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ABSTRACT 

This research is focused on developing an efficient fault 

diagnosis procedure for a journal bearing system. Vibration 

data of journal bearing rotor simulator under four conditions 

(i.e. a normal condition and three anomaly conditions 

including unbalance, rubbing and misalignment) was used 

to develop the algorithm. In order to improve diagnostic 

performance, cycle based time-domain features and 

frequency-domain features were extracted after resampling 

process being applied to the raw vibration data. Then, the 

optimal feature selection was accomplished by mixture of 

random combination performance test and Fisher Discrimin- 

ant Ratio (FDR) criteria. After selecting optimal features, 

Fisher Discriminant Analysis (FDA) algorithm classified 

each abnormal conditions mentioned above. To end with, 

the result of classification is evaluated and verified.  

1. INTRODUCTION 

The modern machineries widely deployed in manufacturing 

sectors and power plant facilities have rotors as a core part. 

Naturally, bearings supporting the rotors frequently fail to 

perform their designed responsibility due to various reasons. 

Failure in bearings may affect the entire system to 

deteriorate or cause stopover of the system since it 

incorporates high energy. This also can generate casualties 

or damages when the counter measures are not held in 

suitable time (Yaguo Lei, He, & Zi, 2008). To maintain 

performance of the rotating machineries and to prevent the 

catastrophe of having casualties and economic loss, 

numerous attempts have been made to diagnose the faults in 

their initial states.  

Vibration data is one of the reliable parameters that 

efficiently represents the performance of machineries, and it 

is widely used to define the health status of systems (Gupta, 

1997; Yaguo Lei, He, Zi, & Chen, 2008; Ocak, Loparo, & 

Discenzo, 2007). However, without proper signal processing 

techniques and knowledge on vibration, the data itself does 

not denote any information of health status. Though 

sometimes even when processing has been done properly, 

lack of knowledge hinders the successful diagnosis. 

Therefore, the need for setting up a reliable diagnose 

algorithm without any help from experts has been steadily 

increasing (Jardine, Lin, & Banjevic, 2006; Y. Lei, He, Zi, 

& Hu, 2007; Wong, Jack, & Nandi, 2006).  

In response to the request, an automatic diagnosis algorithm 

implementing Artificial Neural Network (ANN) was 

developed (Chen & Mo, 2004; Li, Chow, Tipsuwan, & 

Hung, 2000; Samanta & Al-Balushi, 2003). Vibration data 

were acquired from both the normal and abnormal bearing 

system, and from the data time-domain features or 

frequency-domain features were extracted, which were used 

as an input for ANN. ANN diagnosed the system as normal 

or abnormal upon those features. In addition, features from 

wavelet analysis in time-frequency domain facilitated 

constructing ANN based diagnosis (Al-Raheem & Abdul-

Karem, 2010; Han, Yang, Choi, & Kim, 2006; Sanz, Perera, 

& Huerta, 2007; Yang, Han, & An, 2004). Rather than 

piling more features, study on selecting effective features 

such as genetic algorithm took a part in this process (Han et 

al., 2006). Many fault diagnosis algorithms based on ANN 

have been introduced. However the limited use of ANN, 

which require certain amount of data, had led a way to other 

machine learning (Ahmadi, Moosavian, & Khazaee, 2012).  

In order to overcome the limitation in ANN, Support Vector 

Machine (SVM) based algorithms were suggested. Since 

SVM is a linear classifier for two-class problems, its use has 
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been limited to linearly separable data sets. However, with 

the invention of the kernels and other techniques as well, 

SVM has gained popularity among researchers (Huo-Ching 

& Yann-Chang, 2012; Yang, Han, & Hwang, 2005).  Often, 

ANN and SVM were used individually to compare 

performance of each algorithm, whereas others tried to 

combine these two method to generate more reliable 

diagnosis algorithm (Salahshoor, Kordestani, & Khoshro, 

2010; Samanta, Al-Balushi, & Al-Araimi, 2003).  

Fisher Discriminant Analysis (FDA) is another widely used 

machine learning technique. The basic principle of FDA is 

similar to that of SVM, but then FDA utilizes the scatter of 

data rather than the data itself. The advantage of using 

scatter over data lies in computational efficiency. 

Specifically, for large multi-class data set, FDA can save its 

resources while SVM wastes resources finding the optimal 

vector. The performance difference of FDA and SVM 

depends on the data set, which does not show much 

difference in this research. Thus, FDA was chosen as the 

main classifying algorithm.  

