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ABSTRACT 

In this work the three disciplines of condition based 
maintenance (CBM), structural health monitoring (SHM) 
and prognostics and health management (PHM) are 
described. Then the characteristics of the disciplines are 
compared, which leads to a clear insight in the 
commonalities, but also in the difference in objectives and 
scope of the three disciplines. The disciplines are then 
demonstrated using three different case studies on bearing 
vibration monitoring, composite panel structural health 
monitoring and helicopter landing gear prognostics, 
respectively. After a discussion on the benefits of 
understanding the system physical (failure) behaviour, an 
integrated approach is proposed in which the three 
disciplines are aligned.  This approach starts from defining 
an appropriate monitoring strategy (SHM and CM) and 
eventually ends in supporting the decision making (PHM) 
that leads to an optimal maintenance process throughout the 
life cycle of the asset.  

1. INTRODUCTION  

The disciplines of condition based maintenance (CBM), 
structural health monitoring (SHM) and prognostics and 
health management (PHM) have a lot of commonalities. 
They all aim to improve the maintenance decision making, 
with the ultimate goal of reducing maintenance costs and 
increasing system availability. But at the same time they are 
focusing on different aspects of the field and are being 
developed in more or less separate communities. Although 
implicit links between, for example, CBM and PHM are 
being made in several occasions (Buderath & Adhikari, 
2012), the explicit relation between the disciplines has not  

often been addressed specifically. In this work we therefore 
aim to align the three disciplines by identifying the major 
benefits of the individual approaches and proposing an 
integrated approach that combines these aspects. Firstly, in 
section 2 of this paper, we discuss the major differences and 
commonalities of the three disciplines in a general sense, 
both in terms of the adopted techniques and methods and 
underlying philosophy. Secondly, each of the disciplines 
will be illustrated in section 3 with three (existing) practical 
cases from our own research in the different disciplines. The 
CBM illustration case is the rather traditional approach 
followed in the blind identification of bearing damage. The 
SHM illustration case concerns the damage assessment in a 
composite structure using a structural vibration technique, 
while the PHM illustration case concerns the prognostics of 
landing gear failure in a helicopter. After that, partly based 
on the experience from these three cases, the role of 
understanding the system failure behaviour will be 
discussed in section 4. It will be demonstrated that 
knowledge on the physical failure mechanisms, in 
combination with the monitoring of loads or condition, is a 
key element in all three disciplines, while this aspect is 
recognized and covered by only a minority of the cases 
found in practice. This aspect will thus be taken to align the 
approaches of CBM, SHM and PHM in section 5. Taking 
into account the differences in scope and objective of the 
three disciplines, but fully exploiting their individual 
strengths, it will be shown that they can be aligned to yield 
an integral approach for optimizing system life cycle 
management. The proposed approach will start on the 
lowest level by monitoring the appropriate parameters and 
will ultimately provide decision support on the highest level  
for the optimal life cycle management.  

Tiedo Tinga et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

2 

2. DESCRIPTIONS AND COMPARISON OF DISCIPLINES  

In this section the authors’ view on the basic concepts of the 
SHM, CBM and PHM disciplines will be presented. Also 
the differences and commonalities will be discussed. 

2.1. Condition Based Maintenance  

Condition based maintenance is the oldest discipline of the 
three. It is closely associated to Condition Monitoring (CM), 
which is a term covering a range of techniques that have 
been developed in the past fifty years to assess the condition 
of systems and components. Well-known condition 
monitoring techniques are vibration monitoring, oil analysis, 
acoustic emission and thermography. These methods are 
widely applied in industry, where the interpretation of 
measurement data is mainly experience-based and data-
driven. Vibration analysis techniques are mostly applied to 
rotating equipment (e.g. pumps, compressors, gear boxes, 
bearings). This means that the source of the vibrations is the 
machine’s normal operation, while faults can be detected as 
a change in that source (either in frequency or amplitude). 

