Aligning PHM, SHM and CBM by understanding the physcal
system failure behaviour

Tiedo Tingd?and Richard Loendersldot

*University of Twente, Dynamics based Maintenance group, Enschede, The Netherlands

t.tinga@utwente.nl
r.loender sl oot@utwente.nl

Netherlands Defence Academy, Faculty of Military Sciences, Den Helder, The Netherlands

often been addressed specifically. In this worktinerefore
aim to align the three disciplines by identifyingetmajor

ABSTRACT

In this work the three disciplines of condition bds
maintenance (CBM), structural health monitoring K¥BH

benefits of the individual approaches and proposimg
integrated approach that combines these aspecsslyFin

and prognostics and health management (PHM) argection 2 of this paper, we discuss the major miffees and

described. Then the characteristics of the diswgliare

commonalities of the three disciplines in a geneelse,

compared, which leads to a clear insight in theyot in terms of the adopted techniques and metiaods
commonalities, but also in the difference in objext and underlying philosophy. Secondly, each of the disuis
scope of the three disciplines. The disciplines #ren \yj| pe illustrated in section 3 with three (exigg) practical
demonstrated using three different case studiebeamning  55es from our own research in the different disp. The
vibration monitoring, composite panel structuralaltie  cpy illustration case is the rather traditional egEch
monitoring and  helicopter landing gear prognosticso|iowed in the blind identification of bearing dage. The
respectively. After a discussion on the benefits ofsHy jllustration case concerns the damage assessmen
understanding the system physical (failure) behavian  composite structure using a structural vibratiochteque,
integrated - approach is proposed in which the thregjle the PHM illustration case concerns the praios of
disciplines are aligned. This approach starts foefining landing gear failure in a helicopter. After thasrily based
an appropriate monitoring strategy (SHM and CM) andyy the experience from these three cases, the able
eventually ends in supporting the decision makiRglN1) understanding the system failure behaviour
that leads to an optimal maintenance process thawughe  giscussed in section 4. It will be demonstratedt tha
life cycle of the asset. knowledge on the physical failure mechanisms, i
combination with the monitoring of loads or condlitj is a
key element in all three disciplines, while thipest is

The disciplines of condition based maintenance (¢BM récognized and covered by only a minority of theesa
structural health monitoring (SHM) and prognostsd found in practice. This aspect will thus_be tak@ralign the_
health management (PHM) have a lot of commonalities@PProaches of CBM, SHM and PHM in section 5. Taking
They all aim to improve the maintenance decisiorkingg Nt account the differences in scope and objeativéhe
with the ultimate goal of reducing maintenance samtd three disciplines, but fully exploiting their indduval
increasing system availability. But at the sameetiimey are  Strengths, it will be shown that they can be alite yield
focusing on different aspects of the field and hming @n integral approach for optimizing system life leyc
developed in more or less separate communitiefioAlh PO !
implicit links between, for example, CBM and PHMear lowest level by monitoring the appropriate parametnd
being made in several occasions (Buderath & Adhikar will uIt|mat_er p_rowde decision support on the héast level
2012), the explicit relation between the disciptitas not for the optimal life cycle management.

1. INTRODUCTION

Tiedo Tinga et al. This is an opewceess article distributed under
terms of the Creative Commons AttributiBr0 United States Licen:
which permits unrestricted use, distribution, aegroduction in ar
medium, provided the original author and sourcecegdited

will be

management. The proposed approach will start on the
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2. DESCRIPTIONS AND COMPARISON OF DISCIPLINES

In this section the authors’ view on the basic emts of the
SHM, CBM and PHM disciplines will be presented. &ls
the differences and commonalities will be discussed

2.1.Condition Based Maintenance

Condition based maintenance is the oldest dis@pdihthe
three. It is closely associated to Condition Moriitg (CM),
which is a term covering a range of techniques tizate
been developed in the past fifty years to assessdhdition
of systems and components.
monitoring techniques are vibration monitoring, ailalysis,

destructive testing (NDT) techniques. These teakesg like
ultrasonic testing, eddy current and acoustic eomnssare
traditionally applied using hand-held sensors cansing
techniques, and inspections are only performedsiacally
or periodically, not bearing any relation with pi@ws
inspections. Due to the increased reliability amdilability
requirements of many assets, research has focused o
developing continuous monitoring techniques, which
evolved into the structural health monitoring didicie. A
lot of scientific work is currently being done ihig field,
which also has its own scientific journals. The uscdas