In this research, advanced fault diagnosis algorithm for 

journal bearing system has been developed. Advanced 

algorithm can be attributed to the features extracted from 

vibration per cycle while other researches have extracted 

features for certain amount of time. ‘A cycle’ method allows 

to identify the fault characteristics of the vibration signal 

more thoroughly. To achieve features per cycle, data were 

resampled before being extracted. Then, extracted features 

numbered more than 50, which needed dimensional 

reduction. In addition, not only the features incorporating 

cycle characteristics of vibration but also average and 

standard deviation of multiple cycles can represent the faults 

clearly. Features selection method by Fisher Discriminant 

Ratio (FDR) and random combination of features has been 

applied.  

Through the paper, the following section will cover the type 

of features extracted from the test-bed. Then, in section 

three feature extraction procedures will be clearly stated, 

and in section four, feature selection method will be 

revealed. Finally, the result of the classification will be 

discussed.  

2. EXPERIMENTAL SETUP AND DATA ACQUISITION 

2.1. Experimental Setup 

The RK4 rotor kit of GE Bently Nevada was used as a 

journal bearing rotor system for implementing anomaly 

conditions. This experimental apparatus is shown in Figure 

1. Rotor shaft with a disc of 800g supported by two journal 

bearings were tested. Two shafts were connected by a 

flexible coupling to acquire more reliable data. The 

vibration data was acquired from the middle of the test-bed, 

close to the point where the abnormal conditions were 

induced. Among several anomaly conditions of rotor 

systems, three kinds of abnormal conditions, unbalance, 

rubbing, misalignment, were induced to the test-bed.  

For unbalance test, a small amount of weight has been 

injected in the disc. Rubbing test was done by a rubbing 

screw to make partial rub on shaft. Additional misalignment 

device with ball bearing shifted the shaft up & downward to 

produce misaligned shaft data. In addition to those 

conditions, normal data was set as a reference.  

 

Figure 1. RK4 test-bed 

2.2. Vibration Data Acquisition 

To achieve consistent and reliable data sets, weight 

balancing procedure preceded the actual experiment. Unlike 

a ball bearing system or a roller bearing system, a journal 

bearing system shows relatively simple sinusoidal wave. 

Even the slightest alteration of the settings result in a big 

change of the waves. For example, improper disc joining 

practice will cause differences in the signal. Therefore, 

among various candidates, vibration amplitude and phase 

have been selected to represent the initial state of the system. 

So as to have consistent amplitude and phase throughout the 

whole data sets, balancing procedure preceded every 

experiment to make the system fit into the same amplitude 

and phase. This preceded action gives reliability to compare 

with the other data sets.  

After the balancing procedure is done, vibration data for 

four conditions can be achieved from the proximity probe 

installed between the journal bearings. Two points on the 

shaft, just beside the bearings have been chosen, and at each 

point, two probes are mounted at a right angle to receive 

voltage signal. Both the relative and absolute displacement 

between the sensor and the shaft can be measured. In 

addition to the time-based vibration signals of each sensor, 

shaft centerline orbit could be tracked via vibration signals 

of two probes mounted in a right angle. The phase 

information can be obtained through the keyphasor signal 

which prints once-per-revolution pulse to provide a precise 

timing measurement. This keyphasor signal enables us to 

dissect the signal into a cycle unit, which will be discussed 

in section 4. Vibration signals of proximity sensor were 

acquired by the rate of 4,000 samples/s via NI DAQ 4432. 

Each normal and abnormal state has been repeated three 

times, and for each case, data was obtained for 60 second 

long at 3600 rpm. 
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3. FEATURE TYPES 

The vibration data itself may show the difference among 

abnormal conditions graphically. Specifically, for journal 

bearing systems, modified sinusoidal wave of vibration 

undeniably proves that the system is not in a normal state. 

However, all data cannot be analyzed manually due to its 

large size. It will take tremendous amount of resources if all 

the data is processed by humans, while losing the reliability 

due to human factors. It is no doubt that quantified indicator 

is required to precisely diagnose malfunctions and to utilize 

the automatic system which can process big data in a short 

period of time.  

Statistical parameters were defined for features of vibration 

data, the quantified indicator of vibration. Some features 

were extracted for every cycle, while others were extracted 

for number of cycles. Whether a cycle or few cycles, unit 

for features must be defined considering the statistical 

definition and implication. 