When the results of condition monitoring are used to trigger 
maintenance activities, a condition based maintenance 
(CBM) policy emerges. The ISO-13374 standard, Condition 
Monitory and Diagnostics of Machines (ISO, 2012), defines 
the functionality in a condition monitoring system in six 
blocks: data acquisition, data manipulation, state detection, 
health assessment, prognostics assessment and advisory 
generation. Further, the Open Systems Architecture for 
Condition-Based Maintenance (OSA-CBM) (MIMOSA, 
2013) provides an implementation of that standard by 
adding data structures and defining interface methods for 
the functionality blocks in the ISO standard. Although 
research on advanced concepts like wireless sensor 
networks and energy harvesting to power autonomous 
sensors is ongoing, the data acquisition (sensors) and 
manipulation are nowadays rather well-established. 
Therefore, a major portion of the research in this discipline 
focuses on analyzing the obtained data to retrieve 
information from it. The methods developed for that are 
mainly data-driven, e.g. based on trending or on comparing 
with a baseline measurement, and are seldom based on 
physical models. Application of the final blocks, the health 
assessment and prognostics steps, is until now very limited 
in practice. This discipline is not covered widely in the 
scientific world, other than the application of CBM policies 
in maintenance modelling approaches. Also no scientific 
journals specifically on CM or CBM exist. However, since 
the field already exists for decades, many books on the topic 
are available. 

2.2. Structural Health Monitoring 

Structural health monitoring is a discipline that is closely 
related to condition monitoring, but has its origin in the 
inspection of structures. The methods are based on non-

destructive testing (NDT) techniques. These techniques, like 
ultrasonic testing, eddy current and acoustic emission, are 
traditionally applied using hand-held sensors or scanning 
techniques, and inspections are only performed occasionally 
or periodically, not bearing any relation with previous 
inspections. Due to the increased reliability and availability 
requirements of many assets, research has focused on 
developing continuous monitoring techniques, which 
evolved into the structural health monitoring discipline. A 
lot of scientific work is currently being done in this field, 
which also has its own scientific journals. The focus has 
been on the one hand on the development of new sensing 
techniques, and on the other hand on the development of 
advanced damage features and classifiers. Development of 
sensing approaches are based on new technologies using 
optical fibers and sensors to measure structural vibrations 
(e.g. piezo patches) and  wave propagation (e.g. ultrasonics). 
The development of new damage features and classifiers 
follows a data-driven approach, motivated by the “statistical 
pattern recognition paradigm” (Farrar & Worden, 2010), 
which is one of the key foundations of SHM. The 
application of physical models in this discipline is very 
limited. 

Applications are mainly found in aerospace and 
infrastructures (e.g. bridges). For vibration based methods, 
the source of vibrations is generally not the system itself, 
but the environment it is operated in (e.g. wind, waves). 
Faults or damage can be detected by observing changes in 
the response of the system to the vibrations. Note that this 
field has a strong focus on health assessment, but does not 
provide a clear approach to apply that to maintenance 
policies (although a link with CBM is rather 
straightforward). Instead, developments in SHM techniques 
mainly focus on increasing the probability of detection of 
faults, which originates from the NDT background of this 
discipline. Further, the first standard in this field was 
established only very recently (SAE, 2013), and in addition 
there is well-defined structure considering the five levels of 
SHM (Farrar & Worden, 2010). From levels 1 up to 5 more 
and more information on the damage in the structure is 
obtained:  

• Level 1: damage detection,  

• Level 2: damage localization, 

• Level 3: damage characterization,  

• Level 4: damage quantification,  

• Level 5: prognostics.  

The first three levels can now be achieved by many 
methods, while the final two are still quite challenging.  

2.3. Prognostics and Health Management 

The prognostics and health management discipline is 
somewhat different from the previous two, and also 
emerged more recently. Whereas CBM and SHM focus on 
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the monitoring of the system, PHM is a more integrated 
approach that aims to provide guidelines for managing the 
health of the system. In that way, it is a philosophy to 
perform Life Cycle Management, with a strong focus on the 
predictability (i.e. prognostics) of failures and maintenance. 
This is generally achieved by adopting some monitoring 
strategy, which may be a CM or SHM technique. Also in 
this field many data-driven approaches emerged to analyze 
the monitoring data, but in addition to that several physical 
model based methods have been developed (Orsagh, 
Roemer, Sheldon, & Klenke, 2004; Roemer, Byington, 
Kacprzynski, & Vachtsevanos, 2006). As for CM and CBM, 
this discipline emerged form industry, and has a relatively 
limited presence in the scientific world. PHM has a 
background in the military world, especially related to the 
development of the F-35 fighter aircraft (Brown, McCollom, 
Moore, & Hess, 2007). Thereafter, PHM approaches have 
also been developed for other military vehicles, but also for 
electronics and (civil) aerospace systems. 

