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ABSTRACT 

In the aeronautical field, one of the major concerns is the 
availability of systems. To ensure availability, Prognosis 
and Health Management algorithms are developed. The aim 
of these algorithms is twofold. The first one is to detect and 
locate degradation premise of “no go” condition occurrence. 
The second one is to predict the health state of the system at 
a given time horizon. Before introducing PHM algorithms 
in operation, it is necessary to assess their performances. 
This is accomplished thank to a “maturation” phase. This 
phase consists in defining the performance metrics from an 
operational relevance point of view, in estimating this 
performance indicator and finally in proposing 
improvements to meet the airline companies requirements. 
We consider that the maturation of the detection function 
has already been completed and that we are interested in the 
maturation of the prognosis function. This paper deals with 
the performance assessment of a prognosis function using 
two operational metrics. A performance estimation 
procedure is developed. It is applied to the prognosis of 
turbofan engine lubricant over-consumption. 

The considered prognosis function is the probability to cross 
“no go” condition threshold at a given time horizon. This 
prediction is made thanks to an indicator of the health state 
of the system. Then it is compared with a threshold in order 
to trigger an alarm and give rise to a removal if necessary. 
Within this framework, we have defined two operational 
metrics for assessing the performance of this prognosis 
function. These metrics are the “ratio of justified removals” 

(P(Alarm|Crossing)) and the “ratio of not justified 
removals” (P(No-crossing|Alarm)). These metrics require 
the availability of observed lubricant over-consumption to 
compare the prediction results to the observed values. In the 
absence of lubricant over-consumption values in operation, 
a way is to simulate values. 

This communication describes the procedure to estimate the 
performance of the prognosis function and presents the 
obtained results. The performances estimations trigger 
improvements. It appears that we have to enhance the 
precision of the considered health indicator before 
continuing to assess the performance of the considered 
prognosis function. 

1. INTRODUCTION  

With the context of air traffic growth, the availability of 
systems is a major challenge for airlines. To minimize non-
programmed downtime, “no go” condition occurrence, 
impacting the decision of aircraft take-off, are subject to 
monitoring. 

PHM systems have been developed by Safran Snecma. The 
introduction of these PHM systems in operation can be 
carried out only after having reached a certain maturity 
level. The required maturity level before operation is based 
on performance requirements. To achieve this level and thus 
meet the requirements, a maturation procedure (hmad, 2012) 
is applied to these PHM systems. 

The maturation process has already applied to detection 
functions. It allowed defining performance indicators that 
meet the operational airlines needs. In this paper, we focus 
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on the maturation of the prognosis function applied to the 
monitoring of the lubrication system. 

The originality of this paper is to work on actual airline 
operating concerns and to propose solutions from an 
operational relevance point of view. 

This communication is organized as follows: as a first step, 
the Engine Oil Consumption algorithm (EOC) that monitors 
the lubrication system is described. The considered 
prognosis function developed by Safran is presented next. In 
order to estimate the performance of this function, the 
prognosis performance indicators or metrics are defined in 
section 4. Their estimation requires the presence of 
degradations, which were simulated based on gamma 
process as discussed in section 5. Experimental results in the 
context of the prognosis of lubricant over-consumption are 
reported in section 6. To conclude this paper we summarize 
the main concerns and present possible opportunities. 

2. ENGINE OIL CONSUMPTION PHM  ALGORITHM  

The EOC PHM algorithm allows monitoring of the lubricant 
consumption in automatic way in order to early detect any 
abnormal consumptions (Demaison, 2010). This represents 
a major challenge because deterioration of the lubrication 
system has non-negligible consequences on the execution of 
the turbojet engine. 

Estimated lubricant consumption represents the indicator of 
the health status of the lubrication system. This indicator is 
used by the detection and prognosis functions in order to 
detect and prevent abnormal consumptions. 

EOC PHM algorithm principle is based on the monitoring 
of the lubricant level evolution in the tank. It estimates the 
consumption at iso-condition on several flights, assuming a 
normalized operating environment. This estimator allows a 
better estimation of the lubricant consumption compared 
with a simple average consumption estimator calculated at 
each engine maintenance. 

