delamination and fiber breakage
(Lee, Allen, & Harris, 1989; Beaumont, Dimant, & Shercliff,
2006), which may subsequently lead to the catastrophic fail-
ure of the laminate. In addition, matrix micro-cracking may
itself constitute failure of the design when micro-crack in-
duced degradation in properties exceeds the predefined thresh-
old.

To accurately represent the relation between the internal dam-
age and its manifestation through macro-scale properties, sev-
eral families of damage mechanics models have been pro-
posed in the literature (Talreja & Singh, 2012). These mod-
els, that are based on first principles of admissible ply stress
fields in presence of damage, can be roughly classified into
1) computational methods, 2) semi-analytical methods and 3)
analytical methods. Among them, computational and semi-
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analytical methods have been shown to be promising, how-
ever they are computationally prohibitive in a filtering based
prognostics approach, where a large number of model evalu-
ations is required. Therefore, we focus here on the set of an-
alytical models, that depending on the level of assumptions,
they can be classified into shear-lag models (Garrett & Bai-
ley, 1977; Highsmith & Reifsnider, 1982), variational mod-
els (Hashin, 1985), and crack opening displacement based
models (Gudmundson & Weilin, 1993; Lundmark & Varna,
2005).

Shear-lag models use one-dimensional approximations of the
equilibrium stress field after cracking to derive expressions
for stiffness properties of the cracked laminate. Their main
assumption is basically that, in the position of matrix cracks,
axial load is transferred to uncracked plies by the axial shear
stresses at the interfaces. These models have received the most
attention in the literature and, as a consequence, a vast num-
ber of modifications and extensions can be found. However,
as stated by Talreja and Singh (Talreja & Singh, 2012), all the
one-dimensional shear-lag models are virtually identical, ex-
cept for the choice of the shear-lag parameter, as explained
later in this section. Variational models are based on a two-
dimensional approximation of the equilibrium stress field, that
in contrast to shear-lag analysis, is obtained from the Princi-
ple of Minimum Complementary Energy (Reddy, 2002; Dym
& Shames, 2013). Finally, COD-based models use a 3-D ho-
mogenization procedure derived from the study of the aver-
age crack-face opening displacement of a single matrix crack
as a function of the applied load, that can be calculated ei-
ther analytically (Gudmundson & Weilin, 1993) or numeri-
cally (Varna, Akshantala, & Talreja, 1999; Joffe, Krasnikovs,
& Varna, 2001; Lundmark & Varna, 2005). The reader is
referred to the recent work of Talreja and Singh (Talreja &
Singh, 2012) for a detailed overview of these models.

Variational and COD models are expected to better capture
the various complex damage mechanisms, since they involve
a more complex damage mechanics analysis, but it might be
at expense of more information extracted from the data (J. Chi-
achı́o et al., 2014). Then, if such models are utilized for future
prediction, as arises in prognostics, the results are expected
to significantly depend on the details of the available data.
In contrast, the most simple shear-lag model provide reason-
able accuracy results while it extracts less information from
data. To this end, it is expected to be less sensitive to the noise
on data. It is an example of the principle of Ockham’s razor
in the context of fatigue of materials, that has been shown to
hold true for composites materials by a recent study (J. Chi-
achı́o et al., 2014).

2.1. Stiffness reduction model

Following the unifying formulation of (Joffe & Varna, 1999),
the effective longitudinal Young’s modulus E∗x can be calcu-

lated in
[
φnφ

2
/90n90

/φnφ
2

]
laminates (where φ ∈ [−90◦, 90◦])

as a function of the crack-spacing in 90◦ layers for both,
shear-lag and variational models, as follows:

E∗x =
Ex,0

1 + a 1
2l̄
R(l̄)

(1)

In the last equation,Ex,0 is the longitudinal Young’s modulus
of the undamaged laminate, l̄ = l

t90
is the half crack-spacing

normalized with the 90◦ sub-laminate thickness, R(l̄) is the
average stress perturbation function, and a is a function of ply
and laminate properties, defined as follows:
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In the last equation, the superscript (φ) denotes: ”property
referred to the

[
φnφ

2

]
-sublaminates”. The reader is referred

to the Nomenclature section for a description of the ply and
laminate properties used in the calculations.