2.4. Commonalities and differences 

Upon analyzing the  commonalities and differences between 
the three disciplines, the following aspects have been found. 
These aspects are also visualized in Figure 1. 

(i) the approaches for condition monitoring and structural 
health monitoring are very similar, since both disciplines  

 

 

Figure 1. Relation between CBM, SHM and PHM. 
 

look for features that are representative for damage or 
degradation of the system. However, there are some 
differences: 

• CM is closely related to the CBM policy, which means 
that the monitoring results are directly applied to guide 
the maintenance activities. In SHM the focus is 
completely on the monitoring and no explicit relation to 
a specific maintenance policy is made. However, 
linking SHM techniques to CBM seems 
straightforward. 

• In both fields, one of the commonly applied techniques 
is vibration monitoring, but the approaches are different 
in the following ways: 

o CM is mostly applied to rotating or reciprocating 
systems, where the primary vibration source is the 
system itself. Damage or degradation is diagnosed 
by detecting changes in that source, e.g. bearing 
faults that introduce additional vibrations. 

o SHM is mostly applied to load carrying or 
transferring structures, which are only actuated by 
their environment (wind, waves). The SHM 
techniques focus on  measuring (changes in) the 
response of the system or structure and relating 
those to the presence of damage. 

o The locations of the vibration sensors also vary. In 
CM the sensor is typically outside the part, whereas 
in SHM the sensors are commonly on (or even 
integrated in) the monitored part. 

(ii) both SHM and PHM include a prognostic capability, 
while CBM is mainly diagnostic. However, the differences 
between CBM and SHM in this respect are not that large, 
since in the SHM field the prognostics is only at level 5, 
which is not achieved in many cases. At the same time, CM 
data is often trended in time, which also provides a limited 
prognostic capability (which is also mentioned in the CBM 
ISO standard). 

(iii) PHM is acting on a somewhat higher level than CBM 
and SHM, since it has a clear ambition to enable health 
management. The latter is an activity related to Life Cycle 
Management (LCM), which means that an approach is 
followed to optimize all (maintenance) activities during the 
complete life cycle of the asset. This includes the selection 
of an appropriate maintenance policy, defining the 
maintenance interval length and deciding on the moment an 
asset should be discarded. CBM, and SHM to an even lesser 
extent, do not provide that extensive LCM support. 

(iv) the PHM field prescribes neither a specific maintenance 
concept nor a monitoring strategy. However, in typical 
PHM studies, CBM or other maintenance policies are 
adopted, and in many cases CM techniques are applied.  

3. PRACTICAL CASES 

In this section three practical cases will be presented, 
demonstrating the specific aspects of the three disciplines. 

3.1. CBM – bearing blind identification 

The field of condition monitoring has matured especially in 
its application to bearings (Rao, 1996). Since in industry so 
many bearings are used, a huge amount of experience has 
been gained on these type of systems. Moreover, the 
complexity of bearings is rather limited, which makes 
understanding the failure behaviour feasible in many cases. 
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For these reasons, condition monitoring data, which for 
bearings most of the time is vibration data, can in many 
cases be translated into information on the failure mode or 
the state / condition of the bearing. 

This will be demonstrated using the following case study. 
Vibration data on four different bearings is available: one 
undamaged (pristine) bearing and three with an artificial 
damage on the outer race, inner race and rolling element, 
respectively. In practice, the location and type of damage is 
unknown, and a so-called blind identification must be 
performed. However, since a considerable range of failure 
mechanisms can occur in the different bearing components 
(inner / outer race, rolling element), identification is quite 
challenging. Moreover, a recent development is to apply 
wireless sensor networks for vibration monitoring. Although 
this development reduces the wiring and installation efforts 
considerably, it simultaneously introduces additional 
boundary conditions due to the limits in data transmission 
bandwidth, power and local (on the sensor node) processing 
capacity. A generic approach is developed (Sanchez 
Ramirez, Loendersloot, & Tinga, 2014) to assess the 
damage.  

