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ABSTRACT  

This paper proposes a test protocol for drift identification 

and classification in a complex production system. The key 

objective here is to develop a classifier for failure causes 

where variables depend on a set of measured parameters. In 

the context of our work, we assume that the drift problem of 

a production system is generally observed in control 

products phase. The model proposed in this paper for failure 

causes classification is structured in the form of a causes-

effects graph based on Hierarchical Naïve Bayes formalism 

(HNB). Our key contribution in this is the methodology that 

allows developing failure causes classification test model in 

the complex and uncertain manufacturing context. 

1. INTRODUCTION 

Nowadays, the industrial market is characterized by capital 

investment and growing international competition. In this 

scenario, success depends on the competitiveness of 

products. In order to achieve this, manufacturers aim to 

maximize the performance and quality of services through 

three criteria: cycle time, costs and productivity (Kunio et 

al, 1995). These can only be achieved by improving 

manufacturing equipment availability. The manufacturing 

processes have become very complex and automated (Zio, 

2009), and requires accuracy while executing production 

steps in the context of automated manufacturing systems 

(AMS), especially for the production equipment. 

The equipment act directly on the product and they can be 

represented according to three parts: (i) the product flow 

that includes processed product, assembled product, finished 

product, etc., (ii) the controlled system including actuators, 

sensors and effectors, and (iii) the supervision, monitoring 

and control system (detection, diagnosis, prognosis, etc.), as 

shown in the Figure 1.  

However, sensors are not directly positioned on the product 

for technical reasons. Therefore, the manufacturing process 

has the risk of not observing perturbation that affects the 

product quality. Also, the production equipment do not have 

internal mechanism to confirm that recipe applied to the 

product has been carried out correctly (Bouaziz et al., 2013). 

Therefore, many drifts are unavoidable in the production 

process.   

 

Figue 1. Internal structure of the production equipment. 

(Bouaziz et al., 2013). 

This article is structured as follows: in section 2, we present 

the approaches details of the identification and classification 

processes. Section 3 is devoted to present state of the art in 

the field of classification (main techniques). In section 4, we 

propose an introduction to Hierarchical Naïve Bayes 

technique. Then in section 5, we present an application of 

our approach on the Tennessee Eastman Process example. 

2. IDENTIFICATION AND CLASSIFICATION PROCESS 

In this section, we present the four steps of our 

methodology. The process of identification and 

classification is performed according to Figure 2. 
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2.1. Definition of the production context 

This phase presents the production system context that is 

characterized by high complexity and uncertainty. Industrial 

production system is even more complex with multiple 

manufacturing processes running on the same production 

line and competing for available production resources. It 

means that there are a large number of elementary 

operations to manufacture a finished product (especially in 

the semiconductor and the pharmaceutical industries) and 

long production periods (8 to 10 weeks in semiconductor 

production). Also, the industrial production environment is 

naturally uncertain (equipment drifts, human errors...) that 

can impact the process control and maintenance contexts. 

2.2. Definition of modeling techniques 

In this second step, we analyze several methods based on 

the criteria defined within the production context. We 

analyse in particular if the model can: 

• Manage diversity of the parameter types (discrete, 

continuous, qualitative and quantitative). Examples: 

time, digital measurements, samples …  

• Manage multiple hierarchical classes of equipment 

parameters (sensors, motors...) and products. 

• Manage diversity of variables: (observed variables and 

unobserved variables).  

• Take into account correlation between variables or 

causal events. 

• Deal with uncertain data and/or missing data (complete 

data and incomplete data). 

 

 

• Be suitable: It is defined as the flexibility of the model 

for different purposes and problems (diagnosis, 

prognosis…). 

• Be efficient: it is defined as the computation time of 

variables distributions (performance).  

After making a synthetic comparison between the different 

methods (Neural networks, Decision trees, BN...), we found 

that modeling technique must be suitable to the context of 

production; and, this study is oriented towards probabilistic 

method: Bayes Network. 

2.3. Analysis of causality (FM/RC) 

The FMECA (Failure Modes, Effects and Criticality 

Analysis) approach is used to identify a list of failure modes 

(FM) and root causes (RC) by the expert. It is based on the 

priorities which are identified for the qualitative 

classification of failure modes by experts based on their 

knowledge. It results in the list of causalities (correlation 

between variables) (Bouaziz et al., 2013). 