Well-known conditionbeen on the one hand on the development of newngens

techniques, and on the other hand on the develdpofen

acoustic emission and thermography. These metheoels aadvanced damage features and classifiers. Develupaofe

widely applied in industry, where the interpretatiof

sensing approaches are based on new technologieg us

measurement data is mainly experience-based arat daoptical fibers and sensors to measure structukatiions

driven. Vibration analysis techniques are mostlpliggl to
rotating equipment (e.g. pumps, compressors, geges)
bearings). This means that the source of the vibrais the
machine’s normal operation, while faults can besdietd as
a change in that source (either in frequency orliamcie).

When the results of condition monitoring are usetrigger

maintenance activities, a condition based mainte®man

(CBM) policy emerges. The 1SO-13374 standard, Ciooi
Monitory and Diagnostics of Machines (ISO, 2012fites
the functionality in a condition monitoring system six
blocks: data acquisition, data manipulation, sttection,

(e.g. piezo patches) and wave propagation (ergsohnics).
The development of new damage features and classifi
follows a data-driven approach, motivated by thatistical
pattern recognition paradigm” (Farrar & Worden, @)1
which is one of the key foundations of SHM. The
application of physical models in this discipling very
limited.

Applications are mainly found in aerospace and
infrastructures (e.g. bridges). For vibration basethods,
the source of vibrations is generally not the systtself,
but the environment it is operated in (e.g. windves).

health assessment, prognostics assessment andorgdvisFaults or damage can be detected by observing elang

generation. Further, the Open Systems Architecfore

Condition-Based Maintenance (OSA-CBM) (MIMOSA,

the response of the system to the vibrations. Nudeé this
field has a strong focus on health assessmentideg not

2013) provides an implementation of that standayd bprovide a clear approach to apply that to mainte@an

adding data structures and defining interface nuthimr
the functionality blocks in the ISO standard. Altig
research on advanced concepts

policies (although a link with CBM is rather
straightforward). Instead, developments in SHM teghes

like wireless sensorainly focus on increasing the probability of deitat of

networks and energy harvesting to power autonomoufaults, which originates from the NDT backgroundtiis

sensors is ongoing, the data acquisition (sensarg)
manipulation are nowadays rather
Therefore, a major portion of the research in th&sipline
focuses on analyzing the obtained data to
information from it. The methods developed for tlaae
mainly data-driven, e.g. based on trending or amparing

with a baseline measurement, and are seldom based

physical models. Application of the final blockhethealth
assessment and prognostics steps, is until now liraited
in practice. This discipline is not covered widety the
scientific world, other than the application of CBMlicies
in maintenance modelling approaches. Also no séient
journals specifically on CM or CBM exist. Howeveaince
the field already exists for decades, many booktheropic
are available.

2.2.Structural Health Monitoring

Structural health monitoring is a discipline thatadlosely
related to condition monitoring, but has its origin the
inspection of structures. The methods are basecham

discipline. Further, the first standard in thisIdiewas

well-establishedestablished only very recently (SAE, 2013), anadidition

there is well-defined structure considering the figvels of

retriev®HM (Farrar & Worden, 2010). From levels 1 up tmére

and more information on the damage in the structare

obtained:

® Levell: damage detection,

e Level 2: damage localization,

e Level 3: damage characterization,
Level 4: damage quantification,

e Level 5: prognostics.

The first three levels can now be achieved by many
methods, while the final two are still quite challgng.

