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ABSTRACT

The objective and originality of this work are twofold. On one
hand, it considers the degradation modeling and Remaining
Useful Life (RUL) estimation for the closed-loop dynamic
systems, which have not been addressed extensively in the
literature. On the other hand, the paper examines how the
prognosis result impacts the maintenance process. Indeed,
due to their natural ageing and/or non desired effects of the
operating condition, actuators deal with the loss of effective-
ness which is a source of performance degradation of closed-
loop system. In this paper, we consider a control system
with classical Proportional-Integral-Derivative controller and
stochastically deteriorating actuator. It is assumed that the
actuators are subject to shocks that occur randomly in time.
An integrated model is proposed which jointly describes the
states of the controlled process and the actuators degradation.
The RUL can be estimated by a probabilistic approach which
consists of two steps. First, the system state regarding the
available information is estimated online by Particle Filtering
method. Then, the RUL of the system is estimated by Monte
Carlo simulation. To illustrate the approach and highlight the
impact of the prognosis result on the maintenance process, a
well-known simulated tank level control system is used. The
maintenance decision rule is based on the quantiles of RUL
histogram. In order to evaluate the performance of the main-
tenance policy, a cost model is developed.

1. INTRODUCTION

Respecting the growing demand of safety, reliability and avail-
ability of industrial production process, research activity on
maintenance modeling has intensively evolved during the last
decades. In the context of Condition-Based Maintenance (CBM),
system health monitoring information is used to determine its
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current status and based on this information one can perform
maintenance actions to avoid failure (Dieulle, Bérenguer, Grall,
& Roussignol, 2003; Van Noortwijk, 2009; Huynh, Barros,
& Bérenguer, 2012). However, the CBM approach does not
consider specific knowledge about future usage of the sys-
tem which can be useful information to improve the deci-
sion marking (Khoury, Deloux, Grall, & Berenguer, 2013).
In this way, a predictive maintenance which combines the
prognosis and CBM maintenance seem to be an appropriate
approach (Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2006;
Do Van, Levrat, Voisin, Iung, et al., 2012).

Generally, prognosis is defined as the prediction of future
characteristic of the system such the Remaining Useful Life
(RUL) (Si, Wang, Hu, & Zhou, 2011; Sikorska, Hodkiewicz,
& Ma, 2011). According to (Jardine, Lin, & Banjevic, 2006)
the prognostic approaches can be classified into three main
categories: statistical approaches, artificial intelligence ap-
proaches and model-based approaches. Many studies are de-
voted to the RUL estimation of systems, subsystems or com-
ponents (see reviews by (Peng, Dong, & Zuo, 2010),(Si et al.,
2011).

In spite of that, according to the best knowledge of the authors
the degradation modeling and RUL estimation process for
closed-loop dynamic system such as feedback control system
has not been addressed extensively. Indeed, the degradation
or wear of components can lead to the gradually decreasing
of the control system performance during its operation. One
objective of this paper is to propose a probabilistic approach
to assess the RUL of feedback control system with stochas-
tically deteriorating actuator within a random environment.
The other objective of the paper is to examine the use and
the impact of prognostic information on the predictive main-
tenance decision-making process. In order to deal with the
complex interaction between the deterministic behavior of the
feedback control system and the stochastic degradation pro-
cess, a Piecewise Deterministic Markov Process is adopted to
describe the whole deteriorating closed-loop system. In this
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framework, the distribution of the RUL of the system is com-
puted by using a two-step stochastic model-based technique.

The remainder of this paper is organized as follows. Sec-
tion 2 is devoted to the description of the system character-
istics. Section 3 describes the approach for computing the
Remaining Useful Lifetime which is relevant to system state
estimation using the available condition monitoring informa-
tion. To illustrate the methodology and also highlight the use
of prognostic result in the maintenance process, a specific
case study is introduced in Section 4. Some numerical re-
sults are also discussed here. Finally, conclusion drawn from
this work and possible ways for further studies are given.