The vibration patterns observed will have to be matched 
with the most likely failure modes and failure mechanisms 
for bearings. Examples of failure modes are cracking, dry 
rolling, and heating, where the deterioration or failure of the 
bearing material is caused by mechanisms like fatigue, static 
overloading, wear, corrosion, etc. Additionally lubricant 
deterioration is also a key limiting factor of bearing life. For 
this case, the focus will be on cracking in the outer race, 
resulting in dynamic behaviour of the bearing related to the 
response to an impulse excitation. Figure 2 shows the 
vibration signal for the pristine bearing. The red line in the 
figures is a sinusoidal signal with the rotor speed frequency 
and an amplitude approximately equal to the maximum of 
the pristine bearing vibration.  

 

Figure 2. Vibration signal for pristine bearing. 
 

The signal for the damaged bearing is shown in Figure 3. 
The first way to identify a failure is to compare the signal of 
the (damaged) bearing to the baseline signal (red line). 
Figure 3 clearly shows that the amplitude bandwidth has 
increased considerably, indicating that a failure is present. 
However, the challenge is then to characterize or localize 
the fault. A first step in this analysis is to transform the 
signal to the frequency domain, and zoom in to the region 
with the highest energy content by applying a filter. For this 
bearing, the range of interest appeared to be in the 2500 - 
4000 Hz region. Valuable information about the source of 
the damage can be extracted by looking at the vibration 
signal, the rate at which the events occur and the possible 
variation of the amplitude (modulation). 

The modulations can be analyzed further by extracting the 
envelope of the vibration signal, and identifying the main 
modulating frequency fm, i.e. the frequency of the variation 
in signal amplitude. This is shown in Figure 4, where a clear 
frequency peak around 150 Hz occurs, which represents fm. 

 

Figure 3. Vibration signal for damaged bearing. 
 

 

Figure 4. Enveloping of the time signal with its 
corresponding frequency spectrum. 
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Finally, once the frequency range of interest and the main 
modulating frequency are known, the analysis will be based 
on shorter time periods related to the main modulating 
frequency. Here the instantaneous carrier frequencies are 
determined from the time signal segments that have been 
extracted according to the main modulation observed in the 
signal. Both the instantaneous frequencies and amplitude are 
extracted, as well as their ratio, as is shown in Figure 5. The 
variation of these quantities can be used as indicator of 
developing damage on the bearings.  

In summary, this case study showed how a typical condition 
monitoring technique as vibration monitoring can be used to 
detect and assess bearing damage. The methods presented 
here are only a small subset of the large variety of analysis 
methods available, but a special focus has been put here on 
computational inexpensive methods that enable application 
in a wireless sensor network. 

 

Figure 5. Instantaneous frequency and amplitude of the 
signal. 

3.2. SHM - damage assessment in composite structure 

Our SHM case study concerns the assessment of damage in 
a skin stiffener composite structure (Loendersloot, 
Ooijevaar, Warnet, Boer, & Akkerman, 2011; Ooijevaar, 
Loendersloot, Warnet, Boer, & Akkerman, 2010; Ooijevaar, 
Warnet, Loendersloot, Akkerman, & Boer, 2012), shown in 
Figure 6. Structural vibration techniques are adopted here to 
detect and locate (and possibly quantify) a delamination in 
the composite structure. The structure is actuated by a 
shaker, while the response is measured by piezo electric 
diaphragms. The damage sensitive parameter extracted from 
the structure is the mode shape curvature, while the Modal 
Strain Energy – Damage Identifier (MSE-DI) algorithm 
(Stubbs & Farrar, 1995) is selected as the damage classifier. 
The damage feature is selected based on the expected 
damage (a delamination between the skin and the stiffener, 
as shown in Figure 7) and the expected change in dynamic 
response: the local stiffness reduction induced by the 
damage results in a local change of the mode shapes, and 
more specifically of the mode shape curvatures. 

 

Figure 6. The composite skin-stiffener structure, equipped 
with piezo electric diaphragms. The damaged area is 

indicated in the bottom figure. 
 

This change is an indication of the presence and the location 
of damage and even serves as an estimation of the severity 
of the damage, provided a (physical) relation can be 
established between the size of the delamination and the 
criticality of the damage. 

 

 

Figure 7. First-ply delamination failure caused by the impact 
to which the structure was subjected. 