Lubricant levels in the tank after landing of a flight and 
before take-off of the next flight are measured to detect any 
lubricant filling performed by the maintenance service 
between successive flights. Once the fillings are detected 
and quantified, they are used to correct lubricant levels. This 
correction consists in subtracting the amount of estimated 
lubricant for each filling to the measured lubricant levels. 
After this correction, consumption estimation consists in 
determining the slope of the regression line of lubricant 
levels sampled on several flights. 

The available data represent flight cycles (take-off, cruise, 
landing) on ten engines from five aircraft. No abnormal 
consumption has been observed during the operation. All of 
the estimated lubricant consumption represents normal 
consumptions. These nominal consumptions are distributed 
around an average value of 0.18 l/h or 0.2 l/h depending on 

the engines. Figure 1 represents the estimated lubricant 
consumption on two engines from different aircraft. 

Two consumption limits are considered in the maintenance 
manual: 
• abnormal consumption: 0.38 l/h  

• strongly drifted consumption: 0.76 l/h.  

 

Figure 1. Example of estimated lubricant consumptions. 

EOC PHM algorithm allows guaranteeing the health status 
of the lubrication system by monitoring the different 
possible causes of abnormal consumption. Experience 
shows that abnormal consumption can evolve suddenly or 
gradually up to cross the abnormal consumption (0.38 l/h) 
and the strongly drifted consumption thresholds (0.76 l/h). 

According to experts, the gradual evolution of consumption 
translates into an increase in lubricant consumption of about 
0.1 l/h per month and represents 90% of abnormal 
consumption cases. So we will focus on such evolution even 
if it has not been yet observed on collected data. 

3. PROGNOSIS FUNCTION PRINCIPLE  

The considered prognosis function consists in predicting the 
probability that the indicator of the health status cross a 
failure threshold at a given operational time horizon. 

In operation, the prognosis function is triggered after the 
detection of a degradation premise. Detection takes place 
when the health indicator crosses a detection threshold 
(figure 2). From this moment noted “td”, the prognosis is 
initiated. 

 

Figure 2. Illustration of the prognosis function initiation. 
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The prognosis function aims to estimate the probability to 
cross a failure threshold at a time horizon H based on a 
history of size T. The crossing probability estimation from td 
is performed by comparing the slope of the health indicator 
with the necessary slope (critical slope) to cross the failure 
threshold at td + H. 

The health indicator slope is estimated using a linear 
regression on a window of size T. Then, the critical slope to 
cross the threshold at td + H is determined from the point at 
instant td, intercept the value regression at this time, and 
point at instant td + H, intercept the failure threshold as 
shown by figure 3. 

Under the hypothesis that these two slopes are normal 
random variables of unknown variance: these two slopes are 
compared using a Student test. The result of the test allows 
estimating the probability that the slope of the health 
indicator is lower or higher than the critical slope. This is 
equivalent to the probability that the health indicator crosses 
the failure threshold at time horizon H. 

 

Figure 3.Illustration of the prognosis function principle. 
 

The prognosis function input is composed of observations of 
the health indicator and its output is the estimated crossing 
probability. The prognosis function parameters are: 

• the observations history size: T,  

• the prognosis horizon size: H,  

• the failure threshold, 

• the consumption samples within the window. 

In the abnormal consumptions prognosis case, the health 
indicator is the lubricant consumption estimated by EOC 
PHM algorithm over several flights. As the prognosis is 
initiated after having crossed the detection threshold, the 
observations history size, T, is 1 month of operation: 100 
flights (taking into account the number of days on a 
calendar month). When detection occurs before, the 
observations history size is equal to the available number of 
flights until detection. The prognosis horizon, H, is set at 20 
flights, 4 operating days in this case. The failure threshold is 
set to 0.38 l/h which corresponds to the abnormal 
consumption threshold from the maintenance manual. 

The objective is to estimate the performances of this 
prognosis function and compare it to the airline company’s 
expectations. To do this, some performance metrics are 
needed. The next section focuses on the prognosis 
performance indicators or metrics. 

