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ABSTRACT 

During the past few years industrial predictive maintenance 

has benefited from new developments in hardware and 

software systems. A key conclusion is that to maximize 

results, these systems need to be smarter with learning 

capabilities. Moreover, wireless sensor networks have led to 

a new revolution in the field of e-maintenance, offering new 

possibilities in measurement collection, aiming to empower 

monitoring with more advanced features. In what way can 

wireless sensor networks be applied to industrial 

maintenance? How can novelty detection be implemented 

on these systems? How can such systems scale up to offer 

distributed intelligence? This paper presents the WelCOM 

research program’s approach on the aforementioned matters 

answering many questions that relate to intelligent sensor 

systems in the field of e-maintenance and proposing flexible 

architectures for the implementation of these systems. 

 

1. INTRODUCTION 

e-Maintenance empowers maintenance engineering and 

management with ICT tools that streamline the delivery of 

maintenance services, from the field level of measurements 

collection all the way up to maintenance decision support 

(Holmberg, 2010). It contributes to the aim of sustainable 

development in society and the proper function of a whole 

range of engineering assets, ranging from factories and, 

power plants to transport and built infrastructure. Well-

established maintenance practices can lead to improve the      

 

efficiency of resources and production management, while 

supporting the quality and safety procedures and minimize 

environmental impact, thus contributing to the sustainability 

of the enterprise. Maintenance activities, such as repairs and 

service actions, only take place when actually needed, 

which is the essence of Condition-Based Maintenance 

(CBM). The development of low-cost and micro-size 

integrated sensors for taking machinery measurements, the 

upgrade in hardware capabilities for managing the process 

of condition data collection and transmission and the 

development of advanced methods for condition data 

management, processing and analysis, including machine 

learning and decision support tools, compose the framework 

for the current state of the art in condition monitoring within 

e-Maintenance. Empowered by wireless communications 

and networking, maintenance tools are made available in the 

form of flexible web-services, delivered to multiple device 

types, including tablets and other portable computing 

devices, while e-collaboration methods enable greater 

information and knowledge sharing, facilitated by the 

infrastructure of an e-Maintenance network (Figure 1).  
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Figure 1: E-maintenance network 
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This paper presents technological developments that support 

the integration of e-Maintenance components by distributing 

monitoring and detection tasks to an ad hoc network of 

wireless sensor nodes. It is argued that the delegation of 

computing tasks to a lower physical level of data generation 

and processing, coupled with elements of learning and 

intelligence can upgrade the efficiency of condition 

monitoring infrastructure, while maintaining great 

deployment flexibility. Our research builds on earlier 

development of wireless sensing solutions (Emmanouilidis, 

Katsikas and Giordamlis, 2008) and a structured approach 

for incremental learning that takes advantage of increasing 

availability of condition monitoring data to support event 

detection and diagnostics (Emmanouilidis, Jantunen and 

MacIntyre, 2006). Within an e-maintenance architecture 

(Pistofidis, Emmanouilidis, Koulamas, Karampatzakis, & 

Papathanassiou, 2012), our reported work focuses on 

upgrading the capability of hardware-integrated solutions to 

efficiently support wireless condition monitoring by 

embedding more advanced computational features at the 

level of sensor nodes.  

In Section 2, we present an analysis and brief outline of our 

development work on distributed and wireless condition 

monitoring. Coupling the computational capabilities of 

sensor nodes with machine learning features compose a 

powerful framework for implementing distributed and 

intelligent wireless condition monitoring, which pose new 

challenges for integrated learning capabilities in sensor 

nodes. These challenges are discussed in section 3. The 

concluding remarks are summarized in section 4.  

2. DISTRIBUTED WIRELESS CONDITION MONITORING 

2.1. Condition Monitoring and Wireless Sensing 

CBM seeks to perform an early detection of deterioration 

and potential malfunctions to guide maintenance activities 

decisions. The asset is maintained or repaired as soon as 

some machinery condition parameters are detected to 

exceed a normal or expected range of values. Acting upon 

the detection and diagnostic recommendations, prognostics 

seek to determine the most probable time of failure in order 

to properly schedule preventive actions (IAEA, 2007), 

reducing costs and increasing quality and profits. Condition 

monitoring functions by acquiring data that relate to 

parameters, which constitute indicators of machinery 

condition. Among the typically measured physical 

parameters are temperature, pressure, voltage/current/power, 

RPM, torque, acceleration/Velocity/displacement.  