It should be noted that the matrix-cracks density is usually
termed as ρ = 1

2l , so that the normalized half crack-spacing l̄
can be expressed as a function of ρ as l̄ = 1

2ρt90
. For shear-lag

models, the function R(l̄) takes the next expression (Joffe &
Varna, 1999):

R(l̄) =
2

ξ
tanh(ξl̄) (3)

where ξ is the aforementioned shear-lag parameter. Depend-
ing on the choice of ξ, different shear-lag models, that have
been proposed in the literature, can be obtained. See (Talreja
& Singh, 2012) for further discussion about shear-lag anal-
ysis. In this paper, the ”classical” shear-lag model (Garrett
& Bailey, 1977; Manders, Chou, Jones, & Rock, 1983) is
adopted. For this model, ξ takes the following expression:

ξ =

√√√√G23

(
1

E2
+

t90

tφE
(φ)
x

)
(4)

2.2. Damage propagation model

Having identified the model to express the relationship be-
tween the effective Young’s modulus and micro-cracks den-
sity, the next step is to address the time evolution of the micro-
cracks density. To this end, the previously explained shear-lag
model is used to obtain the energy released per unit crack
area due to the formation of a new crack between two exist-
ing cracks, denoted here as G. This energy, known as energy
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release rate (ERR), can be calculated as (J. A. Nairn, 1989):

G =
σ2
xh

2ρt90

(
1

E∗x(2ρ)︸ ︷︷ ︸
Eq. 1

− 1

E∗x(ρ)︸ ︷︷ ︸
Eq. 1

)
(5)

where σx is the applied axial tension, and h and t90 are the
laminate and 90◦ sublaminate half-thickness, respectively. The
energy released calculated by Eq. (5) is further introduced
into the modified Paris’ law (J. Nairn & Hu, 1992) to obtain
the evolution of matrix-cracks density as a function of fatigue
cycle n, as shown below:

dρ

dn
= A(∆G)α (6)

where A and α are fitting parameters, and ∆G is the in-
crement in ERR for a specific stress amplitude, i.e., ∆G =
G(σx,max)−G(σx,min). Due to the complexity of the expres-
sion for ∆G, which involves the underlying micro-damage
mechanics model for the computation of E∗x(ρ), a closed-
form solution for Eq. (6) is hard to obtain. To overcome this
drawback, the resulting differential equation can be solved
by approximating the derivative using ”unit-time” finite dif-
ferences, considering that damage evolves cycle-to-cycle as:

ρn = ρn−1 +A (∆G(ρn−1))
α (7)

To summarize, a shear-lag damage-mechanics model is se-
lected to compute E∗x(ρ), i.e. the relationship between the ef-
fective longitudinal Young’s modulus (macro-scale) and the
matrix-cracks density (micro-scale). The evolution of matrix-
cracks density is modeled using the modified Paris’ law in
Eq. (7), that incorporates the damage mechanics model to
evaluate the increment in ERR.

3. FILTERING-BASED STATE-PARAMETER ESTIMATION

3.1. Stochastic embedding

For the purpose of filtering and prognostics, a probability-
based description of the deterministic models described in
Section 2 is needed. To this end, let consider a generic model
defined by a deterministic relationship g = g(u,θ) : RNi ×
RNd → RNo , between the model input u ∈ RNi and the
model output g ∈ RNo , given a set of Np model parame-
ters θ ∈ Θ ⊂ RNp . This damage model can be “embedded”
stochastically (Beck, 2010) by adding a model-error term v
that represents the difference between the actual system re-
sponse x and the model output g, as follows:

x = g(u,θ) + v (8)

The probability model chosen for the error term v in Eq. (8) de-
termines the probability model for the system output x. For
example, if v is assumed to be a zero-mean Gaussian distri-
bution, then the system output x will be also distributed as a

