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ABSTRACT 

Bond Graph (BG) methodology is used to model the 

dynamic uncertain systems. Uncertainty is considered on the 

system parameters in form of intervals. The uncertain 

parameters are allowed to deviate within their prescribed 

interval limits. Single fault hypothesis is considered in this 

work such that the parameter undergoing degradation is 

known a priori. A new method for generation of interval 
valued thresholds is briefly described in the framework of 

BG models in Linear Fractional Transformation form. The 

diagnostic module is formed using such thresholds which 

detect the beginning of degradation of a parameter in the 

real system. The new concept of Interval Extension of 

Analytical Redundancy Relations (IE-ARRs) is introduced 

which consider the parametric uncertainties and the 

evolution of degrading parameter in real time. Then, the 

Centre and Range method for fitting linear regression 

models to interval symbolic data is adapted to fit piece wise 

linear models to the interval valued times series data of IE-

ARRs. Further, the new concept of generation of failure 
thresholds from a nominal system model is introduced and 

developed. Finally, the fitted linear model is used to 

estimate the remaining useful life of the parameter under 

degradation. Simulations are carried out on an example DC 

motor model. Linear and non-linear parametric degradations 

are considered. Results are presented in form of simulations.  

1. INTRODUCTION 

Health monitoring of systems is essential and significantly 

necessary in ensuring the correct operation of complex 

engineering systems.  

Mayank Shekhar Jha  et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

The integral task of system health monitoring includes both 

the diagnostics and prognostics. Diagnostics involves 
detection of fault and its subsequent isolation whereas 

prognostics deal with the prediction of 

 the remaining useful life of the different components or 

subsystems of the system. 

1.1 Diagnosis of Uncertain Systems: Bond Graph and 

Interval Approaches 

Bond Graph (BG) approach is a powerful tool for dynamical 

modeling and has established its efficiency for real 

applications. Further, because of its causal and structural 

properties, BG has been extensively used for Fault 

Detection and Isolation (FDI). A large body of research 
exists in the area of model based diagnosis in the framework 

of BG based approaches for modeling multi energetic 

dynamic systems. Various efficient algorithms have been 

implemented in dedicated software due to its graphical 

aspect which renders a clear insight into the physics of the 

system (Ould Bouamama, Staroswiecki, & Samantaray, 

2006 ). 

Recently, successful robust diagnostic methods have been 

developed using BG models in Linear Fractional 

Transformation (LFT) (Djeziri, Merzouki, & Ould 

Bouamama, 2007). The LFT representation of a global 

model can be derived from a BG model, by replacing each 
uncertain element by its LFT BG model. This form had been 

initially introduced in (Kam & Dauphin-Tanguy, 2005)for 

modelling and further for robust fault diagnosis (Djeziri, 

Merzouki, & Ould Bouamama, 2006). There in, procedures 

to generate robust Analytical Redundant Relations (ARRs) 

from a bond graph LFT model in derivative causality has 

been well developed .When used for FDI purpose, absolute 

values have been considered on the parameter uncertainties 

in the previous approaches. Adaptive thresholds that are 

robust to parameter uncertainties are generated, inside 
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which the behavior of the system can be considered as 

healthy. For diagnosis of uncertain systems, bounding 

approaches have been developed where the parametric 

uncertainty is considered in the form of interval models. 

Early work on treatment of uncertain parameters as intervals 

and subsequent usage for diagnosis is found in works of 
Adrot (2000). The approach, called bounded approach, 

represented these uncertainties by a set of possible values 

for which only their bounds were known. Ragot, Alhaj Dibo 

and Maquin (2003), proposed an interval technique for the 

detection and the isolation of sensor faults in the case of a 

static linear model .The similar case is treated for dynamic 

systems by  (Ragot & Maquin, 2003).They treated the 

problem of data validation in the case of certain systems 

with uncertain measurements through interval approach. In 

the works of (Fagarasan, Ploix, & Gentil, 2004) interval 

calculation laws are used to generate the exact estimated 

output, bounds of the estimates are computed using 
traditional numerical integration techniques from the 

uncertain parameter interval vertices, assuming that 

monotonic property holds. Thus, the envelopes generated, 

are primarily by the estimation of state or parameter. 

1.2 Fault Prognosis using Time Series Data 

In past one decade, there has been an exceeding surge in 

research for the development of fault prognostic methods. 

Prognosis methods can be developed in three categorized 

approaches namely: data-driven, physics based and hybrid 

approaches. Data-driven approaches mainly use information 

from previous collected data (training data) to identify the 
characteristic of currently measured damage state and to 

predict the future trend.  Physics-based approaches assume 

that a physical model describing the behavior of damage is 

available, and combine the physical model with measured 

data to identify model parameters and to predict the future 

behavior (Yang, 2002), (James & Hyungdae, 2005) and 

(Ming, 2012). Hybrid approaches combine the above-

mentioned two methods to improve the prediction 

performance (Mohanty, Teale, Chattopadhyay, Peralta, & 

Willhauck, 2007).The data driven methods have been well 

developed from the point of view of time series prediction 

techniques. Method for predicting future conditions of 
machine operation, based on the time series prediction 

technique, associated with a classification tree and 

regression is proposed in (Trana, Yanga, Oha, & Tanb, 

2008). (Wu, Hu, and Zhang( 2007), proposed an extension 

of the basic Autoregressive Integrated Moving Average 

(ARIMA) approach, using bootstrap forecasting for machine 

life prognosis. Greitzer and Pawlowski (2002),propose a 

method of fault prognosis, based on a regression function, 

whose number of used points varies so that the prognosis 

remains consistent with the recent measures. 