2.4. Modeling 

In this last phase, we propose a mechanism to verify the 

causalities proposed by experts and/or find new causalities 

(Zaarour et al., 2004). An automated tool is proposed for 

this purpose that searches correlations by classification 

(Bouaziz et al., 2013) by learning them from a historical 

database. 

The classifiers inputs (parameters and graphical structure) 

are calculated from the measured data and experts' 

knowledge. The output tool helps to make decisions to 

Figure 2. Identification and classification process. 
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either verify and/or find existing or new causalities by 

calculating various probability distributions of the graphical 

model. In our case, as we propose to work in both diagnosis 

and prognosis; hence, we present a generic methodology for 

developing a simulation tool to assist this decision making. 

3. THE TECHNIQUES IN THE FIELD OF CLASSIFICATION  

Thereafter this section is designed to introduce techniques in 

the field of classification. It is necessary to know that in our 

case the classification phase is used for diagnosis/prognosis 

aspects. That is to say, the objective of this phase is to 

present a study of different types of classifiers with their 

advantages and disadvantages in the context that there is no 

single classifier that is better in all applications. We 

distinguish the classification algorithms in two categories as 

supervised and unsupervised classification. This section is 

dedicated to introduce some techniques often used in the 

each of these categories. 

3.1. The supervised classification  

In the process, when a failure causes are diagnosed, we 

classify the collected data according to different causes 

associated with degradation. The key purpose of supervised 

classification is to find, from the examples already classified 

(training sets), a model to predict the classes for new data. 

Following is the list of supervised classification methods 

used more often: 

• K-nearest neighbors (k Nearest Neighborhood or kNN): 

The idea of this method is to observe the k nearest 

neighbors of a new observation to determine the class 

membership of this new observation (Belur, 1991). To 

predict the class of a new variable, the algorithm finds 

the K nearest neighbors of the new cases and predicts 

the most common response of them. This method is 

used on continuous data. It is possible to take into 

account binary data (discrete variable with 2 

modalities), but not multinomial (discrete variable with 

n modalities) (Cover & Hart, 1967). It is difficult to 

find the class in case of insufficient data because it also 

needs a lot of examples for learning. 

• Decision trees data set: It is a recognized discrimination 

between different classes tools. The main advantage of 

decision trees is that they can be easily used with the 

understandable rules. If the attribute is binary, we have 

two possible decisions, whereas if the attribute has k 

modalities, we have k possible decisions. Indeed, 

although the execution is fast, but the construction of 

the tree uses much more time. Also, it do not actually 

support the continuous values. In addition, it is always 

possible to discretize but the problem here is how to 

optimize discretization (lose the least amount of 

information compared to the original variable). So the 

decision trees work well with criteria to manage 

diversity parameters and variables whereas with others, 

they are not accurate (Verron et al, 2010). 

• SVM Support Vector Machines: These are binary 

classifiers. The purpose of this technique is to find wide 

margin classifier to separate the data and maximize the 

distance between two classes. This linear classifier is 

called “hyperplane”. The closest points are called 

Support Vector (Verron et al, 2010). That “hyperplane” 

must be optimal which passes through the middle 

among the “hyperplanes” valid. This method has shown 

its effectiveness in many fields of applications such as 

image processing and medical diagnosis with large 

dimension datasets. However, the SVM application is 

not effective with the incomplete data. 

3.2. The unsupervised classification  

As we have discussed, when classes exist and that we have a 

large number of data already classified, we can classify new 

data (supervised classification). Unlike this technique, 

unsupervised classifications do not have a training set. 

There are two main families of unsupervised classification 

methods. 

Hierarchical classification: Its purpose is to create a 

hierarchy in groups of variables. It means that identified 

classes of variables are assigned different levels. 

Non-hierarchical classification: The hierarchy is not 

presented in this type of classification. The algorithms of 

this type produce classes but without forming a hierarchy 

(all classes are created in the same level). 

• Agglomerative Hierarchical Clustering (AHC): It is a 

method of classification based on simple principle. We 

begin by calculating dissimilar objects among N. Then 

we combine the two objects according to criterion 

aggregation, thus creating a class for these two objects. 