Gaussian, as shown below:

v = x− g(u,θ) ∼ N (0,Σ) =⇒ x ∼ N (g(u,θ),Σ)

where Σ ∈ RNo×No is the covariance matrix. Thus, a stochas-
tic damage model can be defined as a function of model pa-
rameters θ ∈ Θ, as 1

p(x|u,θ) =
(
(2π)No |Σ|

)− 1
2 exp

(
−1

2
(x− x̃)

T
Σ−1 (x− x̃)

)
(9)

where x̃ = g(u,θ). As discussed in Section 2, the progres-
sion of damage is studied at every cycle n by focusing on two
of its manifestations: the matrix-cracks density, ρn, and the
normalized effective stiffness, defined as Dn =

E∗x
Ex,0

. Then,
according to Eq. (8), the actual damage response can be rep-
resented by:

ρn = g1(ρn−1; u,θ)︸ ︷︷ ︸
Eq. 7

+v1 (10a)

Dn = g2(ρn; u,θ)︸ ︷︷ ︸
Eq. 1

+v2 (10b)

where subscripts 1 and 2 denote the corresponding damage
subsystems: matrix-crack density and relative stiffness reduc-
tion, respectively.

From Eqs. (10a) and (10b), the three main elements defining
the stochastic damage model in Eq. (9) are identified: (1) the
actual system output xn = [ρn, Dn], (2) the damage model g =
[g1, g2], and (3) the corresponding model error vector v =
[v1, v2]. A key concept here is the consideration of model er-
rors v1 and v2 as stochastically independent, even though the
models corresponding to the damage subsystems, g1 and g2,
are mathematically related, as shown in Section 2. This means
that the covariance operator Σ is a diagonal matrix, and there-
fore, the stochastic damage model of the overall system can
be readily expressed as a product of univariate Gaussians, as:

p(xn|u,θ) = p(ρn|ρn−1; u,θ)p(Dn|ρn; u,θ) (11)

where

p(ρn|ρn−1; u,θ) = N
(
g1(ρn−1; u,θ), σ2

v1

)
(12a)

p(Dn|ρn; u,θ) = N
(
g2(ρn; u,θ), σ2

v2

)
(12b)

The parameters σv1 and σv2 in Eq. 12a and 12b are the stan-
dard deviation of the error terms v1 and v2, respectively. Ob-
serve that the stochastic damage model provided in Eq. (11)
implicitly encloses a stochastic state transition equation, so
that Eq. (8) can also be expressed as:

xn = g(xn−1; un,θn) + vn (13)

1p(·) is used here to express a probability density function, whereas P (·) is
used to denote probability
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where a new variable zn = {xn,θn} ∈ Z ⊂ RNo×Np can
be suited defined as the system (health) state at time or fa-
tigue cycle n. As explained before, Eq. (13) can be expressed
probabilistically as:

p(xn|xn−1un,θn) = N (g(xn−1; un,θn),Σvn)

= N (g1, σ
2
v1n

)N (g2, σ
2
v2n

)
(14)

3.2. Filtering equations

Let suppose that the actual system response xn can be mea-
sured during operation and that, at a certain fatigue cycle n,
the measured system response can be expressed as a function
of xn as:

yn = xn + wn (15)

where yn =
[
ρ̂n, D̂n

]
is a vector of measurements for matrix-

cracks density and normalized effective stiffness, respectively,
and wn is a measurement error that can be defined as zero
mean Gaussian process, i.e., wn ∼ N (0,Σwn). Then, the
measurement equation defined in Eq. (15) can be expressed
in probabilistic terms as:

p(yn|xn) = N (yn; xn,Σwn) (16)

Note that, since the measurements of each subsystem (micro-
cracks and stiffness loss) are considered to be stochastically
independent, the covariance matrix will be a diagonal ma-
trix, and the measurement equation defined in Eq. (15) can be
readily expressed as:

p(yn|xn) = p(ρ̂n|ρn)p(D̂n|Dn) (17)

= N (ρ̂n; ρn, σw1n
)N (D̂n;Dn, σw2n

) (18)