2. SYSTEM MODELING AND ASSUMPTIONS

This section is devoted to describe the characteristics of a de-
teriorating feedback control system whose actuator stochasti-
cally degrades through time due to its natural degradation and
the impact of the operating condition. The stochastic evolu-
tion of set-point which depends on the operating mode is also
characterized. No additional sensor is devoted to the moni-
toring of the actuator degradation, the measurement of con-
trolled output is then used to assess the RUL.

2.1. General structure of a deteriorating feedback control
system

Consider a dynamical process which can be described in state-
space representation as:{

ẋ(t) = f(t, x(t), u(t))

y(t) = h(t, x(t), u(t)) + ε(t)
(1)

where x(t) is the state vector of process, u(t) denotes con-
trol force acting on the process, y(t) is the measurement of
output. Process dynamic function f and process output func-
tion h can be nonlinear. Here, it is assumed that measure-
ment noises (εt)t∈R+

are independent random variables with
a probability density g, not necessarily Gaussian, independent
of the process state (xt)t∈R+ .

The objective of a conventional feedback control system is
to maintain the process output y(t) within a desired range
defined by a set-point. Such objective can be achieved by
the feedback structure with a classical Proportional-Integral-
Derivative (PID) controllers which are widely used in indus-
trial applications thanks to their simplicity and performance
(Aström & Hägglund, 1995), see Figure 1 for a general scheme
of a feedback control system.

The PID controller output uc(t) is given by:

uc(t) = KP

[
e(t) +

1

TI

∫ t

0

e(τ)dτ + TD
de(t)

dt

]
(2)

where e(t) is the error signal defined as e(t) = yref(t)− y(t)

with yref(t) the desired set-point (the reference output), KP

is the proportional gain, TI is the integral time and TD is the
derivative time of the PID controller. The adjustment of these
three parameters for an optimal system response is exten-
sively studied in control system design (Aström & Hägglund,
1995).

Controller Actuator Process
set-point (y

ref
)

error (e) controller output (u
c
) control variable (u)

-

measured output (y)

degradation 

process

Sensor

measurement noise (ϵ)

Figure 1. General block diagram of a feedback control system
with notations

The output of actuator which is the real control variable act-
ing on the process is defined as a function g depending on
the required value uc(t) of the controller and on the actual
capacity of actuator C(t). g is a decreasing function w.r.t.
C(t):

u(t) = g(uc(t), C(t)) (3)

At the initial stage of working, the actuators operate perfectly,
i.e. C(t) = c0 where c0 is the initial nominal capacity of ac-
tuator. In reality, the natural ageing or wear of the parts of
the actuator and/or the non desired effects of the operating
condition are unavoidable, lead to the decreasing of the ac-
tuator’s effectiveness C(t) in time and subsequently reduces
the control system performance.

2.2. Set-point evolution and operating modes

The evolution of set-point (the mission profile) presents the
environmental conditions the system evolves in. According
to the demand e.g. of the production process, the desired set-
point may change. The random evolution of the set-point is
described by a time-homogeneous Markov chain with a fi-
nite state space rset = {r1, r2, . . . , rm} describing e.g. the
m production phases. Moreover, depending on a operating
mode, the transition rate of set-point may be different.

Let Y ref(t) be the set-point at time t. The evolution of the
stochastic process {Y ref

t , t ≥ 0} in the operating mode k is
expressed by the transition probability matrix P k with the
(i, j)th element equal to:

pkij(t) = P(Y ref
s+t = rj | Y ref

s = ri) (4)

Figure 2 exemplifies the evolution of a set-point which takes
value in 2-states space and corresponds to 2 operating modes
denoted OM1 and OM2. One can find that the change of
set-point occurs more frequently in the operating mode OM2
which is more stressful.
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Figure 2. An example of set-point evolution within two oper-
ating mode

In practical situation, the set-point and the operating mode
is well known at each time and its evolution is easy to iden-
tify. In this work, only one set of PID controller parameters
is chosen for all known value of set-point rset.