3.1. Time-domain Features 

Time-domain indicates statistical features from the pre-

defined period of vibration data. Maximum, root-mean-

square, kurtosis and more features are extracted from every 

rotation. Also, mean and deviation for every rotation in 60 

cycles at 3600 rpm, are defined as each features.  

The first three features in Table 1 represents the vibration 

amplitude. In other words, they can be indicator of kinetic 

energy of the system. The next five features form skewness 

to entropy can be interpreted as indicators of shape of the 

wave. Upper/lower bound and AR coefficient represents 

distribution characteristics and signal changes over time. 

Especially, the information of orbit can be gathered via 

proximity probe mounted at a right angle. The mean and 

variance of each time-domain feature for 60 cycles are also 

adopted as features for anomaly diagnostics. Table 1 lists 

the features of time-domain. 

3.2. Frequency-domain Features 

Features in frequency-domain also implies important 

characteristics of vibration signals as much as time-domain 

features. All the frequency features are based on the power 

spectrum for one-second long data. Power spectrum itself 

shows distribution of the frequency elements, but needs to 

be quantified just like the vibration data.  

Five features were defined in this paper. The definition of 

frequency center (FC), root mean square frequency (RMSF), 

and root variance frequency (RVF) are stated in Table 2. 

(Wei, Guo, Jia, Liu, & Yuan, 2013; Yang & Widodo, 2009).  

( )s f  denotes the power spectrum of signal, so that 

according to the definition FC and RMSF show alteration in  

position change of main frequencies, RVF describes the 

convergence of the spectrum power. Additionally, two more 

Table 2. Frequency-domain features 

 

Features Description 

FC 
∫ 𝑓 × 𝑠(𝑓)𝑑𝑓

∫ 𝑠(𝑓)𝑑𝑓
 

RMSF [
∫ 𝑓2 × 𝑠(𝑓)𝑑𝑓

∫ 𝑠(𝑓)𝑑𝑓
]

1/2

 

RVF [
∫(𝑓 − 𝐹𝐶)2 × 𝑠(𝑓)𝑑𝑓

∫ 𝑠(𝑓)𝑑𝑓
]

1/2

 

2X / 1X  √
𝑠(𝑓2𝑋)

𝑠(𝑓1𝑋)
 

(Total-1X) / 1X 
[∫ √𝑠(𝑓)𝑑𝑓 − √𝑠(𝑓1𝑋)]

√𝑠(𝑓1𝑋)
 

 

Table 1. Time-domain features 

 

Features Description 

Maximum Max(𝑋𝑖) 

Mean absolute Mean(|𝑋𝑖|) 

RMS √
∑ 𝑋𝑖

2

𝑁
 

Skewness 
∑(𝑋𝑖 − �̅�)3

(𝑁 − 1)𝑠3
 

Kurtosis 
∑(𝑋𝑖 − �̅�)4

(𝑁 − 1)𝑠4
 

Crest factor 
𝑋𝑝𝑒𝑎𝑘

𝑋𝑟𝑚𝑠
 

Shape factor 
𝑋𝑟𝑚𝑠

Mean(|𝑋𝑖|)
 

Impulse factor 
Max(𝑋𝑖)

Mean(|𝑋𝑖|)
 

Entropy − ∑ 𝑝𝑖 × log 𝑝𝑖 

Upper  bound Max(𝑋𝑖) +
Max(𝑋𝑖) − Min(𝑋𝑖)

2(𝑁 − 1)
 

Lower  bound Min(𝑋𝑖) −
Max(𝑋𝑖) − Min(𝑋𝑖)

2(𝑁 − 1)
 

AR Coefficient Auto regressive coefficient(1st to 8th) 

Effective  orbit 

radius(1x, total) 

∑(𝑋𝑖
2 + 𝑌𝑖

2)

𝑁
 

Aspect ratio of 

1x orbit 

Minor Axis

Major Axis
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features regarding the ratio between the main and other 

frequency components are introduced as in the last two rows 

in Table 2. 
1

( )
X

s f and 
2

( )
X

s f  indicates the magnitude of 

1X and 2X component of vibration signal, respectively.  