Then, the focus of the filtering problem is on sequentially up-
dating the probability density function (PDF) of the system
state given a set of system measurements up to time n, y1:n,
i.e., p(xn,θn|y1:n) = p(zn|y1:n), using the previously de-
fined state transition equation and measurement equation. A
particle filter (Arumlampalam et al., 2002) is used to approx-
imate the joint state-parameter distribution by a set of discrete
weighted particles, {zin, ωin}Ni=1, as

p(zn|y1:n) ≈
N∑
i=1

ωinδ(zn − zin) (19a)

=

N∑
i=1

ωinδ(xn − xin)δ(θn − θin) (19b)

where y1:n = {y1,y2, . . . ,yn} denotes the sequence of
measurements,N denotes the number of particles, zin denotes
the estate estimate for particle i, and ωin the ”weight” of parti-
cle i. Particle filters are best suited to sequential estate estima-
tion in nonlinear systems with possibly non-Gaussian noise,
where optimal solutions are unavailable or intractable, as in

our problem. We employ the sampling importance resam-
pling (SIR) particle filter, and implement the resampling step
using systematic resampling (Arumlampalam et al., 2002). In
our problem, the system state is defined as zn = {ρn, Dn,θn}
and the measurements y1:n are compounded by simultaneous
measurements of both, micro-cracks density and normalized
effective stiffness y1:n = {ρ̂1:n, D̂1:n}. Thus, Eq. (19) can
be rewritten as:

p(ρn, Dn,θn|y1:n) ≈
N∑
i=1

ωinδ(ρn−ρin)δ(Dn−Di
n)δ(θn−θin)

(20)

As observed in Eq. (20), model parameters augment the state
vector, then the particle filter is being used to perform joint
state-parameter estimation. Here the parameters θn evolve
by some unknown random process that is independent of the
state xn, so that the particles with parameter values closest
to the true ones should be assigned higher weights, thus al-
lowing the particle filter to converge to the true values. In
this context, standard Sequential Monte Carlo (SMC) meth-
ods (Doucet, De Freitas, & Gordon, 2001) fail and it is nec-
essary to rely on more sophisticated algorithms. Although
this problem is still open in the specific literature (Liu &
West, 2001; Storvik, 2002; Kantas, Doucet, Singh, & Ma-
ciejowski, 2009), here we choose the “artificial dynamics”
approach (Liu & West, 2001) due to its pragmatism and sim-
plicity, by which model parameters performs a random walk
by introducing a small (and decreasing with n) artificial white
noise term, as θn = θn−1 + ξn. Thus,

p(θn|θn−1) = N (θn−1, σξn) (21)

To sequentially reduce the standard deviation of this artificial
error sequence, σξn, there are many alternative methods in
the literature (Kantas et al., 2009). In this paper, the recent
method proposed by (M. Daigle & Goebel, 2010; M. J. Daigle
& Goebel, 2013) is chosen by its simplicity and efficiency.

A pseudocode for a single step of the SIR filter proposed for
estimating Eq. (20) is provided in Algorithm 1.

Note that the proposed sequential state-parameter estimation
approach for damage prognostics in composites involves a
filtering problem defined over a multi-dimensional parame-
ter space Θ ⊂ RNp . It is clear that the higher Np is, the
higher the complexity and computational cost of the filter-
ing and prognostics algorithms. To this end, GSA (Saltelli,
Ratto, Tarantola, & Campolongo, 2006) is used to simplify
the model parameterization by identifying the subset of most
sensitive model parameters θ among the set of mechanical
and fitting parameters defining the damage models.