2.3. Actuator degradation behavior

It is assumed that an actuator is subject to shocks that occur
randomly through time. Each shock impacts a random quan-
tity of damage to the actuator. Hence, the capacity of the
actuator by time t before its failure can be expressed as:

C(t) = c0 −D(t) (5)

where c0 is the initial capacity of the actuator, D(t) describes
the accumulated deterioration of the actuator at time t (in ca-
pacity unit)

On the one hand, the actuator is less efficient through time
because of its natural degradation. On the other hand, the
evolution of set-point also impacts the degradation process
of actuator. For example, in a centrifugal pump, an increased
demand of pump flow will cause bearing friction and impeller
wear to increase at a faster rate.

Natural degradation Due to the natural ageing or wear of
the mechanical and/or electrical parts, the actuator capacity
decreases through time. At each time ξndi that a shock occurs
according to a Poisson process with intensity λnd, the actua-
tor capacity C(t) decreases a quantity Wnd

i which follows a
uniform distribution on [0; ∆nd].

Impact of operating condition As describe in 2.2 the op-
erating conditions which represents the environmental con-
ditions the system evolves in. Their impact on the degrada-
tion of the actuator is modeled through another shock pro-
cess. The shock instant ξomi follows a Poisson process with
intensity λom which takes a value corresponding to the ac-
tual operating condition OMi. At each time ξomi the capacity
of the actuator C(t) decreases of a quantity W om

i which fol-
lows a uniform distribution on [0; ∆om]. The more frequently
the set-point changes in a operating mode OMi, the more fre-

quently damage shock occurs. This is represented by a big
value of λomi .

Under this modeling assumption, the degradation impacts the
actuator only at discrete times. In case where the actuator has
a monotone gradual degradation behavior, other processes
should be considered e.g. the homogeneous Gamma pro-
cess (Van Noortwijk, 2009).

2.4. Piecewise Markov Deterministic Markov Processes

In order to take into account the complex interaction between
the stochastic degradation process of actuator and the deter-
ministic behavior of control system, this paper considers the
point of view of Piecewise Markov Deterministic Markov
Processes (PDMP) which has been first introduced by (Davis,
1993). PDMPs were used to model fatigue growth in (Chiquet,
Limnios, & Eid, 2009) and corrosion in (Brandejsky, De Saporta,
Dufour, & Elegbede, 2011).

The whole behavior of deteriorating closed-loop system at
time t can be resumed by a random variable as:

Zt =


xt
Ct
λomt
t

 (6)

with xt is the physical state variable of controlled process, Ct
is the actual capacity variable related to the actuator degra-
dation, λomt is a covariate representing the current operating
mode of the system and t is the time. The time t is included
for the process to be homogeneous in time especially because
of the time-varying set-point.

Between two successive shocks reducing the actuator capac-
ity as described by the actuator degradation model, the re-
sponse of closed-loop system is described by differential equa-
tions which combine the process dynamic characteristic and
PID controller behavior. Interest readers can refer to (Cocozza-
Thivent, 2011; Lorton, Fouladirad, & Grall, 2013) for the de-
tailed definition of a PDMP.

2.5. Condition monitoring model

In this work, no additional sensor is devoted to the monitor-
ing of the actuator degradation. The controlled system output
is considered as the only available healthy information. As
known that a significant part of the dynamic behavior of the
system is shown in the transient period which occurs immedi-
ately after a change of set-point, only observations of system
output which characterizes the dynamics of deteriorating con-
trolled system is taken in this period (see (Nguyen, Dieulle, &
Grall, 2013) for more details of condition monitoring model).

Let introduce the time of prediction Tprog > 0 which is the
time at which the system health can be estimated given all
the collected knowledge and a residual lifetime can be de-
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rived. If n is the total number of observations until Tprog,
the observation dates and corresponding system output will
be respectively denoted 0 < T1 < . . . < Tn ≤ Tprog
and Y1, Y2, . . . , Yn where the observation Yi is defined from
Eq. (1) as:

Yi = h(Ti, x(Ti), u(Ti)) + ε(Ti) (7)

3. RUL ASSESSMENT METHODOLOGY

The Remaining Useful Life at time t RULt is defined as the
remaining time (from t) before the system can no longer ful-
fill its requirement anymore:

RULt = inf(s ≥ t, Zs ∈ F)− t (8)

where F is the failure zone which refers to the set of unde-
sired system states. In the context of the feedback control
system, the actual capacity of the actuator has to be greater
than a minimal capacity level which relates to the objectives
of control system design.

