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ABSTRACT 

Wind turbine operation and maintenance costs depend on 

the reliability of its components. Thus, a critical task is to 

detect and isolate faults, as fast as possible, and restore 

optimal operating conditions in the shortest time. In this 

paper, a  data mining approach is proposed for fault  

prediction by detecting the faults  inception in the wind 

turbines, in particu lar pitch actuators. The role of the latter 

is to adjust the blade pitch by rotating it according to the 

current wind speed in order to optimize the wind turbine 

power production. The fault p rediction of pitch actuators is 

a challenging task because of the high variability of the 

wind speed, the confusion between faults and noise as well 

as outliers, the occurrence of pitch actuator faults in power 

optimization region in which the fault consequences are 

hidden and the actions of the control feedback which 

compensate the fault effects. To answer these challenges , 

the proposed approach monitors a drift from normal 

operating conditions towards  failure condition. To ach ieve 

drift detection, two drift indicators are used. The first 

indicator detects the drift and the second indicator confirms 

it. Both indicators are based on the observation of changes 

in the characteristics of normal operating mode over time. A 

wind turbine simulator is used to validate the performance 

of the proposed approach. 

1. INTRODUCTION 

1.1. Basic definitions and motivation 

The search for alternative clean energy is undoubtedly 

becoming more and more important in modern societies. 

The growing interest in wind energy production has led to 

the design of sophisticated wind turbines. Like every  other 

complex and heterogeneous system, wind turb ines are prone 

to faults that can affect their performance and increase 

maintenance costs. In addition, it is very difficult and even 

dangerous to access the turbines. Thus, it is crucial to design 

an automated diagnostics system in  order to achieve the 

fault detection and isolation.  

In general, fault diagnosis of wind turbines is a challenging 

task because of the high variability of the wind speed and 

the confusion between faults and noise as well as outliers . 

However, the fault diagnosis of pitch actuators is 

particularly a challenging task because of i) the occurrence 

of pitch actuator faults in power optimizat ion region in  

which the fault  consequences are hidden and ii) the actions 

of the control feedback which compensate the fault effects. 

Operating conditions of a system may change from normal 

to faulty either abruptly or gradually. In the case of gradual 

change, the system begins to malfunction (degraded 

behavior) until the failure takes over completely. The 

prediction of the occurrence of a failu re prior to its 

occurrence can help providing a time to achieve appropriate 

corrective actions leading to decrease the maintenance costs 

and to increase the availability time . This can be achieved 

by early d iagnosis module. Therefore, early diagnosis of 

pitch actuators is of particular interest for wind turbines 

industry due to their operational & maintenance costs  as 

well as their essential role in optimizing the energy 

production.  

1.2. State of the art 

Diagnosis approaches can be divided into two main  

categories: analytical model based and data min ing 

approaches. Analytical model based approaches exploit  the 

physical knowledge about the system dynamics and 

structure to construct a mathematical or analytical model. 

The conceptual realization of these models can vary 

according to the used approach as the parity space 

(Ozdemir, Seiler & Balas, 2011) (Blesa, Puig, Romera & 

Saludes, 2011), state estimation (Zhang, Zhang, Zhao 

Ferrari, Polycarpou & Parisini, 2011), unknown  input 

observer (Odgaard & Stoustrup, 2011), Kalman  filters, 

unknown input Kalman filters (Chen, Ding, Sari, Naik, 
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Khan & Yin , 2011), parameter identification 

(Simani,Castaldi & Bonfe, 2011), state-parameter 

estimation, as extended Kalman filter approaches (LIU, 

2011) etc. The applicat ion of model-based approaches for 

the fault diagnosis of wind turbines is  difficult due to the 

wind turbine complexity and to the strong non-stationary of 

its environment. An alternative to the analytical model-

based approaches is data min ing approaches. In the latter, 

the model is built  using historical data about the system 

dynamical behaviors. The model is built by learn ing from 

data in order to link the input or observation space to the 

output or decision space. Examples of these approaches 

applied to fault diagnosis of wind turbines we can cite, 

support vector machines (SVM) (Laouti,Sheibat-Othman & 

Othman, 2011), neural networks (Schlechtingen & Santos, 

2011), principal component analysis  (Kim, Parthasarathy, 

Uluyol,  Foslien, Shuangwen & Fleming, 2011), auto-

adaptive dynamical clustering (AuDyC) (Chammas, 

Duviella  & Lecoeuche, 2013), self-feature organization map  

(Kim, Parthasarathy, Uluyol, Foslien, Shuangwen & 

Fleming, 2011), k nearest neighbors (Toubakh, Sayed-

Mouchaweh & Duviella ,2013).  

