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ABSTRACT

In the aeronautical field, one of the major conseishthe
availability of systems. To ensure availability,oBnosis
and Health Management algorithms are developed.airthe
of these algorithms is twofold. The first one isdtect and
locate degradation premise of “no go” conditionuwcence.
The second one is to predict the health stateenfyistem at
a given time horizon. Before introducing PHM algjoms

in operation, it is necessary to assess their pagnces.
This is accomplished thank to a “maturation” phabeis

phase consists in defining the performance mefras an

operational relevance point of view, in estimatitigs

performance indicator and finally in
improvements to meet the airline companies requerém
We consider that the maturation of the detectiamction
has already been completed and that we are interésthe
maturation of the prognosis function. This papealsievith
the performance assessment of a prognosis funasorg
two operational metrics.
procedure is developed. It is applied to the pregof
turbofan engine lubricant over-consumption.

The considered prognosis function is the probaftiititcross
“no go” condition threshold at a given time horizdrhis

prediction is made thanks to an indicator of thalthestate
of the system. Then it is compared with a threslioldrder

to trigger an alarm and give rise to a removaletessary.
Within this framework, we have defined two opera#b
metrics for assessing the performance of this prsign
function. These metrics are the “ratio of justifiesnovals”

Ouadie HMAD et al. This is an opertcess article distributed under
terms of the Creative Commons AttributiBr0 United States Licen:
which permits unrestricted use, distribution, aegroduction in ar
medium, provided the original author and sourceceedited.

A performance estimation

(P(Alarm|Crossing)) and the “ratio of not justified
removals” (P(No-crossing|Alarm)). These metrics uies)
the availability of observed lubricant over-constiop to
compare the prediction results to the observedegalln the
absence of lubricant over-consumption values irratjm,

a way is to simulate values.

This communication describes the procedure to eséirthe
performance of the prognosis function and presdimés
obtained results. The performances estimationsgerig
improvements. It appears that we have to enhanee th
precision of the considered health indicator before
continuing to assess the performance of the corexdde

proposing Prognosis function.

1. INTRODUCTION

With the context of air traffic growth, the availélly of
systems is a major challenge for airlines. To mimémon-
programmed downtime, “no go” condition occurrence,
impacting the decision of aircraft take-off, arebjeat to
monitoring.

PHM systems have been developed by Safran Snedmea. T
introduction of these PHM systems in operation ¢an
carried out only after having reached a certainunitst
level. The required maturity level before operatisrbased
on performance requirements. To achieve this lamdlthus
meet the requirements, a maturation procedure (hgt®)
is applied to these PHM systems.

The maturation process has already applied to tietec
functions. It allowed defining performance indiaatdahat
meet the operational airlines needs. In this paperfocus
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on the maturation of the prognosis function appliedhe
monitoring of the lubrication system.

The originality of this paper is to work on actuaitline

the engines. Figure 1 represents the estimatedcaurtir
consumption on two engines from different aircraft.

Two consumption limits are considered in the maiatee

operating concerns and to propose solutions from amanual:

operational relevance point of view.

This communication is organized as follows: asrst fitep,
the Engine Oil Consumption algorithm (EOC) that iitans
the lubrication system
prognosis function developed by Safran is presemgad In
order to estimate the performance of this functitme
prognosis performance indicators or metrics arénddfin
section 4. Their estimation

process as discussed in section 5. Experimentatses the
context of the prognosis of lubricant over-consuoptare
reported in section 6. To conclude this paper warsarize
the main concerns and present possible opportanitie

2. ENGINE OIL CONSUMPTION PHM ALGORITHM

The EOC PHM algorithm allows monitoring of the lidamt
consumption in automatic way in order to early detny
abnormal consumptions (Demaison, 2010). This remtss
a major challenge because deterioration of theidation
system has non-negligible consequences on the txeaf
the turbojet engine.

Estimated lubricant consumption represents thecatdr of
the health status of the lubrication system. Thiidator is
used by the detection and prognosis functions d@eroto
detect and prevent abnormal consumptions.

EOC PHM algorithm principle is based on the mormitgr
of the lubricant level evolution in the tank. lttiezates the
consumption at iso-condition on several flightsuasing a
normalized operating environment. This estimattoved a
better estimation of the lubricant consumption careg
with a simple average consumption estimator caledlat
each engine maintenance.