The system state process (Zt)t≥0 is a Piecewise Determinis-
tic Markov Process and as shown in (Lorton et al., 2013) the
distribution of the RUL of the system conditionally to online
available information up to time Tprog can be computed by a
two-step approach as:

P(RULTprog > s|Y1 = y1, . . . , Yn = yn)

=

∫
Rz(s)µy1,...,yn(dz)

(9)

where:

• µy1,...,yn(dz) is the probability law of the system state at
time Tprog regarding the available observations y1, . . . , yn:

µy1,...,yn = L(ZTprog |Y1 = y1, . . . , Yn = yn) (10)

• Rz(s) is the reliability of the system at time s knowing
that the initial state value is z:

Rz(s) = P(Zu /∈ F ∀u ≤ s|Z0 = z) (11)

The detail of the approach will be given in the next para-
graphs. On one hand, it require the estimation of probability
law µy1,...,yn(dz). On the other hand, it involves the estima-
tion of the conditional reliability knowing ZTprog .

3.1. Step 1: Particle Filtering State Estimation

The main task is to estimate the conditional density, p(zTk
|y1:k)

which represents the probability law of the state at time Tk
given the measured value y1:k = y1, . . . , yk of the observa-
tion process Y1:k = {Yi, i = 1, . . . , k} for any k ≤ n. Let
ZT0

be the initial state of the system.

Particle filtering is used here to allow for numerical compu-
tation of the filtering density p(zTk

|y1:k). The key idea is

to approximate the targeted filtering density by a cloud of
Ns i.i.d. random samples (particles) {z(i)Tk

, i = 1, . . . , Ns}
with associated weights {w(i)

Tk
, i = 1, . . . , Ns}, which satisfy∑

i w
(i)
Tk

= 1, so that the target distribution at time Tk can be
approximated by

p(zTk
|y1:k) ≈ p̂(zTk

|y1:k) =

Ns∑
i=1

w
(i)
Tk
δ
z
(i)
Tk

(dzTk
) (12)

where δ
z
(i)
Tk

(dzTk
) is the Dirac delta mass located in z(i)Tk

.

The used particle filter is similar to the Generic Particle Fil-
ter in (Arulampalam, Maskell, & Gordon, 2002) with deter-
ministic re-sampling method because it seems to be a com-
putationally cheaper algorithm (Kitagawa, 1996). Indeed, re-
sampling is used to avoid the problem of degeneracy of the
algorithm that is, avoiding the situation that all but one of the
importance weights are close to zero (Doucet & Johansen,
2009). The algorithm uses the prior distribution p(zTk

|z(i)Tk−1
)

based on the simulation of the actuator degradation process
and the deterministic behavior of the controlled process which
is derived from Eq. (1) to Eq. (5) using a discretized scheme
of Eq. (1) and Eq. (2).

Therefore, the real-time state estimation procedure, given the
sequence of measurement y1:k can be resumed by the algo-
rithm in Algorithm 1.

3.2. Step 2: RUL estimation

The second step of the presented methodology for the RUL
computation requires the estimation of the system reliabil-
ity starting from the prognostic instant Tprog and knowing
the approximated pdf of the system state at Tprog as given
by Eq. (12). Actually, the reliability is computed with the
classical Monte Carlo method. The histogram of the RUL is
obtained straightforwardly. The mean value or quantiles of
the RUL can also be derived. The procedure is illustrated by
Algorithm 2.