 

Few approaches have been proposed to achieve predictive 

diagnosis of wind turbines, in particular pitch actuators. 

This is due to the fact  that modeling component degradation 

in strong nonlinear and complex non-stationary 

environments is very hard task. Examples of these methods, 

we can cite genetic programming algorithm (Kusiak & 

Verma, 2011), neural network, neural network ensemble, 

the boosting tree algorithm, and SVM (Kusiak & Li, 2010). 

These methods achieve the fault prediction using the 

Supervisory Control and Data Acquisition (SCADA) data. 

The latter have the disadvantage to be of limited size and 

thus they do not provide enough of information about 

components operating conditions. Thus, the prediction 

accuracy of specific fau lts is not sufficiently accurate.   

1.3. Our approach 

In this paper, a data min ing based approach is proposed in 

order to achieve the prediction o f fau lts that can impact 

wind turbine pitch actuators. Initial offline modeling allows 

constructing initial classes based on the historical data set. 

These classes are represented by restricted zones in the 

feature space. The latter is formed by sensitive features to 

pitch actuators’ operating conditions in order to distinguish 

any drift  from normal to fault  operating conditions. The 

modeling tool is a dynamical clustering algorithm called 

AuDyC (Auto-Adaptive Dynamical Clustering) used to 

initialize the classes that will be dynamically updated. In 

this work, the faulty class, representing the failure operating 

conditions of pitch actuator, is considered to be a priori 

unknown. The only known class in advance is the one 

representing the pitch actuator normal operating conditions . 

Gradual degradations in pitch actuator operating conditions 

are considered as a drift in the characteristics of normal 

class, representing the normal operating conditions, over 

time. This drift is characterized by  a change in patterns 

distribution in the normal class in the feature space. The 

proposed approach monitors a change in the characteristics 

of this class in order to detect and confirm a drift, 

degradation, of pitch actuator normal operating conditions. 

Detecting and following this drift can help to predict the 

occurrence of pitch actuator failure. The drift is monitored 

using two drift indicators: one to detect a drift and the 

second to confirm it . When the drift is detected by the first 

indicator, a  warning is emitted to human operators. Then, 

the second drift indicator confirms this drift in order to 

inform human operators of the necessity to react by taking 

the adequate correction actions.  

 

The proposed data mining approach is composed of five 

main steps:  processing and data analysis, classifier design, 

drift monitoring, updating and interpretation steps. 

 

The paper is organized as fo llows. In  section 2, the wind 

turbine benchmark and the generated fault scenarios are 

described. In section 3, the proposed approach to achieve 

fault prediction of pitch actuators is detailed. In section 4, 

the results based on the use of the wind turbine benchmark 

are presented. Finally, the conclusion and perspectives are 

discussed in section 5. 

2. WIND TURBINE BENCHMARK DES CRIPTION 

A benchmark model for Fault Detection and Isolation (FDI) 

and fault tolerant control (FTC) of wind turbines was 

proposed in (Odgaard & Stoustrup, 2009). The benchmark 

is based on the model of a generic three blade horizontal 

variable speed wind turbine with a full converter coupling 

and a rated power of 4.8 MW. The wind turbine model 

under study is composed of four parts: the blades, the drive 

train, the generator with the converter, and the controller. 

More details of the benchmark model can be found in  

(Odgaard & Stoustrup, 2009). 

The controller operates in four zones (see Figure 1). Zone 1 

is the start-up of the turbines, zone 2 is power optimization, 

zone 3 is constant power production and zone 4 is no power 

production due to a too high wind speed. The focus of this 

benchmark model is on the operation of wind turbine in  

zones 2 & 3. 

Two control strategies are applied to optimize the energy 

production and keep it constant at its optimal value: the 

convertor torque control in zone 2 and the b lades angle 

control in zone 3. In zone 2 (see Fig. 1), the wind turbine is 

controlled so that it produces as much energy as possible. 

To do so, the blades angle is maintained equal to 0° and the 

tip speed ratio is kept constant at its optimal value. The 

latter is regulated by the rotating speed control by tuning the 

convertor torque. Once the optimal power production is 
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achieved, the blades angle control maintains the convertor 

torque constant and adjusts the rotating speed by controlling 

the blades angle. The latter modifies the transfer of the 

aerodynamic power of the wind on the blades.  