Lubricant levels in the tank after landing of agfit and
before take-off of the next flight are measurediétect any
lubricant filling performed by the maintenance sesv
between successive flights. Once the fillings astected
and quantified, they are used to correct lubritewvels. This
correction consists in subtracting the amount difreed
lubricant for each filling to the measured lubritdevels.
After this correction, consumption estimation cetsiin
determining the slope of the regression line ofrittant
levels sampled on several flights.

The available data represent flight cycles (take-ofuise,
landing) on ten engines from five aircraft. No abmal
consumption has been observed during the operaibof

the estimated lubricant consumption represents alorm t0td-T

consumptions. These nominal consumptions are loligad
around an average value of 0.18 I/h or 0.2 I/h ddjmg on

is described. The considered 03

requires the presenée o
degradations, which were simulated based on gamma ,

e abnormal consumption: 0.38 I’h
« strongly drifted consumption: 0.76 I/h.

‘ engine ‘l aircraf‘t 4
£0.2
01 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Flights
0.2f
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Figure 1. Example of estimated lubricant consunmstio

EOC PHM algorithm allows guaranteeing the healttust
of the lubrication system by monitoring the differe
possible causes of abnormal consumption.
shows that abnormal consumption can evolve suddenly
gradually up to cross the abnormal consumption8(0'!3)
and the strongly drifted consumption thresholdgg®/h).

According to experts, the gradual evolution of eaonption
translates into an increase in lubricant consumptioabout

0.1 I/h per month and represents 90% of abnormal

consumption cases. So we will focus on such evaiutiven
if it has not been yet observed on collected data.

3. PROGNOSIS FUNCTION PRINCIPLE

The considered prognosis function consists in ptedj the
probability that the indicator of the health stawress a
failure threshold at a given operational time homniz

In operation, the prognosis function is triggerdterathe
detection of a degradation premise. Detection tagkase
when the health indicator crosses a detection hbtds
(figure 2). From this moment notedy”; the prognosis is

initiated.

Health indicator
N

failure threshold

detection threshold

R
td td+H tp

Figure 2. lllustration of the prognosis functioritigtion.

Experience
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The prognosis function aims to estimate the prdibgtid The objective is to estimate the performances a$ th
cross a failure threshold at a time horizon H bageda  prognosis function and compare it to the airlinenpany’s
history of size T. The crossing probability estimatfromt;  expectations. To do this, some performance meties

is performed by comparing the slope of the heaitticetor needed. The next section focuses on the prognosis
with the necessary slope (critical slope) to cbesfailure  performance indicators or metrics.

threshold aty + H.

The health indicator slope is estimated using aalin 4. PROGNOSIS PERFORMANCE | NDICATORS OR METRICS

regression on a window of size T. Then, the ciititape to  According to (Jardine, 2006), regardless of theliagton
cross the threshold &t+ H is determined from the point at domain, there are mainly two prognosis metrics or
instantty, intercept the value regression at this time, andndicators. The first consists in predicting themegning
point at instantty + H, intercept the failure threshold as time before the failure of a component or systeravkng
shown by figure 3. the past and present operating conditions. Thisrienét
commonly named Remaining Useful Life (RUL). The
second metric consists in predicting the probabilfitat a
component or system operates without failure during
given horizon knowing the past and present opegatin
conditions (crossing probability).

Under the hypothesis that these two slopes are alorm
random variables of unknown variance: these twpedare
compared using a Student test. The result of thtealows
estimating the probability that the slope of thealtie
indicator is lower or higher than the critical sboprhis is
equivalent to the probability that the health irdir crosses In (Dragomir, 2008), the author states that inpartant to
the failure threshold at time horizéh differentiate prognosis metrics (or indicators) gmdgnosis
performance metrics (or indicators).