 
The MSE-DI algorithm is based on the comparison between 
the curvatures of the mode shapes of the pristine and 
damaged structure. Given the relative bending energy ���,����of the ith beam segment, of the nth mode, is defined as: 

 ���,���� 	 ��,����

�� 	 12� ���������� �� d���

����
 (1) 

Where ����� represents the axial strain amplitude for the nth 
participating mode shape. Note that the strain is directly 
measured by the piezo diaphragms. The total modal strain 
energy is approximated by the sum of Eq. (1) over a subset 
of mode shapes Nfreq. The damage index value is based on a 
number of mode shape curvatures, since the location and the 
size of the damage determine the effect the damage has on 
the mode shape curvatures. 

The damage index β for the ith segment of the structure is 
defined as the summed fractional stiffnesses: 
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 �� 	 � �� �� ���d������� � �� ���d� !"
� ����d������� � ����d� !" #$%&'(

�)*  (2) 

Where w(n)(x) represents the integrand of Eq. (1) and the 
tilde refers to the damaged case. The normalized damage 
index Zi, a statistical measure to identify outliers, is defined 
as: 

 +� 	 �� , -.  (3) 

Where µ is the mean value and σ the standard deviation of 
the damage index over all elements. The normalized damage 
index Z is shown in Figure 8. The value of the damage 
index around x = 0.8 m is close to -4, implying a significant 
(4σ) deviation of the fractional stiffness compared to the 
intact situation. This is a clear indication of the presence of 
the damage. The actual damage location corresponds to the 
location indicated by the MSE-DI algorithm. 

 

Figure 8. The normalized damage Z for the entire composite 
structure. The location of the damage corresponds with the 

deviating values around x = 0.8 m. 

3.3. PHM – predicting helicopter shock absorber failure 

The prognostics and health management approach is 
demonstrated by a case study on a helicopter landing gear. 
The landing gear contains a shock absorber (see Figure 9), 
that after some period starts to leak oil, caused by a 
damaged seal. The shock absorber inspection and 
maintenance schedule is based on flight hours (as is the case 
for most aircraft components).  

 

Figure 9. Landing gear shock absorber. 
 

However, for a landing gear, the number of flight hours is 
not the most appropriate usage parameter for predicting the 

failures. This is shown in Figure 10, where the number of 
flight hours at failure are plotted for 11 shock absorber seal 
failures: there is no correlation between the failures and 
number of flight hours, and it is difficult to predict when a 
seal failure will occur. However, this helicopter contains a 
Health and Usage Monitoring System (HUMS), which 
collects a large number of parameters on the usage (flight 
hours, altitude) and health (vibration data) of the helicopter. 
This data can be used to develop a prognostic method for 
the seal failure (Tinga, 2013). The physical mechanism 
causing the seal failure is sliding wear, which is governed 
by the normal force Fn applied to the seal, the sliding 
distance s and the specific wear rate k. Archard’s law can 
then be used to calculate the amount of wear in terms of lost 
volume V: 

 / 	 01�2 (4) 

The values of Fn and k can be obtained from the geometry 
and material properties of the seal. The sliding distance is 
governed by the usage of the landing gear, i.e. the number 
of landings and the weight of the helicopter during the 
landing. These latter two parameters are available from the 
HUMS, so for every seal failure the usage history is known 
and the amount of wear can be calculated, as is shown in 
Figure 11.  

 

 

Figure 10. Number of flight hours for 11 failure events. 
 

 

Figure 11. Calculated amount of wear for 11 failure events. 
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These results clearly show that the calculated amount of 
wear, based on the number of landings and landing weight, 
has much more predictive power than the number of flight 
hours, since the variation in these values is much lower. 
Except for the first two cases, the failures either occurred 
around 30 mm3 of lost volume, or around 50 mm3. The 
observed difference between the two groups can be 
explained by the fact that another type of seal was 
introduced in the absorbers that failed at 50 mm3 of wear. 
This new seal clearly has a better wear resistance than the 
original seal, since the oil leakage occurs at a later stage. It 
can thus be concluded that selection of the appropriate usage 
parameter, in this case the number of landings and landing 
weight, and using a suitable physical failure model enables 
to set-up a prognostic model.  

It is now rather straightforward to assess at any moment the 
remaining useful life (RUL) of the shock absorber in terms 
of number of landings. The amount of wear can be 
calculated from the monitored landing information (HUMS) 
and the amount of landings before seal leakage is expected 
can be calculated, thus providing a much better RUL 
assessment than with flight hours. 