Through this study, the ply properties {E1, E2, t} together
with the Paris’ law fitting parameter {α} emerged as the key
parameters in terms of model output uncertainty. Then the set
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Algorithm 1 Particle Filter

1: At n = 0
2: Generate {

(
ρi0, D

i
0,θ

i
0

)
}Ni=1, sampling from prior PDFs

πθ(·), πρ(·) and πD(·), respectively.
3: Assign the initial weights: {ωi0 = 1/N}Ni=1
4: At n > 1
5: for i = 1→ N do
6: Sample from Eq. (21): θin ∼ p(·|θ

i
n−1)

7: Sample from Eq. (12a): ρin ∼ p(.|ρin−1,θ
i
n)

8: Sample from Eq. (12b): Di
n ∼ p(·|ρin,θ

i
n)

9: Update weights: ωin ∝ p(D̂n|Di
n)p(ρ̂n|ρin)ωin−1

10: end for
11: for i = 1→ N do
12: Normalize ωin ← ωin/

∑N
i=1

13: end for
14: {

(
ρin, D

i
n,θ

i
n

)
}Ni=1 ← Resample {

(
ρin, D

i
n,θ

i
n

)
, ωin}Ni=1

of updatable parameters was defined by adding the standard
deviation of the model error and measurement error to the last
choice, i.e., θ = {α,E1, E2, t, σv, σw}. The rest mechanical
and geometrical parameters act as static non-updatable input
parameters.

4. DAMAGE AND RELIABILITY PROGNOSTICS

4.1. Damage prognostics

As previously explained in Section 3.1, zn ∈ Z ⊂ RNo×Np
represents the actual health state of the structure, which may
enclose different degradation modes (e.g., micro-cracks, stiff-
ness loss, delaminations, etc). We define the useful domain as
the non empty subset U ⊂ Z of ”authorized” damage states
of our system. The complementary subset Ū = Z \ U repre-
sents degradation states that do not fulfill the design require-
ments, even though the system could still work.

For predicting the RUL of a composite laminate, we are in-
terested in predicting the time when the damage grows be-
yond the useful domain, using the most current knowledge
of the system state estimated by means of the particle fil-
ter (Eq. 20). The time or fatigue cycle at which it occurs is
known as the expected end of life (EOL).

To compute EOL as a probability, each particle (damage state)
is propagated forward in time using the stochastic damage
model as state transition equation, until the boundary of the
useful domain is reached. To this end, a threshold function
TU (zn) can be defined such that it that maps a given point in
the joint state-parameter space to the Boolean domain {0, 1}
(M. Daigle & Goebel, 2011), as follows:

TU (zn) =

{
0 if zn ∈ U
1 if zn ∈ Ū

(22)

Thus, the EOL of a given particle i at cycle n can be defined
as the time n′ > n such that TU (zn′) = 1 by first time.

Mathematically:

EOLin = inf{n′ ∈ N : n′ > n ∧ TU (zin′) = 1} (23)

Using the updated weights at the starting time n, a probabilis-
tic estimation of the EOL can be obtained as:

p(EOLn|y1:n) ≈
N∑
i=1

ωinδ(EOLn − EOLin) (24)

where ωin is the weight of the ith particle at time or cycle
n. Once EOLn is estimated, the remaining useful life can be
readily obtained as RULn = EOLn − n. Thus,

p(RULn|y1:n) ≈
N∑
i=1

ωinδ(RULn −RULin) (25)

An algorithmic description of the proposed prognostic pro-
cedure is provided as Algorithm 2. Note that the prediction
requires hypothesizing future inputs of the system un (recall
Eq. (14)). For simplicity but no loss of generality, we as-
sume in this work that no variation of inputs parameters are
expected on future states.

Algorithm 2 RUL prediction

1: Requires: {
(
ρin, D

i
n,θ

i
n

)
, ωin}Ni=1

2: Output: {EOLin, ωin}Ni=1
3: for i = 1→ N do
4: Calculate: TU

(
ρin, D

i
n,θ

i
n

)
5: while TU = 0 do
6: Sample from Eq. (21): θin+1 ∼ p(·|θ

i
n)

7: Sample from Eq. (12a): ρin+1 ∼ p(.|ρin,θ
i
n+1)

8: Sample from Eq. (12b): Di
n+1 ∼ p(·|ρin+1,θ

i
n+1)

9:
(
ρin, D

i
n,θ

i
n

)
←
(
ρin+1, D

i
n+1,θ

i
n+1

)
10: n← n+ 1
11: end while
12: EOLin ← n
13: RULin = EOLin − n
14: end for

4.2. Time varying reliability estimation

In addition to know the remaining useful life of the structure,
it is also of much interest to estimate and predict the probabil-
ity of the system to fulfill the design requirements, using the
most up-to-date information of the system at cycle n, y1:n. In
mathematical terms, the performance reliability of the system
at cycle n can be defined as (M. Chiachı́o, Chiachı́o, & Rus,
2012):