These prognosis metrics define the nature of tladizes
failure threshold prognosis:

critical slope
)

l 1 ¢ ‘“deterministic’ prognosis for remaining useful life
| (RUL)

<
health indicator | e “probabilistic” prognosis for the crossing probétil
|
! slope The performances indicators of a prognosis funatiepend
- H 5 on the nature of the realized prognosis. That iy wwio
i S EE—TvY classes of prognosis performance metrics are ete@shin

the literature. The first class is related to “detimistic”

Figure 3.lllustration of the prognosis functionnuiple. prognosis approach (RUL). This class is discussést m
the literature (Si, 2011) (Sikorska, 2011). Theosekcclass

The prognosis function input is composed of obgema of s related to “probabilistic’ prognosis metrics dssing

the health indicator and its output is the estimmssmg probab|||ty) and is little represented in the laere.

probability. The prognosis function parameters are: ) i i
In the literature, prognosis performance metricsebleon the

+ the observations history size: T, RUL are numerous. (Saxena, 2008) has developeate it
« the prognosis horizon size: H, the art of these metrics from different domains
. the failure threshold (meteorology, medicine, finance, automobile,

' aeronautics...). Several metrics are discussed in
 the consumption samples within the window. (Vachtsevanos, 2006) and (Saxena, 2009). Tradltiona

metrics such as bias, deviation, mean squared. ermoay
be used. Other less conventional are also usedcasaay,
precision and timeliness...

In the abnormal consumptions prognosis case, tlathhe
indicator is the lubricant consumption estimated E\yC
PHM algorithm over several flights. As the progmsoss

initiated after having crossed the detection thoshthe  Prognosis performance metrics associated with the
observations history size, T, is 1 month of operatilO0  “probabilistic’ prognosis are less numerous and €om
flights (taking into account the number of days an mainly from the meteorological field where this dirof
calendar month). When detection occurs before, thgrognosis is frequently used. The first idea toleat@ the
observations history size is equal to the availabl@ber of  performance of any prediction function is to estienthe
flights until detection. The prognosis horizon,igiset at 20  prediction error and the mean squared error oflifierence
flights, 4 operating days in this case. The failttmeshold is  between predictions and observations is generally
set to 0.38 I/h which corresponds to the abnormatonsidered. A similar metric exists within the
consumption threshold from the maintenance manual. “probabilistic” prognosis framework. This metric immed
Brier Score (BS) (Brier, 1950).
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The Brier score represents the mean squared efrtireo
“probabilistic” prognosis:

N
1
BS = NZI(pi - o)? ®

with :

N: the number of predictions,

pi: the crossing probability with threshold S, estiedaat
time t, and for a given horizoH. pi=P(X(t,+H)>S|t=t)

0;: the observed probability which is equal to 1hiéte is a
crossing and 0 otherwise.

The Brier score is between 0 and 1, the perfeatesbeing
0.

According to (Candille, 2005) “probabilistic” progsis

functions must meet two criteria:

» reliability
probabilities are consistent with observations gsitngs
threshold). If the frequency of threshold crossisg

indicates to what extent the predicted

probabilities p, for these events. The resulting curve is
compared to the diagonal of the diagram. The diabon
corresponds to predictions in perfect harmony wittssing
observations. The points under (over) the diagamditate
that predictions were overestimated (underestimated
respectively).

1

0.9

Observed frequencies (o, )

0.8

0.7

0.6

0.5

underestimated |
o prediction

perfect reliability i

overestimated
prediction

0.4+

0.3r

0.9 1

0.8

O‘.B O‘.A 0‘.5 O.‘G O.‘7
Predicted probabilities p,

Figure 4. Example of reliability diagram.

It is possible to have an idea of the prognosisction

larger or smaller than predictions, predictions, are qqoiution using a ROC curve (Ebert, 2013). Tods, the

respectively, underestimated or overestimated,

prognosis should be reduced to a decision problesedon

» resolution allows to assess the capacity of a prognosishe estimated crossing probability. This implieattthere is

function to separate multiple events to predicte Th a decision

rule that allows classifying the estedat

resolution of a prognosis function is high whenprobabilities in two classes (crossing or no cmgsi The

predictions distribution corresponds to the obsiona
distribution.

Estimation of reliability and resolution of a prazpis
function is possible through the Brier Score decositjpn
(Murphy, 1973). The latter can be decomposed ihteg
components (BS = reliability - resolution + uncertg):

BS =

T
1 - )2 1
N T Dy = O N

T
an(ak— 0f+a(l-3) (2
k=1 k=1
where a sample dfl predictions is separated infoclasses
according to the predicted probabilitips (for examplep;
belongs to: 0% - 5%; 5%-10%;...; 95%-100%). Eads<!
containsn predicted probabilitie(). 6 corresponds to the
observed frequency of clakoccurrence and corresponds
to the average rate of positive samples over thalevdata
set.