4. PROGNOSIS PERFORMANCE I NDICATORS OR M ETRICS 

According to (Jardine, 2006), regardless of the application 
domain, there are mainly two prognosis metrics or 
indicators. The first consists in predicting the remaining 
time before the failure of a component or system knowing 
the past and present operating conditions. This metric is 
commonly named Remaining Useful Life (RUL). The 
second metric consists in predicting the probability that a 
component or system operates without failure during a 
given horizon knowing the past and present operating 
conditions (crossing probability). 

In (Dragomir, 2008), the author states that it is important to 
differentiate prognosis metrics (or indicators) and prognosis 
performance metrics (or indicators). 

These prognosis metrics define the nature of the realized 
prognosis: 

• “deterministic” prognosis for remaining useful life 
(RUL) 

• “probabilistic” prognosis for the crossing probability. 

The performances indicators of a prognosis function depend 
on the nature of the realized prognosis. That is why two 
classes of prognosis performance metrics are encountered in 
the literature. The first class is related to “deterministic” 
prognosis approach (RUL). This class is discussed a lot in 
the literature (Si, 2011) (Sikorska, 2011). The second class 
is related to “probabilistic” prognosis metrics (crossing 
probability) and is little represented in the literature. 

In the literature, prognosis performance metrics based on the 
RUL are numerous. (Saxena, 2008) has developed a state of 
the art of these metrics from different domains 
(meteorology, medicine, finance, automobile, 
aeronautics...). Several metrics are discussed in 
(Vachtsevanos, 2006) and (Saxena, 2009). Traditional 
metrics such as bias, deviation, mean squared error... may 
be used. Other less conventional are also used as accuracy, 
precision and timeliness...  

Prognosis performance metrics associated with the 
“probabilistic” prognosis are less numerous and come 
mainly from the meteorological field where this kind of 
prognosis is frequently used. The first idea to evaluate the 
performance of any prediction function is to estimate the 
prediction error and the mean squared error of the difference 
between predictions and observations is generally 
considered. A similar metric exists within the 
“probabilistic” prognosis framework. This metric is named 
Brier Score (BS) (Brier, 1950). 

0 td-T td td+H
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The Brier score represents the mean squared error of the 
“probabilistic” prognosis: 

 

 

(1) 

with : 

N: the number of predictions, 
pi: the crossing probability with threshold S, estimated at 
time tp and for a given horizon H. pi=P(X(tp+H)>S|t=t p) 
oi: the observed probability which is equal to 1 if there is a 
crossing and 0 otherwise. 

The Brier score is between 0 and 1, the perfect score being 
0. 

According to (Candille, 2005) “probabilistic” prognosis 
functions must meet two criteria: 

• reliability  indicates to what extent the predicted 
probabilities are consistent with observations (crossings 
threshold). If the frequency of threshold crossing is 
larger or smaller than predictions, predictions are, 
respectively, underestimated or overestimated, 

• resolution allows to assess the capacity of a prognosis 
function to separate multiple events to predict. The 
resolution of a prognosis function is high when 
predictions distribution corresponds to the observations 
distribution. 

Estimation of reliability and resolution of a prognosis 
function is possible through the Brier Score decomposition 
(Murphy, 1973). The latter can be decomposed into three 
components (BS = reliability - resolution + uncertainty): 

 

 

(2) 

where a sample of N predictions is separated into T classes 
according to the predicted probabilities pk (for example pi 
belongs to: 0% - 5%; 5%-10%;...; 95%-100%). Each class 
contains nk predicted probabilities (pk). �̅k corresponds to the 
observed frequency of class k occurrence and �̅ corresponds 
to the average rate of positive samples over the whole data 
set. 

The first two terms of BS have been defined previously. The 
third one is named uncertainty. The uncertainty allows 
quantifying the intrinsic variability of the observations. It is 
not used as a prognosis performance metric. It corresponds 
to the variance of a Bernoulli law of parameter �̅. 