3.4. Summarizing the cases 

The case studies in this section have illustrated many of the 
aspects mentioned in section 2. The CBM illustration case is 
mainly data-driven, only a limited amount of system and 
failure behaviour knowledge is used. Also, the source of the 
vibration (and its anomalies) is the rotation of the bearing 
itself. The SHM illustration case is also mainly data-driven, 
although in this case the dynamic behaviour of the system 
(i.e. mode shapes) is known as well as the effect the damage 
(delamination) has on the dynamic response. This 
information is used to select the damage feature and 
classifier. Finally, the PHM illustration case clearly has a 
physical model based approach, where the selection of 
monitoring data and its processing is motivated by the 
known physical behaviour of the shock absorber seal.  

4. RELEVANCE OF UNDERSTANDING FAILURE BEHAVIOUR  

In the case studies in the previous section it can be observed 
that knowledge on the failure behaviour of the systems is 
used to some extent in all three cases. This is one of the 
major differences between the approaches that was already 
stated in section 2. However, it is the authors’ conviction 
that understanding the failure behaviour and underlying 
physical mechanisms has the potential to increase the 
performance of the CBM and SHM disciplines. The 
motivation for that is in the relation between the usage of a 
system and the resulting system degradation (or remaining 
life consumption), as is shown schematically in Figure 12 
(Tinga, 2010). The upper three blocks in the figure represent 
this relation and ideally the dependency of the remaining 
useful life on the actual usage of the system is explicitly 

known. However, while the usage of a system is normally 
known by the operator, its effect on the remaining life 
consumption is typically unknown. The author believe that 
zooming in to the level of the physical failure mechanism 
(e.g. fatigue, wear) enables to quantify this relation, 
provided that either the usage (operating hours, rotational 
speed) or loads (strain gauge, thermocouple) are monitored. 

 

Figure 12. Relation between system usage and remaining 
life consumption is governed by failure mechanism. 

The figure also shows that condition monitoring is a third 
option for monitoring, and since information about the 
system condition is obtained directly, no detailed 
understanding of the failure mechanism is required. This is 
exactly the reason that in CM and SHM many data-driven 
approaches have been successfully developed. Just 
monitoring the condition (or some associated damage 
feature) enables to detect the exceedance of a predefined 
threshold, and then to trigger some maintenance activity. 
However, this approach (neglecting the actual physical 
failure behaviour) has three important drawbacks:  
• Selection of quantities to measure, sensor locations and 

data processing algorithms is mostly based on a trial-
and-error process; 

• The interpretation of the measured data and relating it 
to the damage or degradation is in many cases rather 
difficult; In general, it is only possible if a considerable 
set of failure data is available, which might be difficult 
to achieve for critical systems and systems that re 
operated in a variable way; 

• The method is only diagnostic, extension to a 
prognostic method is often difficult. 

These drawbacks can be addressed if the physical failure 
behaviour is understood. The selection of the appropriate 
monitored quantities and their locations can largely benefit 
from the knowledge on failure behaviour. The common 
approach in both CBM and SHM is to apply considerable 
numbers of sensors and start collecting large amounts of 
data. Only after a certain period of data collection, the 
analysis and interpretation of the data is considered. It is 
then often discovered that non-relevant parameters have 
been monitored and that other essential quantities are 
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missing. A much better approach is to start with identifying 
the system’s most critical failure mechanisms and their 
governing loads. These results can then be used to select 
suitable sensors and locations. For example, if a (rotating) 
system or component fails due to fatigue, the governing load 
is a cyclic stress. It is then not useful to monitor the number 
of operating hours or temperature, but much more useful to 
monitor the number of starts of the system and the rotational 
speeds, since that determines the number of stress cycles 
and their magnitude. Only a limited number of papers 
advocating this physics-based approach for CM system 
development is available, see e.g. (Banks, Reichard, Hines, 
& Brought, 2008). 