The first two terms of BS have been defined presiypurhe
third one is named uncertainty. The uncertaintyovedl
quantifying the intrinsic variability of the obsations. It is
not used as a prognosis performance metric. lesponds
to the variance of a Bernoulli law of parameier

It is possible to get an idea of the reliabilityings a
reliability diagram (figure 4) which represents ghially
the reliability of a prognosis function (BrockeQ@7). This
diagram consists in drawing)) observed frequencies of
events (e.g. crossing threshold) on the basiseoptkdicted

ROC curve allows characterizing the ability of agmosis
function to differentiate two categories of evemtsich is
also the objective of the resolution. Better thefggenance
of the ROC curved, better the resolution of thegpasis
function.

In the aeronautical field, prognosis performanadicators
have to meet operational requirements defined by th
airlines. They are different from those found ine th
literature. In this work, two operational metrics assess
performances of a prognosis function are used:

the ratio of not justified removals which estimates
P(No-crossing|Alarm): this metric focuses on the
number of times where the prognosis function fails
when it announces a crossing (leading to a removal)

the ratio of justified removals which estimates
P(Alarm|Crossing): this metric is equivalent to the
proportion of good detection in the context of the
prognosis. It corresponds to the success probalofit
the prognosis function.

These prognosis performance metrics are based on:

e triggering an alarm. In our case, an alarm is &igg
when the estimated crossing probability is grettan
0.8 which gives rise to a removal.

« the availability of the sampled health indicatortiun
crossing the failure threshold.
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It appears that the assessment of prognosis peafarenis
based on the availability of observations up tdufai or
exceeding the critical threshold.

Such data are not (or rarely) available in the r@utical
field. The available data represent
degradation. Therefore, the application of the ¢me=d
metrics is not possible.

To compensate the lack of data with degradationis it
possible to simulate health indicator series upatiure or
up to a threshold corresponding to a degree ofcatit
degradation. The simulation is based on a deg@dati
model that represents the effect of the deteriomati
mechanism or degradation of a component or a system
the health indicator. Degradation models are dsediSn
the next section.

5. DEGRADATION M ODELS

The term “degradation” describes the irreversibleltion
of one or several characteristics of a componédate@ to
time, the operating time or an external cause. &higution
can be sudden or gradual, and its outcome is &alflifirthe
degradation is not stabilized over time).

In this paper, we focus on gradual evolution oftoarous

degradation since they represent 90% of the abdormay'

consumption causes.

The objective of degradation models is to charaethe
health
component in modeling the evolution of its degramato
the failure or trespassing of a critical threshaifficting the
performance.

Gradual degradation modeling considers severalilgess
states of the studied system or component. Diftestates
range from nominal operating condition to failurgough
intermediate states that do not affect criticalig tsystem
performance.

Two continuous degradation models are frequentlgdus
(Nikulin, 2010): the Gamma process and the Wiemecgss
with a positive trend. They represent the evolutioh
increasing deterioration or increasing on
respectively. They belong to the class of Levy peses
which are stochastic processes with independergrments.

In the case of Wiener process, the probability edrdasing
degradation on a time interval is not zero, whieln be a
drawback for some modeled systems.

On the other hand, the Gamma process is monotone

increasing and allows modeling degradation mechasis
that are inherently slow, continuous and increasivitp
independent increments.

Degradations, in our case, have a gradual evolutluoh is
growing and monotonous. It reflects the fact tiat health
state of the system cannot improve over time. Then@a

process has therefore been chosen to charactdrige t
evolution.

The Gamma process is a continuous state space and
increments are positive and independent. It presetiter

cases withouvery interesting features:

e itis possible to formulate a hypothesis abouaitsrage
trend (e.g. using expert opinions or human knowdgdg

e increments can be stationary or not. In the case of
stationary increments, it is a homogenous Gamma
process.