It is possible to get an idea of the reliability using a 
reliability diagram (figure 4) which represents graphically 
the reliability of a prognosis function (Bröcker, 2007). This 
diagram consists in drawing (�̅k) observed frequencies of 
events (e.g. crossing threshold) on the basis of the predicted 

probabilities pk for these events. The resulting curve is 
compared to the diagonal of the diagram. The diagonal 
corresponds to predictions in perfect harmony with crossing 
observations. The points under (over) the diagonal indicate 
that predictions were overestimated (underestimated 
respectively). 

 

Figure 4. Example of reliability diagram. 
 

It is possible to have an idea of the prognosis function 
resolution using a ROC curve (Ebert, 2013). To do this, the 
prognosis should be reduced to a decision problem based on 
the estimated crossing probability. This implies that there is 
a decision rule that allows classifying the estimated 
probabilities in two classes (crossing or no crossing). The 
ROC curve allows characterizing the ability of a prognosis 
function to differentiate two categories of events which is 
also the objective of the resolution. Better the performance 
of the ROC curved, better the resolution of the prognosis 
function. 

In the aeronautical field, prognosis performance indicators 
have to meet operational requirements defined by the 
airlines. They are different from those found in the 
literature. In this work, two operational metrics to assess 
performances of a prognosis function are used: 

• the ratio of not justified removals which estimates 
P(No-crossing|Alarm): this metric focuses on the 
number of times where the prognosis function fails 
when it announces a crossing (leading to a removal), 

• the ratio of justified removals which estimates 
P(Alarm|Crossing): this metric is equivalent to the 
proportion of good detection in the context of the 
prognosis. It corresponds to the success probability of 
the prognosis function. 

These prognosis performance metrics are based on: 

• triggering an alarm. In our case, an alarm is triggered 
when the estimated crossing probability is greater than 
0.8 which gives rise to a removal.  

• the availability of the sampled health indicator until 
crossing the failure threshold. 
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It appears that the assessment of prognosis performance is 
based on the availability of observations up to failure or 
exceeding the critical threshold. 

Such data are not (or rarely) available in the aeronautical 
field. The available data represent cases without 
degradation. Therefore, the application of the presented 
metrics is not possible. 

To compensate the lack of data with degradation, it is 
possible to simulate health indicator series up to failure or 
up to a threshold corresponding to a degree of critical 
degradation. The simulation is based on a degradation 
model that represents the effect of the deterioration 
mechanism or degradation of a component or a system on 
the health indicator. Degradation models are discussed in 
the next section. 

5. DEGRADATION M ODELS 

The term “degradation” describes the irreversible evolution 
of one or several characteristics of a component related to 
time, the operating time or an external cause. This evolution 
can be sudden or gradual, and its outcome is failure (if the 
degradation is not stabilized over time). 

In this paper, we focus on gradual evolution of continuous 
degradation since they represent 90% of the abnormal 
consumption causes. 

The objective of degradation models is to characterize the 
health indicator evolution from a given system or 
component in modeling the evolution of its degradation to 
the failure or trespassing of a critical threshold affecting the 
performance. 

Gradual degradation modeling considers several possible 
states of the studied system or component. Different states 
range from nominal operating condition to failure through 
intermediate states that do not affect critically the system 
performance. 

Two continuous degradation models are frequently used 
(Nikulin, 2010): the Gamma process and the Wiener process 
with a positive trend. They represent the evolution of 
increasing deterioration or increasing on average 
respectively. They belong to the class of Levy processes 
which are stochastic processes with independent increments. 

In the case of Wiener process, the probability of decreasing 
degradation on a time interval is not zero, which can be a 
drawback for some modeled systems. 

On the other hand, the Gamma process is monotone 
increasing and allows modeling degradation mechanisms 
that are inherently slow, continuous and increasing with 
independent increments. 

Degradations, in our case, have a gradual evolution which is 
growing and monotonous. It reflects the fact that the health 
state of the system cannot improve over time. The Gamma 

process has therefore been chosen to characterize this 
evolution. 

The Gamma process is a continuous state space and 
increments are positive and independent. It presents other 
very interesting features: 

• it is possible to formulate a hypothesis about its average 
trend (e.g. using expert opinions or human knowledge), 

• increments can be stationary or not. In the case of 
stationary increments, it is a homogenous Gamma 
process. 