We then calculate the dissimilarity between this class 

with other N-2 objects using this criterion to create 

another class. Then the two classes of objects or 

grouping minimizing the aggregation criterion objects 

are grouped. And we continue until all objects are 

grouped. 

• Divisive Hierarchical Clustering (DHC): It is the 

inverse of the previous method where classes are 

created step by step. We initially assume that all 

individuals belong to the same class, and in turn we cut 

into two. This step is repeated until you get as many 

classes as individuals. 

• Bayesian Networks (BN) (Pearl, 1988): This method 

can be used on both discrete and continuous variables. 

Indeed, we can build a BN model with a graph that 

reflects the discrete or continuous data, modeled in the 

probability tables. The extracted data are used for 

learning and the level of complexity for the 
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computation depends on the amount of data. A BN may 

represent variables by nodes and prioritization of 

classes with a Hierarchical Naïve Bayes networks 

HNB. The probabilities calculations can be provided by 

Maximum Likelihood Estimation / Expectation–

Maximization algorithm (MLE/EM) and are used to 

represent correlations between nodes. Moreover, the 

advantage of Bayesian Networks is its adaptability. A 

Bayesian Network allows the consideration of the 

temporal dimension using Dynamic Bayesian Networks 

DBN (Verron et al., 2010). 

In this paper, we want to remind that our study is directed 

towards the probabilistic methods, so it is really a method 

that can fulfill all of these criteria. Moreover, in our study, 

data is not supervised with the need for Hierarchical 

priorities, we would present the following details of this 

method in the next section.  

4. INTRODUCTION OF THE HNB TECHNIQUE 

4.1. Background and principle 

A Bayes Network is a system representing knowledge and 

to calculate conditional probabilities providing solutions to 

different kinds of problems. The structure of this type of 

network is simple: a graph in which nodes represent random 

variables and arcs are connected by conditional probabilities 

(uncertainty knowledge) (Jensen, 1996). These variables 

may be discrete or continuous, observable or unobservable, 

detected or not detected. 

In the general case, X = {X1, X2,…, Xn}, the joint probability 

distribution P(X) is written as follows: 
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• P(X1) is the a priori probability (or Marginal) of X1. 

• P(X2/X1) is the posterior probability of X2 (knowing 

X1). 

• P(X1/X2) is the likelihood function of X1 (knowing 

X2). 

The marginal distribution P(X2) is calculated by the 

formula: 

       )(./)(./ 1121122 XPXXPXPXXPXP   (3)           

The Naïve Bayes Network also called Bayes classifier is the 

Bayes classifier with the simplest structure. This classifier is 

very famous because of its performance, especially in the 

case where all variables are discrete (Verron et al., 2010). 

Naïve Bayes networks have a simple and unique structure 

that includes two levels. The first level contains a single 

parent node and the second is several children with high 

hypothesis of conditional independence of children (X) to 

the parent. Nodes X1…Xn are independent conditional on Xc 

class. They are widely used to solve classification problems 

expressed by Eq. (4) and Figure 3: 
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Figure 3. Naïve Bayes models. 

 

Figure 4. Hierarchical Naïve Bayes models. 

In fact, the knowledge provided by an expert can also result 

in the creation of latent variables between two or more 

nodes. This is the case for example unsupervised problems 

where the class is never measured. Therefore, it is possible 

to provide the equivalent of a Naïve Bayesian network, the 

latent model, where classes (shown in blue in the following 

figure) are not part of the measured variables. A latent class 

(LC) model includes Xc, X1 and X2 latent and manifest 

variables Y1, Y2... Yn. Latent Hierarchical models illustrated 

in Figure 4 have been proposed by (Bishop & Tipping, 

1998) for data visualization and unsupervised classification. 

4.2. Learning and inference 

Different families of learning and inference algorithms are 

proposed in the literature (Naïm et al., 2007) with three 

criteria of classification:  
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• Objective: learning or inference.  

• Data: Complete or incomplete.  

• Judgments of the expert: with or without the expert 

knowledge.  

In this paper, we are working with two criteria (objective 

and data availability). (Bouaziz et al., 2013) presents a 

synthesis for probabilistic algorithms mostly used for Bayes 

networks. For a more detailed description, we recommend 

reading (Heckerman, 1998), (Neal & Hinton, 1998), (Pearl, 

1988), (Jensen, 1996) and (Kappen, 2002). 