Non-stationary increments can model nonlinear diagran
evolution. This feature of the Gamma process ie@eht
that justifies his frequent use (Van Noortwijk, 200

The Gamma process consists of a form parame{®y &nd
a scale parameten)( So,(Xt)so is @ Gamma process if:

e X,=0
* (Xowo is a stochastic process with independent
increments

¢ For0 <h <t, the law of incrementX, — X;,) follows
a Gamma distribution I' (v(t) — v(h); u)

The density of the gamma distributidifv(t), u) is defined

u'®

indicator evolution from a given system orWith:

_ -1 -
th(x) = F(U(t)) xv(t) e “XI(O,OO)(x) 3)
_ (1 ifxeA
1) _{ 0 otherwise
r'(a) = [ z% ‘e ?dz (Gamma function)
It can be shown that:
v(t
Ex) = 20 ()
u
v(t
Var(X,) = % (%)

(X:)es0 is a process whose trajectories are almost surely
increasing,

average

e (X)¢s0 is a Markov process,

e The trajectories ofX admit a countable infinity of
jumps in any time interval,

e If Sis the failure threshold arftd= inf(t > 0: X, =
S) we have :

xv(t)—l “UX dy

S L (t)
PU>0:M&<D:I v ©)

o T(()

The homogenous Gamma process is a special case of t
Gamma process when the shape paraméter= ct with
c>0.
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The non-homogeneous three-parameter Gamma pracass iP(Alarm|Crossing)) in the case of EOC PHM algorithm
special case of the non-homogeneous Gamma prod#éss wrirst of all, it is necessary to describe the datailable for
an exponent on time (Van Noortwijk, 2009). The shap their estimate. The considered data are:

parameter has the following forn(t) = ct® (with b and ¢

strictly positive real). Estimated lubricant consumption values noted Ci(t),

represent the health indicator produced by EOC PHM
It is possible to obtain various degradation evolushapes algorithm (c.f. figure 1).

depending on the value of b (figure 5): Overconsumption noted SG(t), simulated using Gamma

« If b =1, the Gamma process is a homogeneous @ocegprocess chosen according to expert statementsbrcaunt

The process increments are stationary. The evalatio leak, in 90% cases, induced an increase in nominal

the degradation is linear. consumption of 0.1 I/h/month with a standard deorabof

e |If b <1, the Gamma process is a non-homogeneou%

d th lution of the degradation has %
Ic:)rggﬁﬁqsmﬁ:nsmpzevou ion of the degradation has information provided by the experts. 500 traje@srhave

been generated for a linear evolution (b = 1) byeerage

* Ifb>1, the Gamma process is a non-homogeneouss o 1 |/h all 100 flights and a standard deviatidr0.01 I/h
process and the evolution of the degradation has 2 fiight no. 100.

parabolic shape.

0.5

b=1 b>1 b<1 £ oaf |

) 8 x % 0.3 |

’ 5 % 0.2 |

t t t 8
i . 0.1 |
Figure 5. Example of Gamma processes evolutiob forl; _
b >1 and b <1 in the relationshift) = ct’. ot ‘ | |
o 100 200 300 400
flights

The parameter estimation of the Gamma process ean b Fiqure 6. Example of 500 overconsumption traieeori
realized using the moment’s method or the maximum 9 ' P P )

likelihood method (Roussignol, 2009). generated by simulation.

For given parameters, it is possible to generatuéon  « Pseudo observed » trajectoriemnotedPQ(t), have been
trajectories (paths). When the parameters of thenr@a built by adding the simulated overconsumption ahd t
process are known, the method to generate a toayeof  estimated consumption to get a degradation evalutiith
the Gamma process setting$) = cf® andu consisting oh  the desired propertie?O(t) = Ci(t)+ SG(t). Figure 7
observations is the following: represents these trajectories for the data from tthe

. . previous figures,
* generate nobservations time ¢

¢ simulate the realization of n-7 increments with

AX; =X, — Xo ~T(w(t) —v(ti_)iw) i=1..n 0.6/ |
* build the trajectory, = 0 etx,, = 27-; Ax;. < 0.4} |
If degradation data are not available, a commongatore is =~
to choose the Gamma process parameters in ordét to 0.2 |

experts’ statements. They generally give infornmataout
the trend, the variance and the shape of degradatiove. 0
The degradation shape corresponds to the accelewitthe : : :

degradation process with time. 0 100 200 300 400

flights
Based on such degradation model, the next secBon i ) )
dedicated to prognosis performance metrics estimato Figure 7. Example of « pseudo observed » Trajezgori
6. PROGNOSIS PERFORMANCE METRICS ESTIMATOR « Theoretical » trajectories CTH(t), describe the relevant