4. RUL PROGNOSIS AND ITS IMPACT ON MAINTENANCE
PROCESS: A CASE STUDY

In the previous section, a methodology to compute the con-
ditional pdf of the RUL of a dynamic system was described.
Here, it is illustrated on a well-known feedback control sys-
tem: a double-tank level control system. A predictive main-
tenance decision rule which uses the RUL information is also
presented which will be compared with an age remplacement
strategy.

4.1. Description of the case study

Consider a double-tank level system with cross-sectional area
of the first tank S1 and the second one S2. Water or other

4



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Algorithm 1 Generic particle filter for system state estimation.
Initialization: ∀i = 1, . . . , Ns.

Draw particle z(i)T0
according to the initial condition of system

Assign corresponding weight w(i)
T0

= 1
Ns

At step k (corresponding to time Tk): Given
{
z
(i)
Tk−1

, w
(i)
Tk−1

}Ns

i=1
, do

(a) Importance sampling

Based on the system description (presented in Sections 2), draw particles z̃
(i)
Tk
∼ p(zTk

|z(i)Tk−1
)

(b) Weight update

Based on the likelihoods of the observations yk collected (Eq. (7)), assign weights w
(i)
Tk

= w
(i)
Tk−1

p(yk|z̃(i)Tk
)

(c) Weight normalisation

w
(i)
Tk

=
w

(i)
Tk∑Ns

i=1 w
(i)
Tk

(d) Re-sampling decision

If N̂eff = 1∑Ns
i=1(w

(i)
Tk

)2
< Nthresh then perform deterministic re-sampling:

{
z̃
(i)
Tk
, w

(i)
Tk

}Ns

i=1
⇒
{
z
(i)
Tk
, 1
Ns

}Ns

i=1

(e) Distribution

p(zTk
|y1:k) ≈

∑Ns

i=1 w
(i)
Tk
δ
z
(i)
Tk

(dzTk
)

Repeat till the prognostic instant Tprog is reached

Algorithm 2 RUL estimation.

Given
{
z
(i)
Tn
, w

(i)
Tn

}Ns

i=1
, Ndepart number of departure points,

Ntraj number of simulation trajectories for each point
For j = 1, . . . , Ndepart do
• Generate uniform sample: uj ∼ U(0, 1)

• Select departure point:

zselectedj = z
(k)
Tn

with
∑k−1
l=1 w

(l)
Tn
≤ uj <

∑k
l=1 w

(l)
Tn

• For k = 1, . . . , Ntraj do
Simulate the trajectories according to the
system description (presented in Sections 2)

End
End
Obtain the empirical distribution of RUL

incompressible fluid (i.e. the mass density of fluid ρ is con-
stant) is pumped into the first tank at the top by a pump motor
drives. Then, the out flow from the first tank feeds the second
tank.

The relation between the inlet flow rate and the pump motor
control input u is represented as a first order system (Chen &
Chen, 2008):

dqin
dt

= − 1

τa
qin +

Ka

τa
u (13)

where τa is the time constant of pump motor, Ka is the servo
amplify gain (with the initial gain Kainit

). The pump sat-
urates at a maximum input umax and it cannot draw water
from the tank, so u ∈ [0, umax].

The fluid leaves out at the bottom of each tank through valves
with the flow rates according to the Torricelli rule:

qj,out = Kvj

√
2ghj , j = 1, 2 (14)

where hj is level of tank j, g is the acceleration of gravity and
Kvj is the specified parameter of the valve j.

Using the mass balance equation, the process can be described
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by following equations:
dh1(t)

dt
=

1

S1
qin −

Kv1

S1

√
2gh1(t)

dh2(t)

dt
=

Kv1

S1

√
2gh1(t)− Kv2

S2

√
2gh2(t)

(15)

The water level of tank 2 is measured by a level measurement
sensor and controlled by adjusting the pump motor control
input which is calculated by a PID controller. The overall
tank level control system is shown in Figure 3.

h1 S1

Tank 1

h2 S2

Tank 2

qin

q1,out

q2,out

V1

V2

PID controller Driver
Set-point

Level measurement sensor

-
u Degradation 

process

Figure 3. A double-tank level control system

Degradation process Due to degradation of the pump, its
capacity C(t) = Ka(t) = Kainit

− D(t) stochastically de-
creases according to the presented model in Section 2.3. To
have simple and comprehensible case study, we suppose that
the set-point admits only two values r1 and r2 with r1 < r2.