Our reported work deals with the development and 

integration of more advanced features that leverage on the 

capacity of wireless sensor networks to delegate computing 

at the sensor node level. We distinguish two categories of 

such advanced features, namely:  

 Level 1: Data enrichment and pre-processing. In 

vibration monitoring, these include pre-processing of 

the original time series to produce transformed 

representations in new domains, typically in the 

Frequency (spectrum), quefrency (cepstrum), or even 

joint time-frequency representations (e.g. wavelets). 

Even before such transformations take place, pre-

processing such as filtering and smoothing is needed, 

while the spectrum is best estimated after some 

windowing function is applied to reduce spectral noise. 

Event detection and diagnostics applied on the 

transformed signal is still a hard problem. Feature 

extraction is applied at the pre-processing level to yield 

specific parameters that when considered independently 

or most commonly jointly, are more likely to yield 

discriminatory information and this aid the detection 

and diagnosis tasks. A word of caution is applicable 

here, as even the most informative parameter, when 

considered in isolation, may not provide sufficient 

information, whereas a parameter not-directly 

associated with the expected detection outcome may 

still convey crucial information. It is the combination of 

individual features that often conveys adequate 

discriminatory information, rather than the individual 

features themselves (Emmanouilidis, Hunter, MacIntyre 

and Cox, 2001).  

 Level 2: Event detection and diagnostics. Acting upon 

extracted feature set combinations, rather than either on 

the original time series or individual features is 

recognized as the key to performing efficient event 

detection and diagnostics. Although it is possible to set 

simple alarm levels on parameters (e.g. vibration 

amplitude at a certain frequency or the overall RMS 

vibration in a frequency band exceeding a certain 

level), these constitute primary but not sufficient 

indicators. One reason for that is the cautionary remark 

mentioned earlier. But another important one is that is 

that machinery malfunction manifests itself in different 

ways, even for the same equipment type, depending on 

the actual equipment size, the positioning of sensors on 

the monitored equipment and even variations in the way 

the vibration signal propagates through the body of the 

monitored machinery. It is therefore often important to 

calibrate any pattern recognition technique applied for 

detection and diagnostics on the basis of evidence of 

data and extracted parameters from readings taken from 

the specific monitored machinery. This is where 

machine learning becomes important, both for 

detection, as well as diagnostics tasks.  

Wireless condition monitoring solutions typically do not 

include such processing features, although Level 1 features 

have long being available and Level 2 ones are have become 

increasingly available on wired counterparts. In our reported 

work, Level 1 features are integrated within the wireless 

sensor network, that is within the sensing node. Based on 
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features now calculated within the sensor node, new 

computing and machine learning requirements are posed, so 

as to integrate Level-2 features within the wireless sensing 

solution. The main requirements for such features, when 

employed in a wireless sensing solution context is to 

balance the potentially discriminatory power they may 

convey (individually or jointly) with low computing 

requirements. The right trade-off can be achieved by 

studying the problem at hand, which therefore implies the 

need to customize solutions by taking actual representative 

measurements from the monitored machinery.  

This is consistent with observations that condition 

monitoring techniques are more efficient when perfectly 

tailored for the particular problem and usually when safety, 

capital value and potential losses in service or production 

are of critical importance (Holmberg et al., 2010).  

2.2. Intelligent Sensors and Distributed Monitoring 

Compared to conventional sensors, intelligent sensors are 

capable of more advanced functions than plain data 

collection. By combining sensing and computing at the chip 

level through micro-electromechanical (MEMS) technology 

and overall advancement in microelectronics, intelligent 

sensors can perform self-calibration based on the data 

collected and adaptive threshold techniques may be 

deployed for a more accurate condition monitoring. An 

intelligent sensor is perfectly capable of performing 

advanced data processing and signal analysis in the time and 

frequency domains. Bringing a network of such sensing 

nodes together has the potential to greatly scale-up the level 

of information processing and the impact on the 

performance of the performed monitoring. The enabling 

factors for such an upgrade are already in place, as 

communication between different sensors can be achieved 

by existing networking protocols. Coupling the networking 

capabilities with the individual processing power and 

sensor-embedded learning capabilities bring a major leap in 

forward for condition monitoring, that of distributed 

intelligent condition monitoring.  

Distributed condition monitoring relies on the individual 

node's ability to function as an agent. An agent can adjust its 

functionality depending on its environment variables. The 

agent perceives its environment via sensors and acts 

accordingly via actuators. An agent that aims at optimizing 

certain performance measures, taking the form of an 

objective function, is called rational (Montoya et al., 2010).    