) ) ) o theoretical phenomenon. This translates into a aline
This section describes the estimation method of th@yolution of the lubricant consumption which is sintered
prognosis performance metrics (P(No-crossing|Alaamii  constant during normal operations (0.2 I/h). These

.01 I/h at the end of a month. Figure 6 represents
ajectories of the Gamma process generated from
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trajectories correspond to the simulated overcoimsiom
added to the average consumpti@Mj, CTH(t)= CM +
SCi(t). An example is given in figure 8.

0 100 200 300 400
flights

Figure 8. Example of « theoretical » trajectories.

The estimation procedure is:
For each “theoretical” trajectory:

* determine the instant (¢,) which corresponds to the
instant when the considered “theoretical” trajectory
CTH(t)cross the failure threshold.

¢ apply the prognosis function to observations of the
corresponding “pseudo observed” path within the
time interval [¢,-H-T, t, - H] to estimate the
probability that the trajectory crosses the failure
threshold at time ¢,

¢ if the estimated crossing probability exceeds a limit
of probability set at 0.8, an alarm is triggered and
the justified crossing counter is increment.

For each trajectory, this procedure has been apimm

Using these data, the estimation of each prognosig‘e timet, to the gnd o.f the observatiqn tim.e. This was
performance metric procedure is described in the twrepeated for all trajectories. Once all trajecttiave been

following paragraphs.

6.1.P(NO CROSSING|ALARM)

The estimate of P(No-crossing|Alarm) is, from npiéi
paths, to determine the proportion of alarms tiigdeby the
prognosis function while the real degradation iathc stays
below the failure threshold in the considered tiogizon
(H). To do this, the procedure is:

For each “pseudo observed” trajectory:

* determine the instant (#;) that initiate the prognosis
function,

e apply the prognosis function to observations that
belong in the interval [¢7- 7, ¢4,

* estimate the probability that observations cross the
failure threshold after time horizon # (at t; + H),

e if the estimated crossing probability exceeds a limit
set at 0.8, an alarm is triggered,

* in case of alarm, identify the “theoretical” path
corresponding to the considered “pseudo observed”
trajectory,

* check if the “theoretical” trajectory has crossed the
failure threshold at instant £; + AH. Increment not
justified crossing counter if this is not the case.

This procedure has been applied from the detetiioe tq

on each simulated trajectory. Once all trajectorae
considered, the ratio of unjustified crossings tlegiresents
an empirical estimate of P(No-crossing|Alarm) haserb
determined. This allowed observing the evolutionttuf

indicator over flights.

6.2.P(ALARM|CROSSING)

This indicator corresponds to the probability obddailure
prognosis.

considered, the ratio of justified crossings tlegiresents an
empirical estimate of P(Alarm|Crossing) has been
determined.

7. CASE STUDY : LUBRICANT OVER-CONSUMPTION
PROGNOSIS

The methodology to evaluate the performance of the
prognosis function has been applied to the EOC PHM
algorithm. Results are presented on figure 9 agdréi 10

for one engine on two different aircrafts.

Each figure is composed of three subfigures:

1. the first one represents the “pseudo observed”
trajectories for one engine, the failure threshold
(horizontal solid line), the detection threshold
(horizontal dashed line) from which the prognosis is
initiated, a threshold that indicates that 10% of
“theoretical” paths have crossed the failure
threshold (vertical dashed line on the left) and a
second threshold indicating that 90% of
“theoretical” paths have crossed the failure
threshold (vertical dotted line on the right).

2. the second one represents the ratio of unjustified
failure prognosis, P(No-crossing|Alarm), over flights
and the 10% and 90% thresholds.

3. the third subfigure represents the ratio of justified
failure prognosis, P(Alarm|Crossing), over flights
and the 10% and 90% thresholds.

The unjustified crossings ratios are not null. Thrapge
from 6% (figure 10), which is acceptable, up to entitan
40% (figure 9), which is not acceptable.