It is assumed that the system evolves in a two-states operat-
ing mode: the normal mode (OM1) and the stressful mode
(OM2). At each Tchange time duration the operating mode
can change. The evolution of operating mode is described by
a Markov chain as represented as Figure 4 where set-point
changes more frequently in OM2.

OM1 OM2Pr11

Pr21

Pr12

Pr22

Figure 4. Operating mode Markov chain

The sojourn times in the different values of system set-point
are characterized by a continuous-time Markov chain whose
the transition rate matrix corresponding to the operating mode
OMi is:

Pi =

(
−αi αi
αi −αi

)
(16)

where the parameters αi describe transition rates of set-point
of the operation mode OMi. Set-point changes more fre-
quently in mode OM2 so α2 > α1.

Failure zone of the system According to Eq. (13) and Eq. (15),
the steady states are obtained at instant tss if

u(tss) =
S1

S2

Kv2

Ka(tss)

√
2gh2(tss) (17)

Since u(tss) ≤ umax then

Ka(tss) ≥
S1

S2

Kv2

umax

√
2gh2(tss)

that means the actual capacity of the actuator must be greater
than a minimal capacity defined in the control system design
phase. In this case of study, this accepted value is defined as:

Kamin
=
S1

S2

Kv2

umax

√
2gmax

i
ri =

S1

S2

Kv2

umax

√
2gr2 (18)

Thus, the RUL of the system is the remaining time before the
process Z enters in the failure zone which is defined as:

Ka(t) ≤ Kamin
(19)

Under all these considerations, the behavior of water tank
level control system can be summed up using the process
Z = (Zt)t∈R+ , where Zt is given by:

Zt = (Ka(t), h1(t), h2(t), λom(t), t) (20)

The current state of the system at time t is then a five-component
vector Zt, which includes the current capacity of the pump,
the water levels of two tanks, the current operating mode and
the current time t.

4.2. Numerical illustrations

Numerical values for double-tank level control system are
summed up in Table 1.

Figure 5 represents one trajectory of the process Z until the
failure of system. The evolution of set-point with successive
change of set-point values is illustrated in Figure 5(a). The
water level of tank 1 and tank 2 h1(t) and h2(t) are reflected
in Figure 5(b) and Figure 5(c). Figure 5(d) shows real (unob-
servable) value of actuator capacity Ka(t).

As depicted in Figure 5, the actuator fails completely (i.e.
Ka = 0) at 22129.4 time units, but the failure of system here
is 15102.6 time units. One can find that after the system fail-
ure instant the water level of tank 2 (the controlled variable)
cannot track the evolution of desired set-point.

The only available health information of the system is the
noisy observations of the water level of the tank 2 which
are recorded during the transient periods whenever the set-
point changes. For instance, let consider the prognostic time
Tprog = 8875.2 time units i.e. at 64th change instant of the
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Figure 5. A trajectory of the water tank level control system
until failure of actuator: (a) Set-point, (b) Water level of tank
1, (c) Water level of tank 2 and (d) Actuator capacity

Table 1. Double-tank model

Physical parameters
S1 = 25 Kv1 = 8 τa = 1

S2 = 20 Kv2 = 6 g = 9.82

umax = 100 σ = 0.05

PID controller parameters
KP = 12.9896 TI = 99.8432 TD = 2.3727

Initial condition: t = 0
h1(0) = 0 h2(0) = 0 Kainit = 5.0

Natural degradation
λnd = 10−3 ∆nd = 0.5

Operating mode evolution
Pr11 = 0.75 Pr12 = 0.25 Tchange = 250

Pr21 = 0.75 Pr22 = 0.25

Varying set-point
α1 = 0.006 r1 = 25 λom

1 = 5.10−4

α2 = 0.01 r2 = 40 λom
2 = 10−3

∆om = 0.3

set-point, this health information is shown in Figure 6.
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Figure 6. Noisy observations of water level of tank 2

The first step of the method is to compute the conditional state
of the system knowing the noisy measurement of h2 until the
prognostic time Tprog. Approximations of the pdfs are repre-
sented in Figure 7(a) for the water level of tank 1, Figure 7(b)
for the water level of tank 2 and Figure 7(c) for the actuator
capacity with Ns = 500 particles.