2.3.Prognostics and Health Management

The prognostics and health management discipline is
somewhat different from the previous two, and also
emerged more recently. Whereas CBM and SHM focus on
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the monitoring of the system, PHM is a more intégpta
approach that aims to provide guidelines for mamaghe
health of the system. In that way, it is a phildspgo
perform Life Cycle Management, with a strong fooumsthe
predictability (i.e. prognostics) of failures anaimtenance.
This is generally achieved by adopting some moimitpr
strategy, which may be a CM or SHM technique. Also
this field many data-driven approaches emergechtdyae
the monitoring data, but in addition to that selgtaysical
model

Kacprzynski, & Vachtsevanos, 2006). As for CM ari8NG
this discipline emerged form industry, and has latirely
limited presence in the scientific world. PHM has a
background in the military world, especially rethte the
development of the F-35 fighter aircraft (Brown, Gtatlom,
Moore, & Hess, 2007). Thereafter, PHM approaches ha
also been developed for other military vehicleg, dso for
electronics and (civil) aerospace systems.

2.4.Commonalities and differences

Upon analyzing the commonalities and differencetsvben
the three disciplines, the following aspects haserbfound.
These aspects are also visualized in Figure 1.

(i) the approaches for condition monitoring and s$tmad
health monitoring are very similar, since both giboes

Maturity level

[ ] [ ] a
Life Cycle Gl
Management health man.
] X SHM PHM
Prognostics trending [l prognostics
Maintenance CBM CBM e.g. CBM
concept

Monitoring

(diagnosis)

SHM
Figure 1. Relation between CBM, SHM and PHM.

look for features that are representative for damag
degradation of the system. However, there are so
differences:

CM is closely related to the CBM policy, which mean
that the monitoring results are directly appliedytode
the maintenance activities. In SHM the focus
completely on the monitoring and no explicit redatito
a specific maintenance policy is made. However
linking SHM techniques to CBM seems
straightforward.

IS

based methods have been developed (Orsagh,
Roemer, Sheldon, & Klenke, 2004; Roemer, Byington,

In both fields, one of the commonly applied teclueis|
is vibration monitoring, but the approaches aréedént
in the following ways:

o CM is mostly applied to rotating or reciprocating
systems, where the primary vibration source is the
system itself. Damage or degradation is diagnosed
by detecting changes in that source, e.g. bearing
faults that introduce additional vibrations.

SHM is mostly applied to load carrying or
transferring structures, which are only actuated by
their environment (wind, waves). The SHM
techniques focus on measuring (changes in) the
response of the system or structure and relating
those to the presence of damage.

(0]

The locations of the vibration sensors also vamy. |
CM the sensor is typically outside the part, wherea
in SHM the sensors are commonly on (or even
integrated in) the monitored part.

(ii) both SHM and PHM include a prognostic capability,
while CBM is mainly diagnostic. However, the difeices
between CBM and SHM in this respect are not thajela
since in the SHM field the prognostics is only ewdl 5,
which is not achieved in many cases. At the same,tCM
data is often trended in time, which also providdsmited
prognostic capability (which is also mentioned lie ICBM
ISO standard).

(iif) PHM is acting on a somewhat higher level than CBM
and SHM, since it has a clear ambition to enablalthe
management. The latter is an activity related te IGycle
Management (LCM), which means that an approach is
followed to optimize all (maintenance) activitiesrishg the
complete life cycle of the asset. This includes gbkection

of an appropriate maintenance policy, defining the
maintenance interval length and deciding on the emran
asset should be discarded. CBM, and SHM to an kesser
extent, do not provide that extensive LCM support.

(iv) the PHM field prescribes neither a specific mairtnce
concept nor a monitoring strategy. However, in ¢gpi
PHM studies, CBM or other maintenance policies are
adopted, and in many cases CM techniques are dpplie

3. PRACTICAL CASES

In this section three practical cases will be pmé=e

m&emonstrating the specific aspects of the thredplises.

3.1.CBM - bearing blind identification

The field of condition monitoring has matured esgicin

its application to bearings (Rao, 1996). Sincenutustry so
many bearings are used, a huge amount of experime
been gained on these type of systems. Moreover, the
complexity of bearings is rather limited, which reak
understanding the failure behaviour feasible in yneases.
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For these reasons, condition monitoring data, wHimh
bearings most of the time is vibration data, carmany
cases be translated into information on the failace or
the state / condition of the bearing.