Non-stationary increments can model nonlinear degradation 
evolution. This feature of the Gamma process is a benefit 
that justifies his frequent use (Van Noortwijk, 2009). 

The Gamma process consists of a form parameter (v(t)) and 
a scale parameter (u). So, (Xt)t≥0 is a Gamma process if: 

• X� = 0  

• (X�)���  is a stochastic process with independent 
increments 

• For	0 ≤ h ≤ t, the law of increment (�� − ��) follows 
a Gamma distribution : 	�( (!) −  (ℎ); $) 

The density of the gamma distribution �( (!), $) is defined 
by: 

 
 

(3) 

With: 

 I'(x) = ) 1			if	x ∈ A
			0	otherwise3 

 �(4) = 5 6789:8;<6∞

�   (Gamma function) 

It can be shown that: 

 
 

(4) 

 
 

(5) 

• (��)��� is a process whose trajectories are almost surely 
increasing, 

• (��)��� is a Markov process, 

• The trajectories of X admit a countable infinity of 
jumps in any time interval, 

• If S is the failure threshold and � = ��=(! > 0 ∶ �� ≥�) we have : 

 
 

(6) 

The homogenous Gamma process is a special case of the 
Gamma process when the shape parameter v(t) = ct with 
c>0. 

=�!(A) =
$ (!)

�( (!)) A 
(!)−1	:−$A B(0,∞)(A) 

E(Xt) =  (t)
u  

Var(Xt) =  (t)
u²  

I(� > !) = I(�! < �) = K $ (!)
�( (!)) A (!)−1	:−$A

�

0
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The non-homogeneous three-parameter Gamma process is a 
special case of the non-homogeneous Gamma process with 
an exponent on time (Van Noortwijk, 2009). The shape 
parameter has the following form v(t) = ctb (with b and c 
strictly positive real). 

It is possible to obtain various degradation evolution shapes 
depending on the value of b (figure 5): 

• If b = 1, the Gamma process is a homogeneous process. 
The process increments are stationary. The evolution of 
the degradation is linear. 

• If b < 1, the Gamma process is a non-homogeneous 
process and the evolution of the degradation has a 
logarithmic shape. 

• If b > 1, the Gamma process is a non-homogeneous 
process and the evolution of the degradation has a 
parabolic shape. 

 

Figure 5. Example of Gamma processes evolution for b = 1; 
b >1 and b <1 in the relationship v(t) = ctb. 

 
The parameter estimation of the Gamma process can be 
realized using the moment’s method or the maximum 
likelihood method (Roussignol, 2009). 

For given parameters, it is possible to generate evolution 
trajectories (paths). When the parameters of the Gamma 
process are known, the method to generate a trajectory of 
the Gamma process settings v(t) = ctb and u consisting of n 
observations is the following: 

• generate n observations time ti 
• simulate the realization of n-1 increments with 

 ∆�V = ��W −  ��WXY ~ �( (!V) −  (!V89); $)  � = 1. . . � 

• build the trajectory A� = 0 et A\ = ∑ ∆AV\V^9 . 

If degradation data are not available, a common procedure is 
to choose the Gamma process parameters in order to fit 
experts’ statements. They generally give information about 
the trend, the variance and the shape of degradation curve. 
The degradation shape corresponds to the acceleration of the 
degradation process with time. 

Based on such degradation model, the next section is 
dedicated to prognosis performance metrics estimator. 

6. PROGNOSIS PERFORMANCE METRICS ESTIMATOR  

This section describes the estimation method of the 
prognosis performance metrics (P(No-crossing|Alarm) and 

P(Alarm|Crossing)) in the case of EOC PHM algorithm. 
First of all, it is necessary to describe the data available for 
their estimate. The considered data are:  

Estimated lubricant consumption values, noted Ci(t), 
represent the health indicator produced by EOC PHM 
algorithm (c.f. figure 1).  

Overconsumption, noted SCi(t), simulated using Gamma 
process chosen according to expert statements. A lubricant 
leak, in 90% cases, induced an increase in nominal 
consumption of 0.1 l/h/month with a standard deviation of 
0.01 l/h at the end of a month. Figure 6 represents 
trajectories of the Gamma process generated from 
information provided by the experts. 500 trajectories have 
been generated for a linear evolution (b = 1) by an average 
of 0.1 l/h all 100 flights and a standard deviation of 0.01 l/h 
at flight no. 100. 