The last step of the method is to compute the distribution of
the RUL of the system starting at Tprog knowing the approxi-
mated pdf of the system state at Tprog. The RUL distribution
has been obtained by Monte Carlo simulation with 2500 tra-
jectories describing the system evolution from its state at the
prognostic time until its failure. The resulting RUL is de-
picted in Figure 8.

7



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

34.8 35 35.2 35.4 35.6 35.8 36 36.2
0

20

40

60

80

100

120

140
Conditional water level of tank 1

Water level

F
re

qu
en

cy

 

 
Real value

(a) Conditional water level of tank 1

39.6 39.65 39.7 39.75 39.8 39.85 39.9
0

20

40

60

80

100

120
Conditional water level of tank 2

Water level

F
re

qu
en

cy

 

 
Real value

(b) Conditional water level of tank 2

3.05 3.1 3.15 3.2 3.25 3.3 3.35 3.4
0

50

100

150

200

250

300

350

400

450
Conditional actuator capacity

Actuator capacity

F
re

qu
en

cy

 

 
Real value

(c) Conditional actuator capacity parameter

Figure 7. Conditional distribution of the system state at time
Tprog = 15046.8 time units given the noisy measurements of
h2 for Ns = 500 particles
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Figure 8. Remaining Useful Lifetime of the water tank level
control system at time Tprog = 8875.2 time units

4.3. Maintenance strategies

To show how the prognosis information can be incorporated
in maintenance decision-making, this section will compare a
predictive maintenance which uses the on-line available in-
formation and an age based remplacement strategy. A cost
model which is the long-run expected maintenance cost rate
including the unavailability cost is developed in order to eval-
uated the performance of these maintenance strategies.

Predictive maintenance In this paragraph, a predictive main-
tenance policy is considered. Under this maintenance strat-
egy, the system is replaced upon failure (corrective replace-
ment action) or at a specified maintenance date which is cal-
culated using the RUL information (preventive maintenance
action). Both maintenance actions put the system back in as-
good-as-new state, the interventions take negligible times and
their costs are fixed. It is assumed that the replacement ac-
tions can only be performed at the opportunities (the instants
of possible changes of operating mode, i.e. each time dura-
tion Tchange). Therefore, there are a system inactivity after
the stoppage of the system and an additional cost is incurred
by the time di from the stoppage until the next replacement at
a cost rate Cd which may correspond to production loss per
unit of time.

The preventive maintenance date is updated through the work-
ing time of the system. Indeed, at each change of the set-
point, the associated RULs and the next maintenance time can
be re-computed using the previously described methodology
with the new arrival condition information. At each prognos-
tic time Tprog the maintenance date which is the RUL of the
system with a given failure probability η can be written using
Eq. (9) as:

RUL(Tprog, η) = sup{ν : P(RULTprog
< ν|

Y1 = y1, . . . , Yn = yn) ≤ η} (21)
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where η is a decision parameter to be optimized. For a trade-
off between the result accuracy and time computation, 500
particles and 2500 trajectories for RUL computation are cho-
sen.

To assess the performance of the maintenance policy, a widely
used criterion which is the expected maintenance cost per unit
over an infinite time span is considered

C∞Pred(η) = lim
t→∞

CPred(t, η)

t
(22)

where CPred(t, η) is the cumulative maintenance cost at time
t can be described as:

CPred(t, η) =

Np(t)∑
i=1

Cp +

Nc(t)∑
j=1

Cc + Cd.d(t) (23)

whereNp(t),Nc(t) are respectively the number of preventive
maintenance and of corrective replacement in [0, t]; d(t) is the
total inactivity time of the system in [0, t].