This will be demonstrated using the following casedy.
Vibration data on four different bearings is avialit&a one
undamaged (pristine) bearing and three with arficai
damage on the outer race, inner race and rollingheht,
respectively. In practice, the location and typelafmage is
unknown, and a so-called blind identification mus
performed. However, since a considerable rangeaitidré
mechanisms can occur in the different bearing corapts
(inner / outer race, rolling element), identificatiis quite
challenging. Moreover, a recent development is piplya
wireless sensor networks for vibration monitoriAthough
this development reduces the wiring and instaltagéforts
considerably, it simultaneously introduces addaion
boundary conditions due to the limits in data traission
bandwidth, power and local (on the sensor nodejqssing
capacity. A generic approach
Ramirez, Loendersloot,
damage.

The vibration patterns observed will have to be cmed
with the most likely failure modes and failure mantsms
for bearings. Examples of failure modes are cragkiry
rolling, and heating, where the deterioration diufa of the
bearing material is caused by mechanisms like datigtatic
overloading, wear, corrosion, etc. Additionally fidant
deterioration is also a key limiting factor of biearlife. For
this case, the focus will be on cracking in theeoutce,
resulting in dynamic behaviour of the bearing etato the

response to an impulse excitation. Figure 2 shokes t

vibration signal for the pristine bearing. The ta in the
figures is a sinusoidal signal with the rotor spé&eduency
and an amplitude approximately equal to the maxinoim
the pristine bearing vibration.
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Figure 2. Vibration signal for pristine bearing.

The signal for the damaged bearing is shown in feig

The first way to identify a failure is to compalretsignal of
the (damaged) bearing to the baseline signal (nee)).l
Figure 3 clearly shows that the amplitude bandwid#s

increased considerably, indicating that a faillgepiesent.
However, the challenge is then to characterizeooalize

the fault. A first step in this analysis is to tséorm the
signal to the frequency domain, and zoom in tortgion

with the highest energy content by applying a ffilteor this

bearing, the range of interest appeared to bean2600 -
4000 Hz region. Valuable information about the seuof

the damage can be extracted by looking at the tuiira
signal, the rate at which the events occur andpthssible
variation of the amplitude (modulation).

The modulations can be analyzed further by exingcthe
envelope of the vibration signal, and identifyirige tmain
modulating frequency, i.e. the frequency of the variation
in signal amplitude. This is shown in Figure 4, veha clear
frequency peak around 150 Hz occurs, which repteggn

is developed (Sanchez
& Tinga, 2014) to assess the 5
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Figure 3. Vibration signal for damaged bearing.
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Figure 4. Enveloping of the time signal with its
corresponding frequency spectrum.
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Finally, once the frequency range of interest gral main

modulating frequency are known, the analysis wélldased
on shorter time periods related to the main modhgat
frequency. Here the instantaneous carrier freqesnare
determined from the time signal segments that Hzaen

extracted according to the main modulation obseinetie

signal. Both the instantaneous frequencies andiarmplare

extracted, as well as their ratio, as is showniguie 5. The
variation of these quantities can be used as itwlcaf

developing damage on the bearings.

In summary, this case study showed how a typicatlition
monitoring technigque as vibration monitoring canulsed to
detect and assess bearing damage. The methodstprkese
here are only a small subset of the large variégnalysis
methods available, but a special focus has beehgret on
computational inexpensive methods that enable egujpin

in a wireless sensor network.
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Figure 5. Instantaneous frequency and amplitudbeof
signal.

3.2.SHM - damage assessment in composite structure

Our SHM case study concerns the assessment of daimag
a skin stiffener composite structure (Loendersloot
Ooijevaar, Warnet, Boer, & Akkerman, 2011; Ooijayaa
Loendersloot, Warnet, Boer, & Akkerman, 2010; Owdjar,
Warnet, Loendersloot, Akkerman, & Boer, 2012), show
Figure 6. Structural vibration techniques are addtere to
detect and locate (and possibly quantify) a delation in
the composite structure. The structure is actudtgda
shaker, while the response is measured by pieztiriele
diaphragms. The damage sensitive parameter exdr&cim
the structure is the mode shape curvature, whdeMbdal
Strain Energy — Damage Identifier (MSE-DI) algonith
(Stubbs & Farrar, 1995) is selected as the damiagsifier.