Rn|n(zn) = P (zn ∈ U|y1:n) =

∫
U
p(zn|y1:n)dzn (26)

where p(zn|y1:n) is the updated PDF of the system health
state at time n. Given that the event {zn ∈ U} is the comple-
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mentary of {zn ∈ Ū}, then P (zn ∈ U|y1:n) = 1 − P (zn ∈
Ū|y1:n); thus the reliability can be rewriten as:

Rn|n(zn) = 1−
∫
Z
TU (zn)p(zn|y1:n)dzn (27)

where TU is the threshold function previously defined in Eq.
(22). Using the particle filter approximation of p(zn|y1:n) de-
fined in Eq. (19), the last multidimensional integral can be
estimated as follows:

Rn|n(zn) ≈ 1−
∫
Z
T (zn)

N∑
i=1

ωinδ(zn − zin)dzn (28a)

= 1−
N∑
i=1

ωinTU (zin) (28b)

For a forward time reliability prediction at general cycle n+
`, where ` ∈ N > 1, a probability-based estimation of the
damage state at cycle n + ` is needed, i.e., p(zn+`|y1:n). It
can be accomplished by Total Probability Theorem using the
updated state of the system at cycle n, as (Doucet et al., 2001)

p(zn+`|y1:n) =

∫
Z

[
n+∏̀
t=n+1

p(zt|zt−1)

]
p(zn|y1:n)dzn:n+`−1

(29)
Note that last equation can be sampled by drawing one condi-
tional sample trajectory zjn+1:n+` = {zjn+1, z

j
n+2, . . . , z

j
n+`}

from the state transition equation, by means of conditional
sampling (Doucet et al., 2001). Thus, an estimate of the `-
step predictive ahead PDF can be expressed as

p(zn+`|y1:n) ≈
N∑
j=1

ωjnδ(zn+` − zjn+`) (30)

where ωjn is the weigh of particles updated at time n. Finally,
the reliability at cycle n+ ` using the updated information at
cycle n can be obtained as:

Rn(zn+`) = 1−
∫
Z
T (zn+`)p(zn+`|y1:n)dzn+` (31a)

≈ 1−
N∑
j=1

ωjn+`|nT (zjn+`) (31b)

5. CASE STUDY

The proposed framework is exemplified using SHM data ob-
tained from a set of carefully designed run-to-failure fatigue
experiments in cross-ply graphite-epoxy laminates. Both stiff-
ness data and NDE measurements of internal damage, such as
micro-crack density and delamination area, were periodically
measured during the fatigue test (Saxena et al., 2011). Torayca
T700G unidirectional carbon prepreg material was used for

15.24 cm × 25.4 cm coupons with dogbone geometry and
[02/904]s stacking sequence, whose mechanical properties are
listed in Table 1. A notch (5.1 mm× 19.3 mm) was created
in these coupons to induce damage modes others than matrix-
cracks, such as delamination, thereby introducing additional
sources of uncertainty and then demonstrating the proposed
framework under more realistic conditions.

Fatigue tests were conducted under load-controlled tension-
tension cyclic loading, with a maximum applied load of 31.13
KN, a frequency f = 5 Hz, and a stress ratio R = 0.14 (re-
lation between the minimum and maximum stress for each
cycle). Monitoring data were collected from a network of
12 piezoelectric (PZT) sensors using Lamb wave signals and
three triaxial strain-gages. Additionally, periodic X-rays were
taken to visualize and characterize subsurface damage fea-
tures, in particular, the micro-cracks density. This information
was then used to develop a mapping between PZT raw signals
and micro-cracks density, as reported in Larrosa and Chang
(Larrosa & Chang, 2012). More details about these tests are
reported in the Composite dataset, NASA Ames Prognostics
Data Repository (Saxena et al., 2008). Damage data used in
this example correspond to laminate L1S19 in (Saxena et al.,
2008).