These learning methods find the structure of Bayes network 

(structure learning) and estimate conditional probabilities 

(parameter learning) or acquire knowledge (experts' 

judgments). The inference algorithms are used for very large 

networks. There are many libraries for Bayes networks 

(BNT Matlab, BNJava, Java- Bayes, PNL…) and quality 

software (ProBT, BayesiaLab, Netica, Elvira…) that are 

useful (Naim et al., 2007). 

The conditional probabilities of variables are computed 

based on the Bayes theory for TEP model. These results can 

help to make decision support components for metrology 

and maintenance (Bouillaut et al., 2008). 

5. APPLICATION TO TENNESSEE EASTMAN PROCESS 

5.1. Description 

Tennessee Eastman Process (TEP) is a complex process 

developed by Eastman Company to provide a simulation of 

a real industrial process to test process monitoring methods. 

There are reactive gases A, C, D, E and inert gas B in the 

reactor. G and H are two products (liquid). The chemical 

reactions of the method are given by the equation system in 

Eq. (5). 

A (g) +C (g) +D (g) →G (liq) 

A (g) +C (g) +E(g) →H (liq) 

A(g) +E(g)   →F  (liq) 

3D(g)   →2F(liq)    (5) 

TEP has five elements: Reactor, Condenser, Compressor, 

Separator and Stripper. At first, the products leave the 

reactor while catalyst remains in there. Then the product gas 

is cooled through a condenser that moved to the vapor liquid 

separator. The uncondensed vapors in the separator return to 

the reactor via compressor. The inert gas B and derivative F 

are purged from the separator in this process. At last, the 

condensed stream into the separator is sent to the stripper to 

remove the last traces of reagents (Figure 5). 

The TEP includes 53 variables: 41 measurements and 12 

manipulated variables. Among these 41 variables, there are 

22 continuous variables (these are the values of the sensors 

of the process), while other measures are compositions such 

as concentrations, which are not readily available but 

continuously sampled. TEP is subjected to 20 different 

faults. These faults are of different natures: step, random 

variation (the increasing level variability of certain 

variables) or other actuators such as a blocked valve.  The 

description of these 20 mistakes and 53 variables is 

presented in detail in (Li & Xiao, 2011). Furthermore, we 

propose to work on the faults that cannot be observed (F16 to 

F20). 

5.2. Modeling 

In our work, we propose to determine a set of variables 

representing the case study TEP according to steps 3 and 4 

(see Figure 2). Therefore, the variables used in the 

illustrative models, we describe in this section, are 

inherently based on the experience and inference (Verron et 

al., 2010). Through this model, our objective is to describe 

the evolution and identify one or more failures in the 

system. We identified four distinct categories of variables:  

• Failure modes of the process FM: We assume that the 

states of the variable (FM) takes two possible values 

(detected, not detected). 

• Primary failure causes (level 1) RCi (i= 1→6): these are 

quantitative variables defined by expert opinion. They 

correspond to six elements of process TEP (see table 1). 

All variables have a binary mode (observed or 

unobserved). 

Node Variables 

RC1 Reactor feed flow 

RC2 Reactor temperature 

RC3 Reactor pressure 

RC4 Condenser cooling water 

RC5 Separator temperature 

RC6 Stripper valve 

Table 1. Primary failure causes. 

• Intermediate failure causes (level 2) Fj (j=1→20). In 

our work, the failure causes are defined by the experts; 

however, for detailed description, we recommend to 

read (Verron et al, 2010). All faults have a binary mode 

(observed or unobserved). 

• Parameter descriptions Xm (m=1→53): they are 

determined by the real process. We have 53 variables 

that correspond to the measurement and manipulated 

variables in TEP. Each variable has either a binary 

mode true or false. 
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In follows, we propose a graph structure of the model and 

calculate the probability distributions associated with each 

of variable in the graph. A classification structure from RCi 

with the known observation parameters Xm and structure 

prognosis/diagnosis of FM based on the observations on RCi 

is shown in Figure 6 below. 

 

Figure 6. Identification and classification model by 

Hierarchical naïve Bayes network. 

This model offers to classify failures causes in 2 

hierarchicals RCi and Fj. At the same time, we specify 

which are failures causes of the FM  and predict the future 

state of the system or a component. To continue, our result 

would be presented in the next section.  