ANDHEALTH MANAGEMENT SOCIETY 2014
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Figure 6. The composite skin-stiffener structucglipped
with piezo electric diaphragms. The damaged area is
indicated in the bottom figure.

This change is an indication of the presence aadatation

of damage and even serves as an estimation oketrerity

of the damage, provided a (physical) relation ca b
established between the size of the delaminatiah tha
criticality of the damage.

Piezoelectric
diaphragm

@)/ )

X60 adhesiye

Interface failure First-ply failure

t
\

Stiffener

Figure 7. First-ply delamination failure causedthy impact
to which the structure was subjected.

The MSE-DI algorithm is based on the comparisonvbenh
the curvatures of the mode shapes of the pristing a
damaged structure. Given the relative bending energ

'U(f;)of thei"™ beam segment, of t mode, is defined as:

Xi < 2
f ( ) dx
Xi-1
Wheree,(cn) represents the axial strain amplitude for tife
participating mode shape. Note that the strainiiscty
measured by the piezo diaphragms. The total madaihs
energy is approximated by the sum of Eq. (1) ovsulaset

of mode shapeN«. The damage index value is based on a
number of mode shape curvatures, since the locatidrthe

uly 1
El, 2

M)
Z

7 _
UB i

=3 1)

The damage feature is selected based on the edpectdize of the damage determine the effect the darhageon

damage (a delamination between the skin and tHersr,

as shown in Figure 7) and the expected change nardic

response: the local stiffness reduction induced thg

damage results in a local change of the mode shapels
more specifically of the mode shape curvatures.

the mode shape curvatures.

The damage indeg for thei™ segment of the structure is
defined as the summed fractional stiffnesses:
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Nprea [ o2 gy gy / (L
. Z fxi_lw dx/f, w™dx @
i xi l

£\ worde/ fwnas

failures. This is shown in Figure 10, where the hamof
flight hours at failure are plotted for 11 shoclsaiber seal
failures: there is no correlation between the fauand
number of flight hours, and it is difficult to priet when a

Wherew"(x) represents the integrand of Eq. (1) and theseal failure will occur. However, this helicoptesntains a

tilde refers to the damaged case. The normalizedada
index z;, a statistical measure to identify outliers, ifirted
as:

®3)

g

Where i is the mean value angt the standard deviation of
the damage index over all elements. The normaltizedage

Health and Usage Monitoring System (HUMS), which
collects a large number of parameters on the ufight
hours, altitude) and health (vibration data) of tiedicopter.
This data can be used to develop a prognostic rdefino
the seal failure (Tinga, 2013). The physical medran
causing the seal failure is sliding wear, whiclg@sserned
by the normal forceF, applied to the seal, the sliding
distances and the specific wear rate Archard’s law can

index Z is shown in Figure 8. The value of the damagethen be used to calculate the amount of wear mderf lost
index aroundk = 0.8 m is close to -4, implying a significant volumeV:

(40) deviation of the fractional stiffness comparedthe
intact situation. This is a clear indication of fhiesence of
the damage. The actual damage location corresponitie
location indicated by the MSE-DI algorithm.

Damage Index Z [-]

y coordinate [m]

Figure 8. The normalized damage Z for the entiramasite
structure. The location of the damage corresporittstie
deviating values around= 0.8 m.

3.3.PHM - predicting helicopter shock absorber failure

The prognostics and health management approach
demonstrated by a case study on a helicopter |grgiar.
The landing gear contains a shock absorber (sagd-1g),
that after some period starts to leak oil, causgdab
damaged seal. The shock absorber
maintenance schedule is based on flight hourss(t®icase
for most aircraft components).

attached
to wheel

attached to
fuselage

seals

oil chamber

nitrogen chamber

Figure 9. Landing gear shock absorber.