 

Figure 1. Reference power curve for the wind turbine 

depending on the wind speed. 

 

Figure 2 shows the overall wind turbine model structure 

where 
w  denotes the wind speed, 

r  the rotor torque, 
r

the rotor speed, g  the generator torque, g  the generator 

speed, 
r  the pitch angle  control reference, 

m  the 

measured pitch angles, 
,r m  the measured rotor speed, ,g m  

the measured generator torque, ,g m  the measured generator 

speed, gP  the measured generated electrical power,  ,g r  the 

generator torque reference, and 
rP  the power reference. 

The benchmark model permits to simulate the wind turbine 

behavior in two power zones: 1) zone 2 (power 

optimization) where g is controlled  and 
r is equal to zero  

and; 2) zone 3 (optimal energy production) where g is kept 

constant and 
r is controlled. In this paper, we focus on 

pitch actuator faults as it is discussed in subsection 2.1. 

 

 
 

Figure 2. Block diagram of the wind turbine model 

(Odgaard & Stoustrup, 2009). 

2.1. Pitch System Model 

The hydraulic pitch system is modeled as a closed loop of 

dynamic system. The state representation of the nominal 

pitch system dynamics is:  
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The state vector 
bx  is composed of pitch angular speed

i


, 

and position 
i  for each blade i  : ( 1, 2,3)i  .

by  is the 

measured pitch position,
r  is the pitch angle position 

reference provided by the controller, and f  is the feedback 

pitch system (see Figure 3). ,n   are the parameters of the 

pitch system where 
n  represent the natural frequencies and 

   is the damping ratio. 

The role o f the pitch actuator is to adjust the pitch of a b lade 

by rotating it; while the pitch angle of a blade is measured 

on the cylinder of the pitch actuator.   

 

Figure 3. Block diagram of p itch system. 

2.2.  Fault scenarios  

The pitch actuator fault considered in this paper is caused by 

air content increase in the actuator’s oil. This fault is 

modeled  as a gradual change in  the parameters ,n   of  

pitch actuator n°3 (Odgaard & Stoustrup, 2009). Nine 

scenarios for this fault are generated in order to simulate 

slow, moderate and high degradation speeds represented by 

slow, moderate and h igh drift speeds. Each drift  speed 

scenario is generated at three different time instances . Thus, 

parameters ,n  are changed linearly from 
1 1,n   to 

2 2,n   

in a period of 30s, 60s and 90s, corresponding respectively 

to high, moderate and slow drift speeds. Then, the fault 

remains active for 100s. Finally  the parameters decrease 

again to return to their in itia l values (see Figure4).  

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Wind speed [m/s]

G
e
n

e
ra

te
d

 P
o

w
e
r 

[%
]

Blade & pitch 

system

Drive train Generator & 

Convertor

Controller

Pitch  actuator Sensor

1/2
+

+

+

-

Controller

+

+

Zone 1 Zone 2 Zone 3 Zone 4 

r
p  

 

r
  

f
  

m
  

2m
  

w
  

 

1m


 

g
  

 

r
  

w
  

r
  

,
,

m w m
   ,r m  

, ,
, ,

g m g m g
P   

 

r
  

 

g
  

 

r
P  

 

,g r
  

 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

4 

 

Figure 4. Drift scenarios corresponding to high drift speed 

in 3 different time instances.   

 

The goal of using three d ifferent drift speeds starting in 

three different instant times is to test the performance, drift  

detection and confirmation, in the case of slow, moderate 

and high degradation speeds occurring in different wind 

speed (zones 2 and 3). Actuator fault scenarios are 

summarized in Tab le1. 

 

3. PROPOS ED APPROACH  

In this section, a dynamical data min ing approach is 

developed in order to achieve condition monitoring and 

fault prediction of pitch actuator. It performs this prediction 

by detecting a drift of the system operating conditions from 

normal to fau lty modes.  

The proposed approach is based on 5 steps developed in the 

following subsections (see Fig. 5).    

 

 
Figure 5. Proposed approach steps. 

3.1. Processing and data analysis step 

 

This step aims at finding the features  sensitive to the system 

operating conditions in order to construct the feature space. 