6. RESULTS 

In this section, first we present the preliminary results of 

learning with simulation in two cases complete and 

incomplete data.  

 

At first, a square matrix (80 x 80) corresponding to 80 

variables (53 parameters Xm + 20 variables Fj + 6 variables 

RCi + 1 variable FM) and 80 samples for learning the 

probabilities are created by BNT Matlab © library (Murphy, 

2001). The calculation of probabilities is done by MLE 

(Maximum Likelihood Estimation) algorithm that is a 

statistical estimate of the probability based on its occurrence 

(frequency of occurrence) in the dataset. Similarly, we have 

created incomplete data by adding many hidden variables in 

complete data.  

Columns represent probabilities of variables. With FM 

(failure mode) variable we have 2 largest columns that 

represent probabilities of detected and undetected failure. 

We found that there are few different probability variables 

(Figure 7). This is unavoidable with incomplete data. 

However, we saw probabilities FM (failure mode) in two 

cases (0.77 and 0.74) is similar which is an acceptable 

result. 

 

Figure 7. The results of learning algorithme. 

Figure 5. TEP flow sheet adopting control structure proposed by (Lyman & Georgakis, 1995).  
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 Thereafter, we present the simulation results for the failure 

causes classification and prognosis after the appearance of 

failure. In the framework of this paper, we present un simple 

exemple model in Figure 8 to calculate probability 

distributions with the failure causes cooling water in 

condenser process (TEP) and related parametres. 

 

Figure 8. Exemple model to calculate probability 

distributions. 

Figures 9 and 10 present results of two scenarios with 

complete data (result with incomplete data is not shown in 

figures). These are cleary illustrative examples of inference. 

We presented only probability distributions with known 

observation of some variables (Figure 8).  

• P(FM|RCi): Variable observation in the example is RC4. 

We used Bayes formula to calculate the probability 

failure mode based on this observation. Thus, the FM 

process is defined (predicted) from the calculation of 

probabilities. This is the classification model for 

prognosis (Figure 9). 

 

Figure 9. Probability of variables in prognosis case. 

• P(RCi|FM): Similarly, we establish the diagnosis model 

when we know the observation of a failure mode. This 

is to calculate probabilities of the causes (for example 

RC4). This is the model of classification for diagnosis 

(Figure 10).  

 

Figure 10. Probability of variables in diagnosis case. 

Base on learning results, a predicted result of failure mode 

of process FM is calculated from the observed failures 

causes RC4 and F15 (see Figure 9). We found similar 

inferences in both cases. Indeed, probabilistic inference is 

essentially a matter of calculation. This shows that learning 

with whether complete or incomplete data (0.81 & 0.84), we 

also have close probabilities to make a decision. Similarly, 

in diagnosis case, we found probabilities of these variables 

(see Figure 10) from a failure mode of process FM which is 

detected. Therefore, we can compare between probabilities 

to make a correct decision. So these results show that the 

proposed method performs good detection capability. 

However, it should be mentioned that classifiers could not 

make choice easy if there are too many variables in the 

manufacturing process. This implies that we must have 

weights primarily depending on the differences between 

each variables to propose the optimal distribution. 

7. CONCLUSION AND PERSPECTIVES 

Our work presented in this paper deal with the identification 

and classification of failure causes in the context of complex 

industrial production. We first presented complex industrial 

manufacturing processes along with detailed steps of our 

methodology and in particular approaches for Bayes 

network. In the end, we presented simulation results on our 

TEP case study.  

We showed thereafter an international benchmark that our 

approach propose a solution in terms of classification. In 

particular, we have presented a failure causes classification 

method based on a set of measured parameters. The 

resulting model, developed using Bayesian approach, allows 

diagnosis or prognosis in a context of complete/incomplete 

data. Nevertheless, this proposed model is a testing protocol 

for failures causes classification. Therefore, certain aspects 

in this model could be improved. In future, we shall propose 

the learning of the proposed model on real set of data that 
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requires validation. On the other side, a development will be 

directed to a new configuration which is the application of a 

heuristic that quickly finds weights by the optimal structure 

of VIP classifier. In addition, an extension of the temporal 

Bayes network will improve dynamic monitoring for 

decision making. 
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