These unacceptable values are explained by thg natsrre
of estimated consumption. Depending on the learsioge
zone of the “pseudo observed” trajectories, thedahay be
more or less pronounced which has a direct impacthe
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crossing probability. It happens that the slopa tfajectory
is important and induces a crossing probabilityagge than
80%. However, as the estimated consumption fabsi

the trajectory in question does not cross the ifaitbreshold
and therefore gives rise to an unjustified failpregnosis
(unjustified removal).

Concerning the justified crossings proportionsytimerease
over flights to 100% once all paths are above tikire
threshold. The noisy nature of the estimated copsioms
has also a significant impact there. This is du¢hto fact
that certain trajectories go below the failure sivad for a

short time before crossing it again. s

However, these non-acceptable performances in tefri’s
(No-Crossing|Alarm), deserve to be nuanced. Itdssl
damaging to observe an unjustified alarm when the
“theoretical” crossing probability is close to 9@k@n when

it is approximately 10%. If the peak of the P(No-
crossing|Alarm) curve is close to the flight at%®0
threshold this is less damaging than if the pealearby the
flight at 10% threshold. In terms of justified cso®ys
ratios, P(Alarm|Crossing), deserve to be refineds lless
damaging than P(Alarm|Crossing) is low when
theoretical crossing probability is approximatelyed than
when the theoretical crossing probability is apprately
90%. If a large value of the P(Alarm|Crossing) euappear
between flights at 10% and 90% this is less dantatfian

if this value does not appear until after the ftigh90%. *

the.

The accuracy of estimated consumption has a dimgzact
on the performance of the prognosis function. thierefore
necessary to improve the accuracy of estimated
consumption in order to re-evaluate the performambeés is
discussed in the next section.

0 100 200 500
100 ‘ o i o .‘
50l Lo unjustified crossing ratio |
| | P(No-crossing|Alarm)
O L L1 L L L
0 100 200 300 400

Several
performance of the prognosis function:

engine 1 aircraft 5 : "pseudo observed" trajectories

.5 failure threshold .

detection threshold

300 400

500

justified crossing ratio
P(Alarm|Crossing)

400

300 500
flights
Figure 10. Engine 1 aircraft 5, « pseudo observed »

trajectories and associated prognosis performances.

7.1.Performance analysis and enhancement

proposals have been made to improve the

First, as mentioned above, stabilization of thecisien
estimated consumption. It appears clearly that the
fluctuation of the paths causes unjustified failure
forecasts or fail to forecast failure,

If this is not sufficient, the limit of probability
arbitrarily set to 0.8, which gives rise to an alaand
removal can be modified. Increasing this limit of
probability is likely to diminish the number of
unjustified crossing predictions,

The tuning of the history window sizeT)( or the
prognosis horizon sizéH].

1
engine 1 aircraft 4 : "pseudo obseved" trajectories
§ 0.5 failure threshold |
detection threshold
o ‘ L ‘ ‘
100 200 300 400
100 : . : :
X 50r 1 unjustified crossing ratio ~
0 ‘ o P(No-cro‘ssing|AIarm)‘
100 190 ‘ ZQO 390 4QO
X 50r ! | justified crossing ratio
o ‘ K P(AIarrplCrossing) ‘
100 200 300 400
flights

Figure 9. Engine 1 aircraft 4, « pseudo observed »

trajectories and associated prognosis performances.

However, the impact of the two last proposals carr®
assessed until the accuracy of the estimated cqtgms is
not improved.

In this perspective, corrections of consumptionehaeen
realized taken into account some missing fills. Sehe
improvements are to acting on the extraction ofri@amt
levels to improve the final estimate of consumption
Inaccuracies remain however. They are explainedhiey
omission of one or more filings when some flighase
missing.

These consumption estimates were used to estinhate t
performance of the prognosis function again. Thienegion
procedure remains unchanged. The results in figure
11Figure and figure 12 are presented in a similay and

on the same data as figure 9 and figure 10.