The position of the pitch actuators is measured by two 

redundant sensors for each of the three p itch positions

 , 1,  2,  3,  2( )1,  k mi k i   , with the same reference angle 

r  provided to each of them. In order to enhance the 

robustness against noise, the measures are filtered by a first 

order filter using time constant 0.06 .s    

The research of sensitive features is based on the signals 

provided by the pitch sensors as well as the prior knowledge 

about the system dynamics. These features are chosen in 

order to maximize the discrimination between operating  

modes in the feature space. In this work, two-dimensional 

feature space is constructed for the actuator faults  (Toubakh 

et al., 2013). Both features are  residuals A   , A= 1, 2  

computed by (4) and (5). Residuals A , A= 1, 2 , are 

generated by the comparison between the pitch angle 

measurement ,k mi , 1,  2,i  1,  2,  3k    and the reference 

value of the pitch angle r  (see Figure 3). The strong 

variability of the wind speed leads to a strong variability of 

the control pitch command which can increase the residuals 
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Table 1. Pitch actuator fault scenarios. 

 

Fault N° Drift  

speed 

        Fault  Period  

F1h 30s  
1 1 2 2, ,n n   

 

3200s-3330s  

F1m 60s  
1 1 2 2, ,n n   

 

3200s-3360s  

F1s 90s  
1 1 2 2, ,n n   

 

3200s-3390s  

 

Fault N° Drift  

speed 

        Fault  Period  

F2h 30s  
1 1 2 2, ,n n   

 

3300s-3430s  

F2m 60s  
1 1 2 2, ,n n   

 

3300s-3460s  

F2s 90s  
1 1 2 2, ,n n   

 

3300s-3490s  

 

Fault N° Drift  

speed 

        Fault  Period  

F3h 30s  
1 1 2 2, ,n n   

 

3400s-5330s  

F3m 60s  
1 1 2 2, ,n n   

 

3400s-5560s  

F3s 90s  
1 1 2 2, ,n n   

 

3400s-3590s  
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in the normal functioning mode. To overcome this problem 

which can cause false alarms, the residuals are computed 

within  a time window in order to take into account the 

control variab ility ( ).rV   The size of this time window is 

determined experimentally to achieve a tradeoff between the 

delay of drift detection and false drift detection.  
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3.2. Classifier Design step 

 

This step aims at designing a classifier able to assign a new 

pattern to one of the learnt classes in the feature space. A 

new pattern characterizes the actual operating conditions 

(normal or faulty in response to the occurrence of a certain  

fault) of the system.  

Figure 6 shows the classes representing normal and failure 

operating conditions of pitch actuator in the feature space 

constituted by the two residuals defined by (4) and (5). Due 

to the wind turbine non-stationary environments, an 

overlapping region is created between the normal and 

failure classes (see Figure 6). In this region, the 

consequences of the fault are hidden because the actuators 

are not solicited o r are solicited for s mall angles. In both 

cases, normal and failure classes overlap because of pitch 

sensors noises and low wind speed (see Figures 6 and7). 

 

Figure 6.  Large v iew of overlapping reg ion for the third  

pitch actuator normal and failure operating conditions . 

 

  Figure 7.  Feature space of the third pitch actuator 

normal and failu re operating conditions . 

In order to distinguish as much as possible the operating 

conditions (normal/fau lty) and to improve the 

misclassification rate of the classifier, the normal and failure 

classes are split into three classes 1, 2 and 3 and the pitch 

actuator dynamics are represented by two different 

operating modes. The first one corresponds to the case of 

big pitch angles and high wind speed; while the second 

operating mode represents the case of small p itch angles and 

low wind speed (see Figure 8). Class 1 is the ambiguity 

class. It gathers the patterns processing pitch actuator 

normal or fau lty operating conditions. This class represents 

the operating mode 1 (small angle and low wind speed). 

Class 2 represents the normal operating conditions class in 

operating mode 2 (large angle and high wind speed). Class 3 

represents pitch actuator failu re class in operating mode 2. 

 

 

 

 

 

 

 

 

 

 

                                           

 

                        

Figure 8. (a) Actuator decision space. (b) Operat ing modes 1 

and 2 modeled by a finite state automaton containing two 

states.  
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3.2.1. Pattern decisions analysis 

 

When a new pattern is classified in the ambiguity class, 

assigning it to normal or failu re operating conditions is a 

risky decision since normal and failure classes are 

overlapped in this region of the feature space. In order to 

reduce this risk of misclassificat ion, the decision about the 

status (normal or fau lty) of any pattern classified in this 

region is delayed by assigning the label ‘A’ (ambiguity 

decision). Then, this ambiguity can be removed by 

analyzing the past and future decisions of this pattern. This 

pattern decisions analysis is achieved by using a set of 

decision rules allowing assigning to ambiguity patterns  

label ‘N’ or label ‘F’ (normal or faulty) as follows. Let us 

suppose that  1, , ,    A t t t nX x x x    is a set of patterns 

associated with the decision ‘A’. Let xt-1 be the previous 

pattern arrived just before 
tx ,  t -1D x  be the decision of 

this pattern, xt+n+1 be the pattern arrived just after
t nx 

, 

 t+n+1D x  be the decision for this pattern. Then, decision 

 D x , Ax X   can be updated as follows: 
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(7)            

 

 (8)             

   

 (9)            

      

(10)            

      

where   refers to ‘And’ logical operation.  

