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ABSTRACT 

The largest variable cost to aircraft’s manufacturers and 

flying companies is unscheduled maintenance. Therefore, 

developing efficient and modular PHM system capable to 

scale different architectures topologies for in flight and on 

ground health monitoring could be cost effective, since it 

brings indication and warning prior to damage occurring.  

In this paper, we propose an innovative diagnostic and 

prognostic health system based on a combination of 

modular acquisitions interfaces and processing units.  

An embedded JTFA (Joined Time-Frequency Analysis) 

method based on STFT (Short-Time Fourier Transform) or 

Wigner-Ville transforms are used to extract a relevant 

signature.  The proposed algorithms and PHM system 

technology are applied for diagnosis of mechanical flows in 

a high speed rotating gear of a demonstrator machine. A 

detailed description of data management and rooting from 

vibration sensors to the processing unit will be exposed.   

Finally, a proof-of-concept experiment will be designed to 

demonstrate the integration of all the described system 

elements to detect any damage or anomaly into the 

monitored structure. 

1. INTRODUCTION  

Health management and damage assessment of rotary 

structures is one of the major issues that face Helicopter’s 

and turbofan’s manufacturers. In this context, PHM 

applications can actually provide a wide range of benefits 

for complex systems such as transmission gear boxes or jet 

engine turbine.  

For the time being, main and engine accessories are 

systematically replaced either upon failure or after a pre 

calculated time of use. These maintenance procedures which 

are typified in many reports (FAA report DOR/FAA/CT-

92/29) create huge cost of maintenance and materials (Cf. 

Figure 1).  

Therefore, forecasting the remaining useful life of these 

subsystems can improve flight safety and reduce 

exploitation cost by reducing unscheduled events and 

regular maintenance (Heng et al 2009). Moreover, a 

constant monitoring of critical subsystems reduces 

preventive aircraft grounding which increase airplanes 

readiness.  

 

Figure 1. Maintenance, repair, and operations (MRO) cost 

distribution in (%) (PIPAME report) 
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In aircraft industries, real time monitoring of vibration 

(Lastapis et al 2007, Dempsey et al. 2007) is systemically 

used to detect machine faults including structure flaws, 

impacts, cracked rotors or oil degradation. Due to the 

complex nature of the inspected systems, analytical studies 

based on predictive behavior models show their limit quite 

quickly. Additionally, it has been shown by Lewicki et al. 

2010 and Bechhoefer et al. 2011 that there is no single 

condition indicator (CI) which is sensitive to every failure 

mode. 

So, in most methods, the diagnostic is simply based on 

comparison of vibration amplitudes or frequencies to a 

baseline. However, in the case of some complex machines, 

such as helicopter blades or turbofan, the detection of 

abnormal behavior is in essence complicated by the fact that 

changes in operational conditions makes acquired vibration 

non stationary. Because of that, classical vibration based 

diagnostics techniques which focus either on time domain or 

frequency domain are not suitable. In such cases an efficient 

approach to monitor (CI) condition indicator may be based 

on (JTFA) Joined Time-Frequency Analysis (Klein 2013). 

The current paper proposes an automated solution for 

feature extraction. Health indicators such as temperature, 

pressure or vibration are acquired using on board sensors 

through avionics buses or analog interfaces. Hence, there is 

no need to plug external non-qualified sensors. To inform 

operators of needed repairs, the system is capable through 

embedded processor to evaluate the global health using 

evaluative and dynamic thresholds.  

For the purpose of this article, We focused our studies, on 

the joined time frequency analysis of abnormal vibration 

behavior thought the instrumentation of piezoelectric 

sensors. Using an embedded processor, an analysis 

algorithm based on smart comparisons between different 

signatures will be exposed. Damage assessment approach is 

in fact based on a smart differentiation between classified 

signatures acquired prior and after to the damage. The 

healthy signature, in the other hand is extracted using a 

statistical characterization of the studied machine. 

Finally in the last section, we will demonstrate the 

flexibility that network embedded modular system 

architecture may bring to PHM in aerospace. 