Results for sequential state estimation for both micro-cracks
density and stiffness loss are presented in Figures 1a and 1b,
respectively. Every time new data arrive, the damage vari-
ables (ρn, Dn) together with model parameters θn are up-
dated using a SIR algorithm with N=500 particles. This infor-
mation is further used to propagate the models into the future
to compute the RUL, calculated as: RULn = EOLn−n, us-
ing the methodology described in Section 4.1. For this exam-
ple, the useful domain is defined as U = {(ρ,D) ∈ [0, 0.42]×
[1, 0.88]} ⊂ R2. The predictions of RUL are plotted against
time in Figure 1c.

Observe that the RUL prediction is appreciably inaccurate
within the first stage of the fatigue process. This stage cor-
responds to the interval of cycles required for data to train
model parameters. From this period, the prediction precision
clearly improves with time. We use the two shaded cones of
accuracy at 10% and 20% of true RUL, denoted as RUL∗ to
help evaluating the prediction accuracy and precision. Notice
also in Figure 1a that accuracy seems to depart from true RUL
at the final stage, which indicates that the model and its vari-
ance structure do not fully capture the damage dynamics to-
wards the end. Such behavior have been previously reported
in (Saxena, Celaya, Saha, Saha, & Goebel, 2010) and may
be related with the asymptotic behavior of the micro-crack
evolution, which requires more efficient algorithms for prog-
nostics in such cases.

To show the time-varying reliability prediction of the mate-
rial, a multi-step forward prediction of the health state is com-
puted every time new SHM data arrive, using the methodolo-
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gy described in Section 4.2. Figure 2 shows several examples
of time-varying reliability predictions at different cycles. Ob-
serve in figure 2a that the prediction gradually improves as
more SHM data are available. Note also that the prediction of
the cycle for which reliability vanishes is consistent with the
RUL estimation.

6. CONCLUSIONS

A SHM-based prognostics framework to predict the remain-
ing useful life and reliability of composites under fatigue con-
ditions is proposed. We consider physics-based models for
damage evolution due to the benefits for estimating the RUL
and reliability. Two damage variables, micro-cracks density
and stiffness loss, are simultaneously considered to represent
the health state of the laminate. The validity of this frame-
work is demonstrated on SHM data collected from a tension-
tension fatigue experiment using CFRP cross-ply laminate.
Reliability emerges as a suitable unified system-health indi-
cator for prognostics, as it encapsulates information of the
system health state while it allows predicting the RUL of the
system. More research effort is need to achieve more effi-
cient prognostic algorithms to improve the accuracy at the
final stage of the process, where damage typically reaches
an asymptotic behavior, and to incorporate other damage fea-
tures like delamination in the proposed model-based frame-
work.
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NOMENCLATURE

h Laminate half-thickness
E

(φ)
x Longitudinal Young’s modulus

E
(φ)
y Transverse Young’s modulus

ν
(φ)
xy In-plane Poisson ratio
t90 [90n90

]-sublaminate half-thickness
tφ [φnφ

2
]-sublaminate thickness

t Ply thickness
E1 Longitudinal Young’s modulus
E2 Transverse Young’s modulus
ν12 In-plane Poisson ratio
G23 Out-of-plane shear modulus
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Table 1. Ply properties used in the calculations.

Long. Modulus Trans. Modulus In-plane Poisson Out-of-plane Poisson Shear modulus Out-of-plane-Shear modulus Thickness
E1 [GPa] E2 [GPa] ν12 ν23 G12 [GPa] G23 [GPa] t [mm]
127.55 8.41 0.309 0.49 6.2 2.82 0.152
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Figure 1. Results for sequential estate estimation for (a) micro-crack density, (b) normalized longitudinal Young’s modulus and
(c) remaining useful life. At each cycle n, the filtered estimation is calculated using the data available up to that cycle.
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Figure 2. Time-varying reliability prediction at different cycles along the process. At each cycle n, the estimation is calculated
using the data available up to that cycle.
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