4. STATISTICAL ANOMALY DETECTION METHODS 

4.1. Feature Extraction  

In this research, 47 features have been set as the candidate 

parameters for anomaly diagnosis of above mentioned 

conditions. Both time-domain and frequency-domain 

features are extracted for one rotation or/and one second. As 

stated in previous section, the raw vibration data should be 

segmented to maintain consistency of the features.  

4.1.1. Preprocessing for Feature Extraction 

The fundamental frequency of journal bearing systems 

dominates other frequencies. Naturally, the sub-harmonic 

frequencies as well as super-harmonic frequencies were 

often utilized in traditional diagnosis algorithm (Randall & 

Antoni, 2011). In this study, the test-bed used here shows 

typical journal bearing characteristics, so that features are 

extracted based on cycles. Feature extraction unit differs 

according to feature types, some use one rotation while 

others use multiple rotations. For either of the case, 

keyphasor signal must be implemented to segment the 

signal into exact cycles. The sampling rate, 4,000 samples 

per second, creates unevenly distributed sample points per 

cycle at target speed of 3,600 rpm, as in the Figure 2(b).  

And even if the sampling rate has altered to multiples of 

speed, the rotating speed cannot be controlled at exactly 

3,600 rpm, which makes resampling process inevitable. 

Resampling process enables the signal to have same number 

of data points per cycle. For example, in Figure 2(c), 

resampled signal shows eight points per cycle. With the 

given sampling rate and the target speed, signal was resamp- 

 

Figure 2. Resampling procedure (a) Keyphasor signal (b) 

raw Signal (c) resampled Signal 

 

led to have 64 points per cycle starting from the keyphasor 

signal to the next keyphasor signal. Intervals between data 

points were set by equivalent rotation angle difference, so as 

to have same data points even when the rpm changes. The 

resampled signal can now be used to extract features in 

accordance with the same criteria. 

4.1.2. Cycle based Feature Extraction 

As stated in section 3, time-domain features are extracted 

based on a cycle or several cycles. Features from certain 

period of time are universally used in developing fault 

diagnosis. However, considering the fact that fundamental 

frequency dominates in the journal bearing system, and the 

sensitivity that journal bearing sinusoidal waveforms have, 

one rotation of a signal would regard significant amount of 

information. If features are extracted one second without 

applying resampling process, for example, the particular 

information on a sinusoidal wave fades away as it is 

averaged with other non-particular information. This is the 

reason we are focusing on the cycle based features for 

journal bearing. Simultaneously, features related to valuable 

information such as the trend being shifted to other states 

are extracted from 60 cycle data. Widely scattered features 

of a cycle will grant a large variation, which itself can be an 

independent feature. Therefore, time-domain features are 

statistically described by the mean and variance terms of 

time-domain features.  

On the other hand, for frequency-domain features, it is 

desirable to extract 60 cycle based features. The longer the 

signal is acquired, the higher resolution of FFT result can be 

achieved. Since the target speed is 60 rev/sec, extreme high 

frequency components are not required. Rather sub-

harmonic frequencies or super-harmonic frequencies are 

required.  

So far, from raw vibration data 47 features are extracted. 

Among the 47 extracted ones, a few features have been 

chosen to check whether they are able to separate the 

malfunctions clearly. As presented in Figure 3, health 

classes can be unclearly or clearly separated depending on 

selection of a key feature set. In other words, it is sufficient 

to classify all health states if a key feature set is properly 

selected.  

 

(a) (b) 

Figure 3. Graphical expression of features in (a) time-

domain (b) frequency-domain 
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4.2. Feature Selection 

Accuracy and computational efficiency are the two main 

factors that define the performance of the diagnosis 

algorithm. In view of those two points, the best feature sets 

are minimum number of features that produce good result. 

Minimizing the number of features would greatly contribute 

to reducing computational demands. Reducing the time and 

effort for computation may be very critical to some real-

time diagnosis systems. Although real-time is not required, 

some features might hinder the characteristics of the data 

group which deteriorates algorithm performance. Therefore, 

many researches had been conducted solely on feature 

selection.  

In this research, feature selection was accomplished by 

mixture of Fisher Discriminant Ratio ranking and random 

combination performance test.  

4.2.1. FDR & Correlation Coefficient Ranking 

FDR is a criterion that indicates separable ability for two-

class data. In this research each abnormal conditions can be 

regarded as a class, as of universal terms. So high FDR 

value means that it can distinguish an abnormal condition 

from another condition. Its definition is in equation (1). The 

numerator shows that difference between mean of each class. 