2. JOINED TIME-FREQUENCY ANALYSIS AND FEATURE 

EXTRACTION METHODS : 

Based on JTF analysis, feature extraction methods can be 

computed using different techniques of signal processing. 

This section provides a short description of the considered 

methods:  

1. Short-Time Fourier Transform: STFT is widely 

used for JTF analysis. It splits a time domain signal f(t) 

into small segments and applies a window function 

W(t) to each one before computes a FFT (Fast Fourier 

Transform) of each segment :  

      
 (    )  ∫ [ ( )   (    )]          

 

 (1) 

Since it uses a typical Fourier transform, this method 

requires a stationary signal over each segment interval. 

So to analyze semi-transient signals, the required 

segments lengths could be adapted dynamically to the 

observed system. In this case, the major consideration 

is to correctly balance between time and frequency 

resolution (Qian et al 1999). In fact, due to 

Heisenberg-Gabor uncertainty principle, a wide 

window W(t) gives good frequency resolution and poor 

time resolution. In opposite a narrow time slice gives a 

good time resolution and poor frequency resolution. 

These two cases could be problematic for fast transient 

signals. 

2. Wavelet Analysis is mostly used to localize the exact 

time of a specific vibration event. This approach is 

widely used as a JTFA technique for Lamb wave 

triangulation and feature extraction (Boukabache et al. 

2013). Basically, Wavelet Transform (WT) contains 

informations similar to STFT. However due to the 

special proprieties of the used wavelet, the resolution 

in time is much higher at high frequencies. The 

resolution difference between STFT and Wavelet 

Transform is shown in Figure 2. 

 

 

Figure 2. Time-Frequency sampling resolution 

representation of different JTF methods 
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3. Bilinear Time-Frequency Distribution using 

Cohen’s Class Distribution Function: (CCDF) was 

firstly proposed in 1966 in the context of quantum 

mechanics (see Cohen 1966).  It is a generalized time-

frequency representation method that utilizes bilinear 

transformations thought the use of a kernel function : 

   (   )  ∬   (   ) (   )     (     )    
 

  

 (2) 

Where Ax is the ambiguity function and   is the kernel 

function which could include Choi-Williams 

Distribution (Lazorenko 2006) Wigner-Ville 

Distribution (Boashash 1987) or Zhao-Atlas-Marks 

(Rajagopalan et al. 2006). The main primary advantage 

of CCDF is its capability to analysis non stationary 

signals. This technique could therefore be applied to 

transient vibration data collected through high speed 

transition conditions.  However, the bilinear-

transformation needs a careful investigation of used 

window function otherwise it suffers from inherent 

cross-term contamination which degrades the clarity 

for most practical signals. 

Therefore based on these points and the study of (Byington 

et al, 2011) the authors chose a STFT as a JTFA method. 

Compared to the other techniques, STFT offers the best 

compromise between resolution performance and embedded 

computational time. In fact, efficient FFT algorithms 

already exist for embedded CPU or FPGA which makes 

STFT time calculation quite efficient. In addition, small 

amount of data is needed to computes the algorithm which 

lighten aircraft data bus traffic. 

3. THE PROPOSED PHM SYSTEM  

In order to monitor several airplanes systems without 

overloading the weight with additional sensors, we 

developed new system architecture, capable to interact with 

existing embedded avionics and embedded sensing units 

(See Figure. 3). 

The presented technology is built around harsh networked 

electronic modules (see Figure 3 and 4) where each one is 

dedicated to a specific task such as: 

 Sensors instrumentation and acquisition (Temperature, 

Strain, Pressure,  Acceleration and Deformation) 

 Multiple avionics protocol communication interfaces 

(ARINC429, CAN, Ethernet, RS422 …. ) to connect 

the PHM system with on board calculators 

 Waveform and signal generation (current, voltage, 

resistive load …) to simulate avionics sensors behavior 

or to provide calibrated stimulus. 

Based on embedded CPUs, each module has lightweight 

signal processing capabilities to execute basics algorithms 

such as filtering or buffering.   