In a sensor network implementation, many intelligent 

sensors or nodes, work in parallel to perform condition 

monitoring and notify base stations via a communications 

infrastructure. The nodes consist of basic components with 

simple interfaces. However, connected together in a 

network, the processing performance increases 

exponentially. The nodes play the role of the agents in a 

Multi-Agent system and the Intelligence is distributed 

among them, thus giving rise to a case of Distributed 

Intelligence (Montoya et al., 2010). 

Low cost peripheral / distributed processing capabilities 

have been already utilized in large industries for many 

years, following the evolution of microcontroller and 

specialized distributed control system (DCS) and wired 

fieldbus technologies. However, the installation costs of 

complete systems were high mainly due to the sensor and 

power/communication wiring costs. It is the introduction of 

low-power and low-cost wireless interfaces and embedded 

sensors (MEMS) that now widens the distributed 

intelligence pattern applicability and the architectural 

alternatives for a basically data collection / health 

monitoring system. Still, for the definition of a concrete 

system’s distributed architecture, key tradeoffs have to be 

set among important extra-functional properties such as 

power, timeliness and communication/processing bandwidth 

budgets, as well as fault tolerance, availability and 

installation/maintenance cost characteristics [Giannoulis et 

al, 2012].  

Knowing the non-linear cost increase for a certain 

improvement in the quality of sampling electronics, as well 

as the higher energy and performance costs of wireless 

transmission compared to processing, the principal pattern is 

to push towards the periphery, functionality blocks such as 

local signal processing for the improvement of signal 

characteristics, calculation of reduced size (compared to the 

raw signal) sets of important properties, information quality 

improvements by fusion of data from other related sensors 

or neighboring sensor nodes, and execution of knowledge 

extraction algorithms, as long as the overall system cost and 

chosen performance metrics for the required scalability 

range are better than just sending the output of a block to a 

centrally located collecting, storage and processing system. 

[Pistofidis et al, 2012].       

2.3. Signal Processing 

Any intelligence built-in a sensor network has to be based 

on a primitive set of digital signal processing capabilities of 

the node’s microcontroller and its A/D converters. Although 

such processing may be trivial for wired solutions, only 

limited such work has been reported as integrated in 

wireless condition monitoring implementations. Next we 

present such features built in our wireless condition 

monitoring implementation. 

2.3.1. A/D Converter’s Characteristic Improvement 

The A/D converter’s precision and integral 

nonlinearity (INL) factor affect the effectiveness of the 

node. For 4-20 mA current loop measurements poor, linear 

behavior of the A/D converter can lead to inaccurate results. 

In our approach, before initialization of the node’s main 

functionality, the first step of an intelligent sensor should be 

the linear improvement of the A/D converter’s 
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characteristic. An external well-designed D/A converter can 

be used as the force of calibration by feeding the A/D 

converter with key values used for calculating the A/D 

converter’s output differences from the expected values. 

The flow diagram in Figure 2 describes the calibrating 

procedure before the main functionality of the intelligent 

sensor (Texas Instruments, 1999). 

 

 

Figure 2: Calibration with an External D/A Converter 

 

2.3.2. Signal Smoothing 

In many cases, in order to make decisions from observing or 

processing the measured data, or to capture important 

patterns, signal smoothing might be useful in order to cancel 

out spikes and noise in the data set and generally increase 

signal-to-noise-ratio. For this purpose four techniques are 

considered depending on the applications: 

 Low-pass digital filter. 

 Exponential moving average, with which the applied 

smoothing percentage (alpha parameter) can be 

controlled and no particularly large window is needed 

for smoothing.  

 Moving median with a 3-sample window, with which a 

substantial smoothing is achieved with the profound 

elimination of undesired spikes. 

 

Figure 3 shows the effect of applying an exponential 

moving average (alpha parameter = 0.15) and a moving 

median filter on raw data. 

  

 

Figure 3: Exponential Moving Average 

 

 The Savitzky–Golay filters are low- pass filters that 

smooth the signal with the use of local least-squares 

polynomial approximation. The main asset of this type 

of filters is that they smooth noisy data, while 

preserving the shape and height of the peaks and spikes 

(Schafer, 2011).   