 

Figure 6. Example of 500 overconsumption trajectories 
generated by simulation. 

 
« Pseudo observed » trajectories, noted POi(t), have been 
built by adding the simulated overconsumption and the 
estimated consumption to get a degradation evolution with 
the desired properties, POi(t) = Ci(t)+ SCi(t). Figure 7 
represents these trajectories for the data from the two 
previous figures, 

 

Figure 7. Example of « pseudo observed » Trajectories. 
 

« Theoretical » trajectories, CTHi(t), describe the relevant 
theoretical phenomenon. This translates into a linear 
evolution of the lubricant consumption which is considered 
constant during normal operation (≈ 0.2 l/h). These 
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trajectories correspond to the simulated overconsumption 
added to the average consumption (CM), CTHi(t)= CM + 
SCi(t). An example is given in figure 8. 

 

Figure 8. Example of « theoretical » trajectories. 
 

Using these data, the estimation of each prognosis 
performance metric procedure is described in the two 
following paragraphs. 

6.1. P(NO CROSSING|ALARM) 

The estimate of P(No-crossing|Alarm) is, from multiple 
paths, to determine the proportion of alarms triggered by the 
prognosis function while the real degradation indicator stays 
below the failure threshold in the considered time horizon 
(H). To do this, the procedure is: 

For each “pseudo observed” trajectory: 

• determine the instant (td) that initiate the prognosis 
function, 

• apply the prognosis function to observations that 
belong in the interval [td - T, td], 

• estimate the probability that observations cross the 
failure threshold after time horizon H (at td + H), 

• if the estimated crossing probability exceeds a limit 
set at 0.8, an alarm is triggered, 

• in case of alarm, identify the “ theoretical”  path 
corresponding to the considered “pseudo observed”  
trajectory, 

• check if the “ theoretical”  trajectory has crossed the 
failure threshold at instant td + H. Increment not 
justified crossing counter if this is not the case. 

This procedure has been applied from the detection time td 
on each simulated trajectory. Once all trajectories are 
considered, the ratio of unjustified crossings that represents 
an empirical estimate of P(No-crossing|Alarm) has been 
determined. This allowed observing the evolution of this 
indicator over flights. 

6.2. P(ALARM|CROSSING) 

This indicator corresponds to the probability of good failure 
prognosis.  

The estimation procedure is:  

For each “theoretical” trajectory: 

• determine the instant (tp) which corresponds to the 
instant when the considered “ theoretical”  trajectory 
CTHi(t)cross the failure threshold. 

• apply the prognosis function to observations of the 
corresponding “ pseudo observed”  path within the 
time interval [tp-H-T, tp - H] to estimate the 
probability that the trajectory crosses the failure 
threshold at time tp. 

• if the estimated crossing probability exceeds a limit 
of probability set at 0.8, an alarm is triggered and 
the justified crossing counter is increment. 

For each trajectory, this procedure has been applied from 
the time tp to the end of the observation time. This was 
repeated for all trajectories. Once all trajectories have been 
considered, the ratio of justified crossings that represents an 
empirical estimate of P(Alarm|Crossing) has been 
determined. 

7. CASE STUDY : LUBRICANT OVER-CONSUMPTION 

PROGNOSIS 

The methodology to evaluate the performance of the 
prognosis function has been applied to the EOC PHM 
algorithm. Results are presented on figure 9 and figure 10 
for one engine on two different aircrafts. 

Each figure is composed of three subfigures: 

1. the first one represents the “pseudo observed”  
trajectories for one engine, the failure threshold 
(horizontal solid line), the detection threshold 
(horizontal dashed line) from which the prognosis is 
initiated, a threshold that indicates that 10% of 
“ theoretical”  paths have crossed the failure 
threshold (vertical dashed line on the left) and a 
second threshold indicating that 90% of 
“ theoretical”  paths have crossed the failure 
threshold (vertical dotted line on the right). 