However, for a landing gear, the number of fligburs is
not the most appropriate usage parameter for gnegithe

V = kE,s (4)

The values of,andk can be obtained from the geometry
and material properties of the seal. The slidingtadice is
governed by the usage of the landing gear, i.enthmber
of landings and the weight of the helicopter durithg
landing. These latter two parameters are availabla the
HUMS, so for every seal failure the usage histsrikrnown
and the amount of wear can be calculated, as irshio
Figure 11.

250

200 *

100 . L2

Flight Hours at failure
*

50

is

T T T T T T T |
0 1 2 3 4 5 6 7 8 9 10 11
Case number

inspection and Figure 10. Number of flight hours for 11 failureesxs.

60

50 *

40

Calculated wear volume (mm?)

Case number

Figure 11. Calculated amount of wear for 11 failewents.
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These results clearly show that the calculated aunofi
wear, based on the number of landings and landigight;
has much more predictive power than the numbetigtitf
hours, since the variation in these values is miogver.
Except for the first two cases, the failures eitbecurred
around 30 mrhof lost volume, or around 50 mimThe

known. However, while the usage of a system is adlym
known by the operator, its effect on the remainliig

consumption is typically unknown. The author bedighat
zooming in to the level of the physical failure rhanism
(e.g. fatigue, wear) enables to quantify this refat
provided that either the usage (operating hourstiomal

observed difference between the two groups can bspeed) or loads (strain gauge, thermocouple) argtared.
explained by the fact that another type of seal was

introduced in the absorbers that failed at 50°nafwear.
This new seal clearly has a better wear resistémze the
original seal, since the oil leakage occurs atter Istage. It
can thus be concluded that selection of the apjai@pusage
parameter, in this case the number of landingslanding
weight, and using a suitable physical failure mosiehbles
to set-up a prognostic model.

It is now rather straightforward to assess at aoynenmt the
remaining useful life (RUL) of the shock absorbererms

—
@—0 Platform / Remaining life
system

5

[1

(ﬁhermal /ﬂuidj Zoom in to the level of the

structural model physical failure mechanism @@

v

1 Local Loads Failure Service life /
of number of landings. The amount of wear can be model Damage accumul.

calculated from the monitored landing informatiéfJMVS)
and the amount of landings before seal leakagegdeated

Load monitoring Condition monitoring

can be calculated, thus providing a much better RUL Figure 12. Relation between system usage and rérgain

assessment than with flight hours.

3.4.Summarizing the cases

The case studies in this section have illustratadynof the
aspects mentioned in section 2. The CBM illustratiase is
mainly data-driven, only a limited amount of systemd
failure behaviour knowledge is used. Also, the sewf the
vibration (and its anomalies) is the rotation of thearing
itself. The SHM illustration case is also mainlytaldriven,
although in this case the dynamic behaviour of dytem
(i.e. mode shapes) is known as well as the effecttamage

life consumption is governed by failure mechanism.

The figure also shows that condition monitoringaishird
option for monitoring, and since information abathie
system condition is obtained directly, no detailed
understanding of the failure mechanism is requifdds is
exactly the reason that in CM and SHM many dataediri
approaches have been successfully developed. Just
monitoring the condition (or some associated damage
feature) enables to detect the exceedance of afimed
threshold, and then to trigger some maintenancwitgct
However, this approach (neglecting the actual pi&ysi

(delamination) has on the dynamic response. Thigailure behaviour) has three important drawbacks:
information is used to select the damage featurd an, Selection of quantities to measure, sensor locatiomd

classifier. Finally, the PHM illustration case dlgahas a

physical model based approach, where the seleaifon
monitoring data and its processing is motivated thg

known physical behaviour of the shock absorber. seal

4. RELEVANCE OF UNDERSTANDING FAILURE BEHAVIOUR

In the case studies in the previous section itbmnbserved
that knowledge on the failure behaviour of the eyst is
used to some extent in all three cases. This isairthe
major differences between the approaches that \weady
stated in section 2. However, it is the authorgiwiction
that understanding the failure behaviour and uwdeyl