 

3. 2.2. Classification approach  

 

Auto-adaptive Dynamical Clustering Algorithm (AuDyC) is 

used as a classification method in order to design the 

classifier. AuDyC was chosen because it is -) dynamical, -) 

unsupervised classification method and -) able to model 

streams of patterns since it  reflects always the final 

distribution of patterns in  the features space. It uses a 

technique that is inspired from the Gaussian mixture model 

(Lecoeuche & Lurette, 2003), (Traore, Duviella  & 

Lecoeuche, 2009). Let dE  be a d-dimensional feature space. 

Each feature vector  
dEx  is called a pattern. The patterns 

are used to model Gaussian prototypes jP  characterized by  

a center  j

d×1

P
μ R  and a covariance matrix j

d×d

P
R  . 

Each gaussian prototype characterizes a class. A min imum 

number of winN  patterns are necessary to define one 

prototype, where 
winN is a user-defined threshold. A  class 

models an operating mode and groups patterns that  are 

similar one to each other. The similarity criterion that is 

used is the Gaussian membership degree. Faults will affect 

directly this d istribution and this will be seen on the 

continuously updated parameters . AuDyC will be associated 

with decision rules in order to design the classifier able to 

analyze the trajectory. 

For more details on the functionalities  of AuDyC, then 

adaptation like merging classes, splitting classes etc. The 

rules of recursive adaptation and the similarity criteria in  

AuDyC, can be found in (Lecoeuche & Lurette, 2003), 

(Traore et al., 2009). 

 

3.3. Updating step  

 

The updating step aims at reacting to the changes  in the 

feature space. AuDyC is dynamic since it continuously 

updates the parameters by using the recursive adaptation 

rules (11), (12). In such a way, its validity and performance 

over time is preserved. 
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(12)                

 

Where 
newx   and 

oldx  are the newest arrived pattern and the 

oldest pattern in the time window 
winN  respectively. 

Initial offline modeling allows the construction of init ial  

classes that characterize knowledge from historical data. 

The historical data are usually sensor data that are saved. 

The modeling tool AuDyC used to initialize the feature 

spaces is based on extracted features from h istorical data, 

that will be online dynamically  updated. Knowledge of 

failure modes given from (labeled) h istorical data can help  

building a classificat ion scheme for fault d iagnosis. 

However, in reality, these data are hard to obtain. 

In this work, we suppose that only data corresponding to 

normal operating conditions (normal class) are known in  

advance. The training of the process by applying AuDyC is 

made based on features that are extracted from historical 

sensor data once finished; the class corresponding to normal 

operating mode is retained. We denote this class by

 N N NC μ ,  .   

In online functioning, the parameters of NC  are 

dynamically updated by AuDyC for each new pattern 

arrives in operating mode 2. This y ields changes in the class 

parameters which continuously reflect the d istribution of the 

newest arriv ing patterns. We denote by  C μ ,e ee
   the 
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evolving classes in the feature space. We have

  NC (t 0) μ , Ce ee
    . 

In operating mode 1, normal and faulty behaviors cannot be 

distinguished. Thus, in the proposed approach, the decisions 

about the status (normal/ faulty) of patterns located in this 

region are delayed. Therefore in this case, the classifier will 

not be updated in order to avoid integrating in the drift time 

window useless patterns. In order to detect the drift as soon 

as possible, AuDyC updates the class parameters by using a 

window that contains only the patterns belonging to 

operating mode 2. AuDyC is dynamic by nature in the sense 

that it continuously updates  the parameters of the classes as 

new patterns arrive.  

 

3.4. Drift Monitoring step 

 

The key problem of drift monitoring is to distinguish 

between variations due to stochastic perturbations and 

variations caused by unexpected changes in a system’s state. 

If the sequence of observations is noisy, it may  contain 

some inconsistent observations or measurements errors 

(outliers) that are random and may never appear again. 