2.3.3. Vibration Analysis 

In our approach, for the purpose of vibration analysis, the 

accelerometer’s data is collected by the A/D converter and 

via the microcontroller’s DMA controller, is saved in RAM 

at a sampling rate much greater than the Nyquist rate. Upon 

completion of the collection, the microcontroller’s CPU is 

interrupted and a series of actions take place: 

1. DC bias removal, by subtracting the mean value from 

each data sample.  

2. Filtering the data with a window function, Hanning, 

Hamming, Blackman or Bartlett. The aforementioned 

window functions are quite effective and require less 

computational complexity that others, as shown in table 

1 (LDS Inc., 2003). 

 

Table 1: Window comparison 
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algorithm with bit- reversal permutation, depending 

whether the goal is speed or memory efficiency. 

4. Calculating the amplitude of the complex numbers that 

were the result of step 3, thus providing the amplitude 

response. Results are buffered and sent to the network 

coordinator or base station via a communication 

protocol implemented in the nodes’ firmware. Figure 4 

shows  an 8-kHz, 128-sample sine wave from a 

waveform generator, filtered with a Hanning window 

and figure 5 its amplitude response. 

 

 
Figure 4: 128-sample sine wave, 8 kHz, filtered with 

Hanning window 

 

 

Figure 5: Amplitude response of a 8-kHz 128-sample sine 

wave 

 

5. Calculating velocity by integrating acceleration (figure 

6), using the cumulative trapezoidal rule, as shown in 

figure 7. The resulted outcome is buffered and sent via 

communication protocol to the network coordinator. 

 

Figure 6: acceleration, raw data after DC bias removal 

 

Figure 7: Velocity, output from cumulative trapezoidal rule 

 

2.3.4. Periodicity Detection 

Periodicity detection is a powerful mining tool in 

automotive, aviation and manufacturing industries for 

condition monitoring. All rotating parts of machines can be 

studied and a change in the periodic structure of the 

machine vibrations can be detected for the prevention of 

machine wear or potential failure (Vlachos et al., 2005). 

Two basic tools combined together provide information on 

periodicity: FFT for potential periods or period hints and 

autocorrelation for the verification of these period hints 

(Vlachos et al., 2005).  

FFT gives the amplitude frequency of the signal and by 

setting an amplitude threshold, any frequency exceeding 

that threshold, becomes a hint. Figure 8 shows a 

superposition of two sine wave signals, with frequencies of 

40 kHz and 80 kHz respectively. Figure 9 shows the 

amplitude response and the two main signal frequencies. By 

applying a desired threshold, these two frequencies or 

periods are selected as hints. The threshold setting algorithm 

could begin with an initial high value for the threshold and 

gradually decreasing it with a certain step. More advanced 

adaptive threshold algorithms could be implemented. 

Finally, the period hints are compared to the values that 

represent the autocorrelation hills and if the hints and the 

hills are equal or if they differ at a maximum of 30%, then 
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the detected periods are the time values of the hills, thus 

refining the period hints (figure 10). 

 

Figure 8:Signal for periodicity detection 

 

 

Figure 9: Amplitude Response 

 
 

Figure 10: Biased Autocorrelation, two dominant periods 

verified and refined 

2.3.5. Novelty Detection 

An algorithm has been designed and developed to detect 

absolute differences between consecutive samples, that 

exceed a specified threshold and that may be crucial. The 

algorithm classifies the detected novelties into spikes, if 

there is a sudden change and return to normal and stage 

changes, if  a more permanent change occurs and the values 

thereafter belong to a different range.  The algorithm also  

calculates the time of occurrence, duration of these 

novelties, starting and ending values for state changes, 

starting and maximum values for spikes. The threshold 

setting algorithm begins with an initial high value for the 

threshold and gradually decreases it with a certain step, as in 

the case of periodicity detection. The initial value or upper 

threshold limit (UTL), as well as the final value or lower 

threshold limit (LTL), are automatically set with the use of  

Eq. (1) and Eq. (2)   (Bakar et al., 2006):  

  

    3 /     -  3 /    2    (1)

    -  3 /   (2)

UTL m N m N m

LTL m N

 


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where, 

 m = mean value of data samples 

σ = standard deviation of data samples 

N = total  number of data samples 

 

Figure 11 shows engine turbo charger RPM raw data and 

figure 12 the novelties detected by the algorithm. Dashed -

line novelties are classified as spikes and dotted - line 

novelties as state changes. Figure 13 shows the results of the 

algorithm when applied on draft force measurements. 