2. the second one represents the ratio of unjustified 
failure prognosis, P(No-crossing|Alarm), over flights 
and the 10% and 90% thresholds. 

3. the third subfigure represents the ratio of justified 
failure prognosis, P(Alarm|Crossing), over flights 
and the 10% and 90% thresholds. 

The unjustified crossings ratios are not null. They range 
from 6% (figure 10), which is acceptable, up to more than 
40% (figure 9), which is not acceptable. 

These unacceptable values are explained by the noisy nature 
of estimated consumption. Depending on the learning slope 
zone of the “pseudo observed” trajectories, the latter may be 
more or less pronounced which has a direct impact on the 
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crossing probability. It happens that the slope of a trajectory 
is important and induces a crossing probability greater than 
80%. However, as the estimated consumption falls sharply, 
the trajectory in question does not cross the failure threshold 
and therefore gives rise to an unjustified failure prognosis 
(unjustified removal). 

Concerning the justified crossings proportions, they increase 
over flights to 100% once all paths are above the failure 
threshold. The noisy nature of the estimated consumptions 
has also a significant impact there. This is due to the fact 
that certain trajectories go below the failure threshold for a 
short time before crossing it again. 

However, these non-acceptable performances in terms of P 
(No-Crossing|Alarm), deserve to be nuanced. It is less 
damaging to observe an unjustified alarm when the 
“theoretical” crossing probability is close to 90% than when 
it is approximately 10%. If the peak of the P(No-
crossing|Alarm) curve is close to the  flight at 90% 
threshold this is less damaging than if the peak is nearby the 
flight at 10% threshold. In terms of justified crossings 
ratios, P(Alarm|Crossing), deserve to be refined. It is less 
damaging than P(Alarm|Crossing) is low when the 
theoretical crossing probability is approximately 10% than 
when the theoretical crossing probability is approximately 
90%. If a large value of the P(Alarm|Crossing) curve appear 
between flights at 10% and 90% this is less damaging than 
if this value does not appear until after the flight to 90%.  

The accuracy of estimated consumption has a direct impact 
on the performance of the prognosis function. It is therefore 
necessary to improve the accuracy of estimated 
consumption in order to re-evaluate the performance. This is 
discussed in the next section. 

 

Figure 9. Engine 1 aircraft 4, « pseudo observed » 
trajectories and associated prognosis performances. 

 

Figure 10. Engine 1 aircraft 5, « pseudo observed » 
trajectories and associated prognosis performances. 

7.1. Performance analysis and enhancement 

Several proposals have been made to improve the 
performance of the prognosis function: 

• First, as mentioned above, stabilization of the precision 
estimated consumption. It appears clearly that the 
fluctuation of the paths causes unjustified failure 
forecasts or fail to forecast failure, 

• If this is not sufficient, the limit of probability, 
arbitrarily set to 0.8, which gives rise to an alarm and 
removal can be modified. Increasing this limit of 
probability is likely to diminish the number of 
unjustified crossing predictions, 

• The tuning of the history window size (T) or the 
prognosis horizon size (H). 

However, the impact of the two last proposals cannot be 
assessed until the accuracy of the estimated consumptions is 
not improved. 

In this perspective, corrections of consumption have been 
realized taken into account some missing fills. These 
improvements are to acting on the extraction of lubricant 
levels to improve the final estimate of consumption. 
Inaccuracies remain however. They are explained by the 
omission of one or more fillings when some flights are 
missing. 

These consumption estimates were used to estimate the 
performance of the prognosis function again. The estimation 
procedure remains unchanged. The results in figure 
11Figure and figure 12 are presented in a similar way and 
on the same data as figure 9 and figure 10. 