In the denominator variance for each class data are summed 

to represent how well class data is congested. Specifically, 

two class data, whose mean difference is large, and which 

has small variance, FDR value for the feature will grant a 

high value (S. Theodoridis & Koutroumbas, 2008). 

 

Figure 4. Feature selection using FDR 

 

2

2 2

( )
i j

i j

F D R
 

 






            (1) 

The explained FDR values will be derived for every feature, 

and also for every abnormal combination sets of two. In this 

research 47 features are extracted for four classes, so total of 

47 x 4C2 FDR values will be calculated.  

However, FDR criteria does not take any consideration in 

reducing number of features. It only gives separable ability 

of individual features. Hence correlation coefficients 

between features are deliberated to obtain a cost function in 

equation (2). This cost function will sort out the features in a 

new ranking. The feature that used to have higher FDR 

value might be ranked very low in a new cost function 

ranking, and vice versa. The cost function can be used as a 

criteria for reducing the number of features. 

1

2

1 ,

1

a rg m a x
1







 
  

 


r

k

k j i j

j r

a
i a C

k

            (2) 

Yet, the combined FDR and correlation ranking is still 

based on two-class problems, which does not guarantee 

decent performance features for multi-class problems as 

well. To utilize in multi-class, random combination method 

is used. 

4.2.2. Random Combination Test  

To apply the feature rankings to multiple class problem, 

random combination of features are selected and evaluated 

by the performance of classification of training data set. 

First, the cost function value of feature rankings in section 

4.2.1. is examined. Though its absolute values do not hold 

crucial meaning, they can be used as a rough measure for 

separable ability in each two-class sets. As shown Figure 4, 

for each two class combination set, features that have less 

than half of the maximum value of cost function are 

discarded as they have bad separable ability. Selected high  

 

 

Figure 5. Random combination testing process 
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separable features represented in right bottom of Figure 

4(the orange colored values). To find priorities among the 

selected high separable features, random combination test 

was applied. The brief process is shown Figure 5.  

Random combination of features have tested 5000 times in 

this study. The occurrence of individual feature is 

accumulated when the prediction accuracy is above the 

threshold. The priority is ranked by the accumulated 

occurrence descending. The result in details will be 

described in section 5.1. 

4.3. Classification – Fishier Discriminant Analysis 

FDA (Fisher Discriminant Analysis) was used for a 

classification scheme. FDA classification algorithm is to 

find a hyper-plane, where projected data on to this plane 

maximizes the cost function, FDR(Welling, 2005).  

In the two-class problem, hyper-plane becomes a single line, 

represented by w. Assuming that the data are projected, high 

FDR corresponds to the difference of mean value being far 

away and the variance of each class being as small. Finding 

the line w manually might be computationally demanding, 

but the maximum eigenvalue of Sw
-1SB matrix is proven to 

be the vector w, where SB means covariance between 

classes, and SW means covariance within the class. 

 

Figure 6. Fisher Discriminant Analysis for two class 

problem 

 

For the multi-class problem, FDA criteria is substituted to 

other cost function J3, and the rest are the same as the two-

class problem(Sergios Theodoridis & Theodoridis, 2010). 

1

3
{ }




w B
J tr a c e S S          (3) 

The overall procedure of developing classification starts 

with acquiring data sets. Other researches have used a part 

of one set for training, and the rest for testing. Conversely, 

this research acquired two sets of data, one for training and 

the other for testing. After both data sets were resampled 

and normalized, the defined features were extracted. Then, 

the features from training data set was used in feature 

selection process since there will be no testing data in real 

systems. Selected features of the training data were utilized 

to develop the classification model by FDA, and the three w 

vectors were derived. The selected features of testing data 

are classified with the w vectors. 

5. RESULTS  

This section can be divided into two parts. The first one will 

discuss the optimal selected features accomplished by 

feature selection process. The latter part will discuss the 

result of class prediction of testing data sets. The training set 

and testing set is listed in the Table 3.  

Table 3. Training and testing data sets 

 

 

Before stating the result, data sets must be organized clearly. 

For feature selection and training the classifier, only training 

data sets were used. At classifier evaluation step, the testing 

data set was predicted using the classifier developed by 

training data sets.  

5.1. Feature Selection Results  

The main function of feature selection is to reduce the 

dimension to increase the efficiency of diagnosis algorithm. 