data processing algorithms is mostly based onad tri
and-error process;
* The interpretation of the measured data and rejatin
to the damage or degradation is in many casesrrathe
difficult; In general, it is only possible if a cesiderable
set of failure data is available, which might b#iclt
to achieve for critical systems and systems that re
operated in a variable way;
e The method is only diagnostic, extension to a
prognostic method is often difficult.
These drawbacks can be addressed if the physitatefa
behaviour is understood. The selection of the gmte

physical mechanisms has the potential to incresse t Monitored quantities and their locations can largenefit
performance of the CBM and SHM disciplines. Thefrom the knowledge on failure behaviour. The common

motivation for that is in the relation between timage of a
system and the resulting system degradation (oaireny
life consumption), as is shown schematically inurég12
(Tinga, 2010). The upper three blocks in the figegresent
this relation and ideally the dependency of the ai@img
useful life on the actual usage of the system iglieily

approach in both CBM and SHM is to apply considkrab
numbers of sensors and start collecting large afsoah
data. Only after a certain period of data collectithe
analysis and interpretation of the data is consideft is
then often discovered that non-relevant parametense
been monitored and that other essential quantities
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missing. A much better approach is to start wigntifying ~ mechanisms has been discussed, it will be posgibddign

the system’s most critical failure mechanisms ahdirt them. The proposed integral approach is shown gurEi
governing loads. These results can then be usextlext 13. As was mentioned before, the differences batwed
suitable sensors and locations. For example, ibtating) and SHM are not large, and their aim is actuallyyve
system or component fails due to fatigue, the guwerload  similar. Except for SHM level 5 (prognostics), thaigo act

is a cyclic stress. It is then not useful to monttee number at the same level of maturity / complexity (seeufrégl).

of operating hours or temperature, but much moeduliso  This means that both methods could be used to orothie
monitor the number of starts of the system anddketional  (initiation or progression) of damage in a partsystem.
speeds, since that determines the number of stngdes  The specific application (e.g. rotating or statig)l then
and their magnitude. Only a limited number of paper determine whether a SHM or CBM technique is most
advocating this physics-based approach for CM gyste suitable. On the next higher level, both monitorstigategies
development is available, see e.g. (Banks, Reighdirtes, can then be connected to the CBM policy, whichseduto

& Brought, 2008). govern the maintenance decisions (mainly whenptace a
part). Instead of the CBM policy, also a usage Base
maintenance (UBM) or a load based maintenance (LBM)
policy (Tinga, 2010) can be adopted. In that cals® a
another monitoring strategy will have to be selécte

The next challenge after collecting the appropridata is
the interpretation of the data and retrieving infation on
the degradation of the system. If the knowledge tioa
system and its failure behaviour is limited, thdyomay to
obtain that information is the experience-basedregugh:
after collecting a sufficiently large amount of aapatterns
or relations may be found in the data. This is tymical

i ini Life Cycle PHM
approach in data mining processes, but also appesac

based on artificial neural networks and fuzzy loffitow $

this route. The drawbacks are that, firstly, relasi can only o —
be found when the data set is sufficiently larger some prognostics
(critical) systems the number of failures can beyVienited, ! i ! !

which significantly reduces the potential of thepagach. Malnienance cam uBM 18Mm

Secondly, the failure identification is only reliabfor

conditions that have occurred at least once (aadersent R o n e ool seloction of
in the historic data). For systems that are opdratdargely e monitoring | monitoring sensors /location
variable conditions (e.g. military, off-shore), shaspect
yields a big limitation to the approach. Howevehen the
system behaviour and associated physics of faikingell

understood, the data sets no longer consist of yamouns
numbers, but contain relevant information. Retnigvihat
information is generally much more straightforwaehd
requires much less data and experience, than ipuhaly
data driven approaches.

A 2 Processing
— T T data

|

Figure 13. Relation between system usage and rémgain
life consumption is governed by failure mechanism.