For engine 1 of aircraft 4 (figure 11), the results after 
changes appear poorer than before. This is again due to the 
estimated consumptions. It would appear that other fillings 
than those already corrected have been omitted. This 
explains the increases in consumption followed by decreases 

0 100 200 300 400
0

0.5

1

 

 

l /
 h

engine 1 aircraft 4 : "pseudo obseved" trajectories

0 100 200 300 400
0

50

100

%

 

 

unjustified crossing ratio
 P(No-crossing|Alarm)

0 100 200 300 400
0

50

100

flights

%

 

 

justified crossing ratio
 P(Alarm|Crossing)

failure threshold

detection threshold

0 100 200 300 400 500
0

0.5

1

 

 

l /
 h

engine 1 aircraft 5 : "pseudo observed" trajectories

0 100 200 300 400 500
0

50

100

%

 

 

unjustified crossing ratio
P(No-crossing|Alarm)

0 100 200 300 400 500
0

50

100

flights

%

 

 

justified crossing ratio
P(Alarm|Crossing)      

failure threshold

detection threshold



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

9 

which are probably due to a subsequent detection of missing 
fills. 

 

Figure 11. Engine 1 aircraft 4, « pseudo observed » 
trajectories and associated prognosis performances. 

 
Conclusions are the same for engine 1 of aircraft 5 (figure 
12) with not justified crossing ratio of 98% just before 
crossing the failure threshold. This is due to the fact that, 
due to noise, the trajectories are decreasing just before 
crossing the failure threshold. It follows that the majority of 
crossing probabilities estimated on the history window (T) 
prior to this phenomenon are greater than 80% resulting in a 
high proportion of unjustified crossings. It appears that 
results strongly depend of each engine and it is not easy to 
have a general conclusion. 

 

Figure 12. Engine 1 aircraft 5, « pseudo observed » 
trajectories and associated prognosis performances. 

8. CONCLUSION  

In the aeronautical field, the formalization of PHM systems 
and their performance requirements are defined from an 
operational point of view. This often results that used 
performance indicators are different from those derived 

from the literature. The performance evaluation is to adapt 
indicators from the literature to industrial needs or to define 
new ones. The adaptation of these indicators is to ensure 
their relevance with regard to the expected performance 
requirements.  

The performance of PHM systems requirements defined by 
operators are the ratio of unjustified failure prognosis, P(No-
crossing|Alarm), and the ratio of justified failure prognosis, 
P(Alarm|Crossing). The estimation of each of these 
probabilities procedure was undertaken by the prognosis 
process of lubricant overconsumption. The required data for 
their estimate are: the estimated consumptions, simulated 
overconsumption using Gamma process, “pseudo observed” 
trajectories and “theoretical” trajectories. This has allowed 
establishing a method to perform empirical estimation of the 
performance of the prognosis function. 

The estimation of performance indicators and the analysis of 
the results have been illustrated by the maturation of the 
prognosis function in the case of EOC PHM algorithm. 

Results show that: 

• the accuracy of estimated consumptions have a direct 
and significant impact on the performance of the 
prognosis function, 

• prognosis is very sensitive to the noise of the signal 
which it uses to make the prognosis. 

Extraction of lubricant levels improved partially stabilized 
consumption estimate. This is not sufficient for the use of 
the prognosis function. We should continue in this direction 
in order to correct missing fills. Once these done, other 
optimizations may be considered: 

• the limit of probability, arbitrarily set to 0.8, which 
gives rise to an alarm and a removal could be optimize, 

• the size of the history window, T, and/or the prognosis 
horizon, H, could be tune in order to improve results . 

Another possible improvement would be to change the 
prognosis method. This perspective is being studied. A 
second prognosis function using particle filtering has been 
developed. After maturation of the latter, the performance of 
the two prognosis methods (linear regression and particle 
filtering) will be compared. 

NOMENCLATURE  

BS  Brier Score 
Ci(t) estimated lubrication consumption values 
CM  average consumption 
CTHi(t) theoretical trajectories  
EOC engine Oil Consumption 
H prognosis horizon size 
P(Alarm| Crossing) ratio of justified removals 
P(No Crossing| Alarm) ratio of not justified removals 
PHM Prognostics and Health Management 
POi(t) Pseudo Observed trajectories 
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ROC Receiver Operating Characteristic 
RUL  Remaining Useful Life 
S failure threshold 
SCi(t) simulated overconsumption 
T observations history size 
td detection time (initiation of the prognosis function) 
tp theoretical path failure threshold crossing instant 
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