The test-bed vibration data had been transformed to time-

domain and frequency-domain features. Total 47 candidate 

features were extracted to be used as an input in 

classification. However, 47 seemed heavy even for the 

simplest classification algorithm, because the number of 

data, or cycles, was quite large. At the same time, applying 

too much features in poor separability for anomaly 

diagnosis may lowering the efficiency of the classifier. 

When all 47 features are used, the class prediction for the 

training set leaves only 74.7% accuracy, because not all the 

features were capable of classifying the conditions. So, 

feature selection by mixed FDR and correlation coefficient 

criteria was performed. Features that had higher value than 

the half of the maximum cost function value had been 

selected. Through this mixed feature selection method, 16 

features, almost one third of all 47 features, were recognized 

as valid parameters. These selected 16 parameter are same 

as the number listed in the x-axis of Figure 7. 

Data # Features Data # Features

N d N d

1 3600 47 1 3600 47

2 3600 47 2 3600 47

3 3600 47 3 3600 47

1 3600 47 1 3600 47

2 3600 47 2 3600 47

3 3600 47 3 3600 47

1 3600 47 1 3600 47

2 3600 47 2 3600 47

3 3600 47 3 3600 47

1 3600 47 1 3600 47

2 3600 47 2 3600 47

3 3600 47 3 3600 47

Rubbing

Misalign-

ment

Misalign-

ment

Testing Data

Conditions

Normal

Unbalance

Rubbing

Training Data

Conditions

Normal

Unbalance
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Figure 7. Occurrences of individual feature in random 

combination above threshold for accuracy 

 

Among these 16 remaining features, three features were 

selected randomly for 5000 times to evaluate the 

performance of the combinations. Three was selected as the 

least number of parameters for classifying the four-class 

problem. Each feature combination of training data set in 

Table 3 were trained and tested. In order to acquire the 

optimal features, the threshold of prediction accuracy was 

used as 80%. The 80% criteria above is supposed to be 

reasonable in a sense that prediction accuracy using all 47 

features yielding 74.7%, but further research needs to be 

done. Then, only the eligible feature combination scores the 

individual features as shown in Figure 5. The result 

produces a ranking list of 16 features, which are used in 

section 5.2 to predict the testing set classes. Through these 

selection process, optimal feature sets could be picked.  

5.2. Classification Results 

Before referring the classification result, the proposed 

feature extraction method in section 4.1. enhanced the 

consistency in features. Compared to the features from the 

previous studies, based on certain period of time, the 

proposed features showed separable ability more than twice 

as well as the previous ones.  

With the improved features, FDR feature selection method 

was performed to find the optimal features for classification. 

The first step was to obtain the FDR & correlation ranking 

list which is based on only training sets. Then, feature 

combinations according to the list rankings were formed and 

classified the testing data set. Starting from the top three 

feature combinations, a next ranking feature was added each 

time after classification result was attained. The result is 

shown in Figure 8.  

As it is displayed in the chart, all 16 feature combination 

does not yield good prediction result. Rather smaller number, 

from three to eleven features, gave 100% accurate 

prediction. In addition to the improved accuracy, 

computation time was saved greatly. The result more than   

 

Figure 8. Classification accuracy by number of features 

 

16 features have been achieved by adding left features after 

feature selection process. This chart insists that feature 

selection process was successful. 

6. CONCLUSION 

In this research, diagnose algorithm for four conditions of 

journal bearing systems has been developed. Two separate 

data sets were grouped as training set and testing set, 

respectively. Each of the condition was repeated three times 

and each test preceded the balancing procedure to enhance 

the reliability of the data sets. The initial vibration 

amplitude, indeed, had crucial effect in consistency. 

Considering the characteristics of a journal bearing system, 

features have been extracted based on a cycle or cycles after 

the proximitor signal was resampled. Keyphasor signal has 

made the resampling procedure possible, and that cycle 

segmentation became possible. Total of 47 Cycle based 

features are defined in time-domain and frequency-domain. 

Among those features 16 of them had been chosen to be 

effective parameter by FDR criteria and random 

combination performance test. This feature selection played 

key role in developing competent diagnosis algorithm with 

only three to eleven features being used. However, when 

choosing the features via random combination method, the 

accuracy threshold, which has not been studied deeply, 

plays key role. Further research must be conducted on this 

subject. 
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