The next challenge after collecting the appropriate data is 
the interpretation of the data and retrieving information on 
the degradation of the system. If the knowledge on the 
system and its failure behaviour is limited, the only way to 
obtain that information is the experience-based approach: 
after collecting a sufficiently large amount of data, patterns 
or relations may be found in the data. This is the typical 
approach in data mining processes, but also approaches 
based on artificial neural networks and fuzzy logic follow 
this route. The drawbacks are that, firstly, relations can only 
be found when the data set is sufficiently large. For some 
(critical) systems the number of failures can be very limited, 
which significantly reduces the potential of the approach. 
Secondly, the failure identification is only reliable for 
conditions that have occurred at least once (and are present 
in the historic data). For systems that are operated in largely 
variable conditions (e.g. military, off-shore), this aspect 
yields a big limitation to the approach. However, when the 
system behaviour and associated physics of failure is well 
understood, the data sets no longer consist of anonymous 
numbers, but contain relevant information. Retrieving that 
information is generally much more straightforward, and 
requires much less data and experience, than in the purely 
data driven approaches.    

Finally, the ultimate challenge is to extend the methods to 
the prognostics. As was mentioned before, the traditional 
diagnostic methods in CBM and SHM sometimes use 
trending methods to do some prognostics. However, if the 
operational conditions of the system vary considerably, a 
trend based on historical data is not very representative for 
the present or future behaviour. It therefore has a limited 
prognostic capability. But, if physical models are used to 
quantify the failure behaviour, the expected degradation 
rates can be calculated (also when the conditions change) 
and reliable prognostic methods can be added to the 
diagnostic capabilities of CBM and SHM methods. 

5. ALIGNING CBM,  SHM  AND PHM 

Now the three disciplines have been described (section 2), 
have been compared and demonstrated with cases (section 
3), and the relevance of understanding the physical failure 

mechanisms has been discussed, it will be possible to align 
them. The proposed integral approach is shown in Figure 
13. As was mentioned before, the differences between CM 
and SHM are not large, and their aim is actually very 
similar. Except for SHM level 5 (prognostics), they also act 
at the same level of maturity / complexity (see Figure 1). 
This means that both methods could be used to monitor the 
(initiation or progression) of damage in a part or system. 
The specific application (e.g. rotating or static) will then 
determine whether a SHM or CBM technique is most 
suitable. On the next higher level, both monitoring strategies 
can then be connected to the CBM policy, which is used to 
govern the maintenance decisions (mainly when to replace a 
part). Instead of the CBM policy, also a usage based 
maintenance (UBM) or a load based maintenance (LBM) 
policy (Tinga, 2010) can be adopted. In that case also 
another monitoring strategy will have to be selected. 

 

 

Figure 13. Relation between system usage and remaining 
life consumption is governed by failure mechanism. 

 

Then, regardless of the adopted maintenance policy, a 
prognostic approach will have to be selected to assess the 
RUL at any moment, and there the PHM methods can play 
an important role. Finally, to guide all the maintenance 
related decisions (replace, repair, inspect, etc.) during the 
whole life cycle of the system, a suitable life cycle 
management approach must be arranged. Also for that 
purpose, several approaches developed in the PHM field are 
very suitable. This means that in the approach proposed in 
Figure 13, all three disciplines can be combined, where each 
of them has its own role and scope and the strengths of the 
individual disciplines are combined.  

One important additional aspect of the proposed approach is 
the inclusion of knowledge on the physical system and 
failure behaviour. As is indicated in Figure 13, and was also 
discussed in section 4, this fundamental knowledge 
improves the approach at three essential stages: (i) in the 
selection of the quantities to be monitored and their 
locations; (ii) in the processing of the measurement data to 
retrieve the required information on the system degradation; 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

9 

(iii) in the prognostics, where a physical model-based 
approach improves the performance.  

In summary, instead of considering CBM, SHM and PHM 
as separate disciplines, the present work has shown how the 
three fields, their objectives and approaches can be aligned 
to achieve an integrated strategy to improve the life cycle 
management of any (complex) system.  

6. CONCLUSION  

In this paper the three disciplines of condition based 
maintenance (CBM), structural health monitoring (SHM) 
and prognostics and health management (PHM) have been 
described, compared and demonstrated using illustrating 
case studies. Several commonalities between the disciplines 
appeared, but also differences in scope and objectives could 
be identified. This insight enabled us to align the three 
disciplines and propose an integrated approach, in which the 
understanding of the physical system failure behavior 
appears to be an essential aspect. The proposed integral 
approach starts from defining an appropriate monitoring 
strategy (CM and SHM), applying the appropriate 
maintenance policy (CBM), performing prognostics (PHM) 
and eventually supporting the decision making that leads to 
an optimal maintenance process throughout the life cycle of 
the asset. 
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