For engine 1 of aircraft 4 (figure 11), the resudtiier
changes appear poorer than before. This is agartalthe
estimated consumptions. It would appear that ofitiergs
than those already corrected have been omitteds Thi
explains the increases in consumption followed égreases
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which are probably due to a subsequent detectionisging
fills.

engine 1 aircraft 4 : "pseudo observed" trajectories

detection threshold
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100 : I — : :
e 50 | I unjustified crossing ratio |
°© A AX | P(No-crossing|Alarm)
O 1 L 1 1 1
0 100 200 300 400
100 ‘ ‘ ‘ . e ‘ . . ‘
< 50| | ! justified crossing ratio
| | P(Alarm|Crossing)
0 Il 1 Il Il Il
0 100 200 300 400
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Figure 11. Engine 1 aircraft 4, « pseudo observed »
trajectories and associated prognosis performances.

Conclusions are the same for engine 1 of aircrdfignire
12) with not justified crossing ratio of 98% jusefbre
crossing the failure threshold. This is due to fihet that,
due to noise, the trajectories are decreasing lpaesore
crossing the failure threshold. It follows that thejority of
crossing probabilities estimated on the historydein (T)
prior to this phenomenon are greater than 80% tieguh a
high proportion of unjustified crossings. It appeahat
results strongly depend of each engine and it iseasy to
have a general conclusion.

1

engine 1 aircraft 5 : "pseudo observed" trajectories

I detection threshold

0 100 200 300 400
100 : T — : _ —
< 50 , ' unjustified crossing ratio |
°© | | P(No-crossing|Alarm)
O 1 L 1 1 1
0 10 200 300 400
100 ‘ ‘ ‘ . f d ‘ . . ‘
° . /v justified crossing ratio ]
s 50 l P(Alarm|Crossing)
O L | L L L
0 100 200 300 400
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Figure 12. Engine 1 aircraft 5, « pseudo observed »
trajectories and associated prognosis performances.

8. CONCLUSION

In the aeronautical field, the formalization of PHiistems
and their performance requirements are defined feom
operational point of view. This often results thased
performance indicators are different from thoseiveer

from the literature. The performance evaluatiotoisadapt
indicators from the literature to industrial neeigo define
new ones. The adaptation of these indicators isngure
their relevance with regard to the expected peréomce
requirements.

The performance of PHM systems requirements defined
operators are the ratio of unjustified failure progis, P(No-
crossing|Alarm), and the ratio of justified failypeognosis,
P(Alarm|Crossing). The estimation of each of these
probabilities procedure was undertaken by the prsign
process of lubricant overconsumption. The requitai for
their estimate are: the estimated consumptionsulabed
overconsumption using Gamma process, “pseudo ai$erv
trajectories and “theoretical” trajectories. Thiashallowed
establishing a method to perform empirical estioratf the
performance of the prognosis function.

The estimation of performance indicators and thedyais of
the results have been illustrated by the maturatibtthe
prognosis function in the case of EOC PHM algorithm

Results show that:

e the accuracy of estimated consumptions have atdirec
and significant impact on the performance of the
prognosis function,

e prognosis is very sensitive to the noise of thenalig
which it uses to make the prognosis.

Extraction of lubricant levels improved partiallyabilized
consumption estimate. This is not sufficient foe thse of
the prognosis function. We should continue in thigction
in order to correct missing fills. Once these doather
optimizations may be considered:

e the limit of probability, arbitrarily set to 0.8, hich
gives rise to an alarm and a removal could be op&im

e the size of the history window, T, and/or the progja
horizon, H, could be tune in order to improve r&sul

Another possible improvement would be to change the
prognosis method. This perspective is being studied
second prognosis function using patrticle filterimgs been
developed. After maturation of the latter, the perfance of
the two prognosis methods (linear regression amnticlea
filtering) will be compared.

NOMENCLATURE
BS Brier Score
Ci(t)  estimated lubrication consumption values

CM average consumption

CTHi(t) theoretical trajectories

EOC engine Oil Consumption

H prognosis horizon size

P(Alarm| Crossing) ratio of justified removals
P(No Crossing| Alarm) ratio of not justified removals
PHM  Prognostics and Health Management

POIi(t) Pseudo Observed trajectories



EUROPEANCONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2014

ROC Receiver Operating Characteristic Saxena A., Celaya J., Goebel K., Saha B. et Saf2089).

RUL  Remaining Useful Life Evaluating Algorithm Performance Metrics Tailorexat f

S filure threshold Prognostics. IEEE Aerospace Conference, Big Sky

SCi(t) simulated overconsumption Montana, pp 1-13.
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