This cost criterion is then evaluated by stochastic Monte Carlo
simulation. The optimal value of decision parameters η is ob-
tained by miminizing the expected cost rate, i.e.,

C∞Pred(η
∗) = min

η
{C∞Pred(η), 0 < η < 1} (24)

Table 2. Maintenance costs

Cc Cp Cd

200 150 5

With the maintenance costs summarized in Table 2, the op-
timal values of η = 0.45 with the cost rate C∞Pred(η

∗) =
0.08989 (see Figure 9).
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Figure 9. Long run expected maintenance cost per unit of
time

Age-based remplacement strategy Like previously described
predictive maintenance strategy, the maintenance actions are
also executed only at the opportunities. The different point
is that the system is preventively replaced at a specified date
which does not change through the working time of the sys-
tem. This specified date tPrev is the parameter to be opti-
mized.

Figure 10 illustrates the evolution of the system degradation
behavior and the maintenance policy.

State (Zt)

Time (t)
0

tprev tprev

di

di

Figure 10. Illustration of considered systematic maintenance

The cumulative maintenance cost at time t in this strategy is:

CPrev(t, tPrev) =

Np(t)∑
i=1

Cp +

Nc(t)∑
j=1

Cc + Cd.d(t) (25)

whereNp(t),Nc(t) are respectively the number of preventive
maintenance and of corrective replacement in [0, t]; d(t) is the
total inactivity time of the system in [0, t].

The long run expected maintenance cost per unit of time is:

C∞Prev(tPrev) = lim
t→∞

CPrev(t, tPrev)

t
(26)

This cost criterion is then evaluated by stochastic Monte Carlo
simulation. The optimal value of preventive replacement age
t∗Prev is obtained by minimizing the expected cost rate, i.e.,

C∞Prev(t
∗
Prev) = min

tPrev

{C∞Prev(tPrev), tPrev > 0} (27)

As represented in Figure 11, the optimal values of t∗Prev =
4750 with the cost rate C∞Prev(t

∗
Prev) = 0.03722.

On the considered case study, the opportunist age-based rem-
placement policy and the predictive one efficiencies are very
close to each other. This shows the effect of maintenance
opportunities in the structure of the decision rule. Indeed,
as represented in Figure 11, the age-based strategy can eas-
ily take into account the effects of maintenance opportunities.
The local optima on the expected cost rate are coincide with
the opportunities dates which lead to the cancel the inactiv-
ity cost. On the other hand, the predictive maintenance does
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Figure 11. Evolution of long run expected maintenance cost
per unit of time

not take directly into account the existence of maintenance
opportunities and the decision rule is not well suited. As the
cost of inactivity per unit of time is very high compared to
the unit replacement cost the predictive maintenance cost is
slightly higher tant the age-based one.

5. CONCLUSION

The present paper proposes a modeling framework using PDMP
that shows the ability to combine the deterministic behavior
of a feedback control system with the stochastic degradation
process for the actuator. On the one hand, the actuator is less
efficient through time because of natural degradation process.
On the other hand, the set-point level impacts also the degra-
dation process of actuator. Particle filtering technique is used
to estimate on-line the state of considered system regarding
only the noisy observations of closed system output. By using
a methodology based on the assumption of Markov property,
the Remaining Useful Lifetime can be deduced with Monte
Carlo simulation. A simulated double-tank level control sys-
tem was used as a case study to illustrate the efficiency of the
proposed approach and the use of the prognostic information
in order to optimize the decision-making process. A predic-
tive maintenance whose the decision rules use the RUL es-
timation is compared with an age-based remplacement strat-
egy. The long run expected maintenance cost per time unit
is then used to assess the performance of two strategies. The
results show the useful of RUL information on maintenance
decision-marking process. However, the impact of mainte-
nance opportunities should be taken into account in the struc-
ture of predictive decision rule.
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