 

Figure 3. Synoptic of the proposed PHM modular system 

 

Moreover using hot swap and reconfiguration capabilities, 

the modules can be plugged and unplugged freely without 

damaging the PHM System. The theoretical maximum 

number of plugged modules is in fact only limited by the 

internal network bus bandwidth. Hence, this architecture 

allows high level of scalability to manage aircraft life cycle. 

  

Figure 4. Synoptic of the proposed PHM modular system 
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In addition, a central processing and control unit with 

advanced calculation capabilities manages the whole 

network scheduling and behavior. This command module is 

also responsible of sensors data collection, storage and 

processing as well as, the execution of JTFA 

diagnostic/prognostic algorithms. In fact, collected data 

could be exploited on ground with a post treatment for 

precise analysis or during flight using empiric thresholds for 

immediate alarm annunciations. The modular scalability of 

the proposed PHM architecture, allows immediate on flight 

installation to monitor in real time undesired events.  

4. PROOF OF CONCEPT  

4.1. Experimental setup  

For the purpose of this article, we used as an experimental 

machine: a phonic wheel developed to characterize a 

turbojet engine rotating speed. During its operating, the 

produced vibration is measured using a PZT piezoelectric 

sensor of 5mm radius pasted directly onto the external frame 

of the demonstrator. In the meanwhile, rotating speed is 

acquired using an inductive sensor (See Figure 5). 

 
Figure 6. Data acquisition chain  

The phonic wheel is actually driven by an electric brushless 

motor capable to reach a realistic rotating speed of 

10000RPM. When activated, the rotation of the wheel 

generates vibrations signature that produces local micro 

deformations. Hence, according to the applied strain, the 

piezoelectric sensor generates charges Q(t). To be 

exploitable, these charges are converted into a voltage signal 

using a simple charge converter (See Figure 6).  

 

 

Figure 7. Photo of the experimental setup 
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Figure 5. Experimentation setup 
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Analog acquired values are digitalized using a Delta Sigma 

24bits ADC inside the sensors module (See Figure 6), then 

buffered, eventually filtered using a low pass FIR filter and 

finally transmitted when the command module requests it.  

At the last stage of the process, the data is buffered into a 

hardware FIFO synthetized into an FPGA and finally 

handled by the processor to compute an STFT based JTFA 

analysis.  

To synchronize the global system and schedule each task of 

the process, the command module controls the wheel speed 

using short time impulse orders and acquires the rotation 

speed using the inductive sensor.  Hence, the command 

module applies to the mechanical system a strictly similar 

operating condition which allows the extraction of a 

relevant signature.  

4.2. Experimental results 

To demonstrate the detection capabilities of the described 

PHM system, in steady states conditions and pseudo 

stationary operational conditions, we performed two 

representatives’ experiments. 

 

Figure 8. Healthy vibration baseline at 1000RPM 

 

Figure 9. Abnormal vibration signature at 1000RPM 

4.2.1. Abnormal behavior in steady state operation mode 

In this configuration, the command module stabilizes the 

phonic wheel around fixed speed and acquired generated 

vibrations using the PZT sensors after 5s.  

Using equation (1) a simple spectrogram is computed 

through the calculation of the squared STFT magnitude.  

             { ( )}(    )   |     
 (    )|  (3) 

A relevant signature baseline (See Figure 8) is therefore 

extracted using Eq. 3 then compared to an abnormal 

signature acquired for the same operating conditions. For 

this experience, we simulated a machine degradation using a 

faulty contact with the shaft. In this case, data analysis 

shows a clear spectrogram response modification. Beside to 

the initial low frequencies (<500Hz) shown clearly in figure 

8, the mechanical default add to the spectrogram higher 

spikes frequencies around 1kHz. In addition, it is interesting 

to notice that magnitudes of low frequencies are the same in 

the two figures 8 & 9.   