Because of the noisy nature of these measurements, 

Savitzky- Golay filtering is applied before the algorithm and 

the new results are shown in figure 14, where the most 

important novelties now stand out. The classification is 

parameterized and state changes can be considered as 

spikes, by altering a parameter that affects the time duration 

of a spike. Figure 15 shows this effect. Especially, the state 

change that appeared at the 500-700 time unit range of 

figure 14 is now classified as spike in figure 15. 
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Figure 11:  Main engine turbo charger RPM measurements 

 

 

Figure 12: Main engine turbo charger RPM  Novelties 

detected  

 

 
Figure 13: Draft force novelties detected 

 
 

Figure 14: Draft force novelties detected after Savitzky-

Golay smoothing 

 
Figure 15: Resulted graph after increasing the spike width 

parameter 

3. FURTHER WORK 

The next and most intriguing element of an intelligent 

wireless sensor network is the ability of learning. Learning 

is the added value of an intelligent sensor that leads to 

higher levels of decision-making and guidance for the 

maintenance manager. This is an on-going activity and our 

considerations cover two categories of Machine Learning: 

Classification and Clustering, which are further described as 

supervised or predictive and unsupervised or descriptive 

learning respectively.  

Supervised learning uses a known data set to make 

predictions and to classify an unknown data object based on 

a model derived from the training set. In other words, the 

training set consists of pre-classified patterns and the goal is 

to label a new and unlabeled pattern. The model is derived 

from the use of the pre-classified patterns as the basis for 

learning the class descriptions, which in turn are used for the 

classification of new data. (Jain et al., 1999).  An effective  
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method under consideration is the Naive Bayes Classifier, 

because of its over-simplified assumptions and, yet, very 

positive outcome (Katsouros et al. 2013).  This classifier is 

based on Bayes’ theorem -from statistics theory- and 

produces results regardless of the presence or absence of a 

particular feature of the class (Murphy, 2012).   

On the other hand, unsupervised learning makes predictions 

about unknown data without any training set, whatsoever. 

Its purpose is to discover interesting patterns in the data, a 

concept called Knowledge Discovery (Murphy, 2012). This 

form of data analysis can be realized with Cluster Analysis 

or Clustering, where the decision is to allocate patterns in 

known clusters or even form new clusters when this 

assignment does not appear to be credible. This approach 

can be applied to event detection. When readings and 

consequently a set of features are assigned to known 

clusters, then the condition state of monitored machinery 

can be said to belong to a known condition (Emmanouilidis 

et al., 2006). Typically this belongs to a normal operating 

condition. Depending on the problem formulation it may 

also belong to an unknown condition. Using the terms 

'known' and 'unknown' here imply the association of a 

known condition with a condition for which representative 

readings have already been recorded. An unknown 

condition for the monitoring system is one that 

representative readings have not been recorded yet. This is 

an essential level of processing for event detection.  

A detected event may either correspond to a situation where 

an unknown condition has been detected, or to one that a 

measurement is assigned to an abnormal condition, on the 

basis of pre-existing evidence. Clustering therefore can offer 

this first level of processing, that is essential of any event 

detection mechanism. Once data is assigned to 'unknown' 

category, the next step is to perform data labeling, that is to 

label the newly formed cluster by assigning it to a certain 

condition. There is a wide range of clustering techniques 

that can be applied in such tasks. In all cases a critical issue 

to be addressed is to define an appropriate distance metric, 

such as the Minkowski metric. Nonetheless, in many cases 

the set of parameters upon which a decision has to be 

reached can be of very heterogeneous nature and in such 

cases other heterogeneous distance metrics, such as 

Hausdorff distance  may be  applicable (Jain et al., 1999).  

4. CONCLUSION 

This paper presented work that achieved to upgrade the 

capability of hardware-integrated solutions to efficiently 

support wireless condition monitoring by embedding more 

advanced computational features at the level of sensor 

nodes. We have presented the trends and progress in the 

intelligence of wireless sensor networks and have proposed 

some key points that contribute to this concept and to the 

evolution of e-maintenance. It is our belief that the 

integration of such potent hardware solutions in wireless 

condition monitoring, with advanced signal processing and 

learning features has the potential to offer a significant 

upgrade in the ability to deliver distributed and intelligent 

wireless condition monitoring solutions. Such developments 

would constitute a powerful addition to the e-maintenance 

solutions and are being developed as part of an e-

maintenance platform that aims to provide technical or 

managerial staff with smart choices and solutions, as well as 

valuable information and services at any point in time, 

leading to higher confidence in decision-making processes 

and improved maintenance performance. 
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