Therefore, it  is reasonable to monitor a system and to 

process observations within time windows in order to 

average and reduce the noise influence. Moreover, the 

informat ion about possible structural changes within time 

windows can be interpreted and processed more easily. As a 

result, a more reliable classifier update can be achieved by 

monitoring within time windows. The latter must include 

enough of patterns representing the drift. To d istinguish the 

useful patterns, the pitch actuator dynamics are represented 

by two different operating modes. In the operating mode 2, 

the degradation consequences of pitch actuator can be 

observed. Therefore, all patterns in this mode are useful to 

be analyzed and to be included in the drift time window. In  

the operating mode 1, the degradation consequences are 

masked. Patterns representing normal operating conditions 

cannot be distinguished from patterns representing pitch 

actuator degradations. Therefore in this case, no decision 

(normal/drift) will be taken in order to avoid integrating in  

the drift time window useless patterns.      

 

The proposed methodology makes use of class parameters 

which are dynamically updated at each time but only with 

the patterns belonging to operating mode 2. Drift indicators 

are ext racted from these parameters and detection of faults 

inception will be made based on their values. We define 

   h1 h2I , Ix x  as: 

 

    

   

h1 Mah N N

h2 E N

I d μ , , e

I d , e

x

x

  

  
 

    (13)            

   

 (14) 

  

Where 
E Mahd ,d are, respectively, the Mahalanobis and  

Euclidean metrics. Euclidean metric computes the distance 

between center of the normal class 
N  and the center of 

evolving class
e ; on the other side Mahalanobis metric  

computes the distance between the normal class 
NC  and 

evolving class center
e . 

 

 

 

1 T

Mah N N N N

T

E N N N

d C , ( ) ( )e e e

d , ( ) ( )e e e


        

         

 

    

 (15)            

   

 (16) 

  

3.5. Interpretation step  

 

This step aims at interpreting the detected changes within 

the classifier parameters and structure. This interpretation is 

then used as a prediction about the tendency of the future 

development of the wind turbine current situation. This 

prediction is useful to fo rmulate a control or maintenance 

action. 

 

In this work we have two indicators of change

   h1 h2I , Ix x . If one indicator exceeds a certain threshold

th , the drift alarm will be launched. This means that the 

pitch actuators state has been moved (drift) away from the 

normal class. The second indicator aims at confirming the 

drift detection. The reason behind the use of two distance 

metrics (Euclidean and Mahalanobis ones) in the same time 

is to exploit the complementarily between them. Indeed, the 

Mahalanobis metric calcu lates the distance between the 

gravity center of the evolving class and the initial class. This 

will give more reactiv ity in case of change; while the 

Euclidean metric confirms this change by calculating the 

distance between the gravity center of the initial class and 

gravity center evolving class. The selection of th  is  

motivated statically. 

4. EXPERIMENTATIO N AND OBTAINED RESULTS 

The failure of p itch actuator is caused by a continuous 

degradation of its performance over t ime. This degradation 

can be seen as a continuous drift of the normal operating 

conditions characteristics (normal class) of the pitch 

actuator. Detecting and following this drift can help the 

prediction of the occurrence of the pitch actuator failure. 

The two monitoring ind icators defined by (13) and (14) are 

used to detect and to confirm this drift for the nine scenarios 

defined in section 2.   

Figures 10 and 11 show the obtained results using the two 

drift  detection indicators defined by (13) and (14). Table 2 

shows the values of these indicators for the nine defined 

drift scenarios. These values represent the required time 
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(starting from the drift beginning) to detect and confirm the 

drift  occurrence. Thus, they can be used as an evaluation 

criterion to measure the time delay to detect a drift before its 

end.     

 
Figure 10. Drift indicator based on Mahalanobis distance of 

the third pitch actuator.   

 
Figure 11. Drift indicator based on Euclidean distance of the 

third pitch actuator.   

 

 

5. CONCLUS ION AND FUTURE WORK  

In this paper, a methodology of condition monitoring and 

fault pred iction was established. It is based on dynamical 

architecture of fault pred iction. It was based on monitoring 

dynamically updated evolving class parameters. The 

methodology was tested on a benchmark of a wind turbine. 

It was shown that under the assumptions developed in this 

paper, the methodology has given promising results for 

different scenarios of simulat ion. 

 

Future work will focus on the fault pred iction and 

prognostics of other wind turbine critical components as the 

converter and drive train. 
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