 

Figure 10. Healthy baseline: Power Spectrogram 

Representation (dB/Hz) in 2D at 1000RPM 

 

Figure 11. Abnormal signature: Power Spectrogram 

Representation (dB/Hz) in 2D at 1000RPM 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

6 

  

Figure 12. Normalized healthy baseline signature 

 

Figure 13. Normalized damage response 

In all the experimentations, we used a Hamming windowing 

to compute de DFT. The calculation of the power 

spectrogram representation presented in figures 10 & 11 

shows the need to have same scaling. Actually, with this 

representation, the coloration map doesn’t allow any 

thresholding. To solve this issue, we recalculate a common 

scale to both signatures using a simple normalization. The 

results are shown in figures 12 & 13. Using this simple 

algorithm, we are capable to detect any magnitude variation 

versus to the baseline (presented in figure 12) using a simple 

threshold fixed to 1.1. 

4.2.2. Abnormal behavior in pseudo transient operation 

mode 

In real operational condition, the speed or the load may vary 

with time. In this case, the previously presented algorithm 

does not suit. To simulate such behavior, the command 

module sends to the phonic wheel a series of orders to 

increment its speed by step of 2.5seconds to reach a 

maximum speed of 7000RPM.  

 

Figure 14. Healthy 3D baseline signature between 600 and 

7000RPM 

 

Figure 15. Damaged 3D signature between 600 and 

7000RPM 

In this configuration the command module verifies for each 

step that the needed speed was reached before acquiring 

1second of vibration data. For these conditions, we may 

split the entire experimentation time into small segments 

where stationary conditions are verified. The segments 

intervals could be downsized depending on the acceleration 

capabilities of the motor. In other words, the more the 

acceleration is, the smaller the intervals are set. 

While, semi-stationary conditions are verified for each 

segment, we computed for each interval, a simple power 

spectrum density algorithm; then we extracted for each 

rotation speed the location and the magnitude of the 

produced frequency peaks. The resulted data are plotted in 

figures 14 and 15. However, the 3D representations are 

quite difficult to analyze. To simplify and automatize the 

diagnosis, we extract statistically from the baseline (See 

Figure 14) a list of relevant frequency peaks. Then, we plot 

in 2D representation the magnitude of theses peaks versus 

the rotation speed.     
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Figure 16. Healthy baseline between 700 and 6200RPM 

 

Figure 17. Abnormal signature between 700 and 6200RPM 

 

Figure 18. Damaged signature between 700 and 6200RPM 

The produced signatures could therefore be quickly studied 

using a pre-calculated abacus (See. Figure 16). Using this 

simple representation, the diagnosis is quite quick to 

perform. The thresholds are calculated statistically for a 

healthy behavior then compared to degraded signatures. In 

the example of figure 17, the frame of the phonic wheel has 

been burden with 25g. The signature stills basically the 

same, even if we notice a thin shift of spikes magnitudes at 

high rotation speed. In the example of figure 18, a faulty 

contact has been introduced onto the shaft of the phonic 

wheel. The signature response has been completely 

modified.  

5. CONCLUSION 

A scalable aerospace PHM technology based on embedded 

networked modules was proposed. The system was designed 

for in flight and on ground aircraft health management. 

Beside its capacity to spy most of avionics buses, the system 

is capable to monitor mechanical machineries in order to 

detect an abnormal event and predict an eventual failure. In 

this paper the proposed system was successfully tested on a 

representative mechanical rotating machine.  

In addition, we presented a method for analysis and 

diagnosis vibro-acousitic data acquired using piezoelectric 

sensor. The method was successfully demonstrated for 

stationary data and pseudo-transient variations. Using a 2D 

representation of RPM-spectrogram, we managed to 

diagnosis abnormal behavior onto a phonic wheel. Actually, 

the developed algorithms were specially studied to be 

suitable for an embedded integration. 

NOMENCLATURE 

CCDF    Cohen’s Class Distribution Function 

CI Condition Indicator  

CPU       Core Processing Unit 

DFT Discrete Fourier Transform  

JTFA Joined Time Frequency Analysis 

FFT Fast Fourier Transform  

FIFO First In First Out 

FIR Finite Impulse Response 

FPGA    Field-Programmable Gate Array 

PZT Lead Zirconate Titanate 

PSD       Power Spectral Density  

RPM Rotation per Minutes 

STFT Short Time Fourier Transform 

WT Wavelet Transform  
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