Then, regardless of the adopted maintenance po#cy,
prognostic approach will have to be selected t@sssshe
RUL at any moment, and there the PHM methods can pl
an important role. Finally, to guide all the maimeace
Finally, the ultimate challenge is to extend thethods to  related decisions (replace, repair, inspect, etar)ng the
the prognostics. As was mentioned before, the ticadil  whole life cycle of the system, a suitable life leyc
diagnostic methods in CBM and SHM sometimes usénanagement approach must be arranged. Also for that
trending methods to do some prognostics. Howevehei  purpose, several approaches developed in the Peilyldie
operational conditions of the system vary considlgtaa  very suitable. This means that in the approach gseg in
trend based on historical data is not very reptasee for  Figure 13, all three disciplines can be combineugne each
the present or future behaviour. It therefore hdsnied of them has its own role and scope and the strengjtthe
prognostic capability. But, if physical models arsed to individual disciplines are combined.
quantify the failure behaviour, the expected deagtiad ) . .
rates can be calculated (also when the condititemge) ©On€ important additional aspect of the proposedazmgh is
and reliable prognostic methods can be added to tHE€ inclusion of knowledge on the physical systend a
diagnostic capabilities of CBM and SHM methods. faylure behay|our. Ag is mdmate:d in Figure 13damas also
discussed in section 4, this fundamental knowledge
5. ALIGNING CBM, SHM AND PHM improyes the approach at three essentia! stagem (he
selection of the quantities to be monitored andirthe
Now the three disciplines have been describedige®), locations; {i) in the processing of the measurement data to
have been compared and demonstrated with case®(sec retrieve the required information on the systenraeation;
3), and the relevance of understanding the physaklre
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(i) in the prognostics, where a physical model-basedSO. (2012). ISO 13374 - Condition monitoring and

approach improves the performance.

In summary, instead of considering CBM, SHM and PHM
as separate disciplines, the present work has showrthe
three fields, their objectives and approaches @aalighed

to achieve an integrated strategy to improve tfee dicle
management of any (complex) system.

6. CONCLUSION

In this paper the three disciplines of conditionsdth MIMOSA.

maintenance (CBM), structural health monitoring K¥BH

diagnostics of machines ISO.

Loendersloot, R., Ooijevaar, T. H., Warnet, L., Bo&. d.,

& Akkerman, R. (2011). Vibration Based
Structural Health Monitoring and the Modal Strain
Energy Damage Index Algorithm Applied to a
Composite T-Beam. In C. M. A. Vasques & J. D.
Rodrigues (Eds.), Vibration and Sructural
Acoustics Analysis. Current Research and Related
Technologies. Amsterdam: Springer Netherlands.
(2013). Open System Architecture for
Condition-Based Maintenance, V3.3.1 MIMOSA.

and prognostics and health management (PHM) hage beOoijevaar, T. H., Loendersloot, R., Warnet, L., Bo&. d.,

described, compared and demonstrated using iltusira
case studies. Several commonalities between tloglies
appeared, but also differences in scope and obesctiould
be identified. This insight enabled us to align tieee
disciplines and propose an integrated approachhioh the
understanding of the physical system failure bedravi
appears to be an essential aspect. The proposegraht
approach starts from defining an appropriate moinitp
strategy (CM and SHM), applying the appropriate
maintenance policy (CBM), performing prognostic$i{P
and eventually supporting the decision making thatls to
an optimal maintenance process throughout theclitde of
the asset.

& Akkerman, R. (2010). Vibration Based
Structural Health Monitoring of a Composite T—
Beam.Composite Sructures, 92(9), 2007-2015.

Ooijevaar, T. H., Warnet, L., Loendersloot, R., Akian,

R., & Boer, A. d. (2012)Vibration Based Damage
Identification in a Composite T-Beam Utilising
Low Cost Integrated Actuators and Sensors. Paper
presented at the Sixth European Workshop on
Structural Health Monitoring, Dresden, Germany.

Orsagh, R., Roemer, M. J., Sheldon, J., & Klenke, JC

(2004). A comprehensive prognostic approach for
predicting gas turbine engine bearing life. Paper
presented at the IGTI Turbo Expo, Vienna.

Rao, B. K. N. (1996)Handbook of condition monitoring.
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