1.2.1 Prediction Using Interval valued data 

Prediction techniques using interval data in symbolic form 

have been approached and developed by the communities of 

artificial intelligence, multivariate analysis and pattern 

recognition. They have been successful in dealing with 

prediction problem when the considered data is in interval 

form (Billard & Diday,2003). Such data arises in many 

situations such as recorded data for financial forecasting, 

daily interval temperatures at meteorological stations, daily 
interval stock prices etc. From the point of view of health 

monitoring of uncertain systems, such data are interesting 

and exploitable when the uncertain parameters are treated as 

intervals. 

Linear regression models for predicting interval data was 

first approached in  (Billard & Diday,2000), where the 

Centre method of fitting a linear regression model to 

symbolic interval data sets from the Symbolic Data 

Analysis(SDA) perspective is presented. It consists of fitting 

a linear regression model to the mid-points of the interval 

values assumed by the interval variables in the learning set 

and this model is applied to the lower and upper bounds of 
the interval values of the independent interval variables to 

predict the lower and upper bounds of the dependent 

variable, respectively. Minmax method (Billard & Diday, 

2002), assumes independence between the values of lower 

and upper bounds of the dependent data intervals which are 

then estimated by different vectors of parameters. However, 

both of these methods consider information carried by mid-

points only. As such, they fail to capture the influence of 

interval range on the estimation of parameters. This in turn, 

affects the prediction ability. 

The Centre and Range approach to fitting a linear regression 
model to symbolic interval data was proposed in (Lima Neto 

& De Carvalho, 2008). There in, the problem was 

investigated as an optimization problem, which sought to 

minimize a predefined criterion. The approach considered 

the minimization of the sum of the mid-point square error 

plus the sum of the range square error, and the 

reconstruction of the interval bounds based upon the mid-

point and range estimates. The lower and upper bounds of 

the interval values of an interval valued variable, linearly 

related to a set of independent interval-valued variables 

were predicted for independent data sets. It is shown that 

including information given by both center and the range of 
an interval data improves the model prediction performance 

very considerably. 

1.3 Assumptions, Proposed Approach and Organization 

of the Work 

In this work, BG methodology is used to model the dynamic 

uncertain systems. Uncertainty is considered only on the 

system parameters in form of intervals. The uncertain 

parameters are allowed to deviate within their prescribed 

interval limits. Single fault hypothesis is followed such that 

the parameter undergoing degradation is known a priori. In 

section 2, the new method of generation of interval valued 
thresholds proposed in (Jha, Dauphin-Tanguy, & Ould 

Bouamama, 2014) is briefly described in the framework of 
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BG-LFT models. The diagnostic module is formed using 

such thresholds which detect the beginning of degradation 

of a parameter in the real system. In section 3, the new 

concept of Interval Extension of ARRs (IE-ARRs) is 

introduced which considers the parametric uncertainties and 

the evolution of degrading parameter in real time. Then, the 
Centre and Range method (Lima Neto et al, 2008) for fitting 

linear regression models to interval symbolic data is adapted 

to fit piece wise linear models to the interval valued times 

series data of IE-ARRs. The procedure is explained in the 

subsequent subsection 3.2. Further, the new concept of 

generation of failure thresholds from a nominal system 

model is introduced and explained in subsection 3.3. 

Finally, the fitted linear model is used to estimate the 

remaining useful life of the parameter under degradation. In 

section 4, the developed method is validated using a 

pedagogical DC motor example. Linear and non-linear 

parametric degradation of physical components are 
considered. Results are presented in form of simulations. 

Finally conclusions are drawn in section 5.   

2. ROBUST DIAGNOSIS THROUGH BG-LFT MODELS 

Diagnosis based on BG-LFT models is considered in this 

section. Recently the authors have proposed a novel way of 

generating thresholds over ARR where the uncertainties are 

modeled as intervals (Jha, Dauphin-Tanguy, & Ould 

Bouamama, 2014). The novelty there comes in the treatment 

of uncertain part in form of intervals and using the obtained 

Interval Extension Functions (IEF) for generation of robust 

optimized thresholds which are adaptive and non-
symmetrical in general.  

2.1 Generation of Interval valued robust thresholds 

A system parameter 
i  with deviations as 

li,  and 
ui,  

in the negative and positive side respectively over its 

nominal value 
ni,  is represented in Eq.(1). For the 

parameter 
i , the Interval Uncertainty denoted as ][ i in 

Eq.(2) is obtained by bounding the uncertainties 
i  over its 

nominal value
ni , .For example, for an uncertain resistance 

parameter R with nominal value of 10 Ohm bounded in the 

interval as [8 Ohm, 13 Ohm], the nominal parameter is 

denoted as 10nR Ohm, uncertainty interval is 

3,2],3,2[][  ul RRR .Then, 

],[][ unln RRRRR  ]13,8[]310,210[ 

. 

 uinilinii ,,,, ,][          (1) 

],[][ ,, uilii  
 

uili ,, 0,0    

      (2) 

In general, in the framework of BG-LFT modeling, where 

},,,,,{ RSTFGYICRi  , a residual R  is derived from 

LFT-BG with preferred derivative causality, so that the 

knowledge of initial conditions is not necessary for real time 

evaluation. Residual R is composed of two completely 

separated parts: a certain residual r and the uncertain part b 
as shown in (4),(5),(6) and (7) where TFn and GYn are 

respectively the nominal values of TF and GY moduli. Rn; 

Cn; In and RSn are the nominal values of physical BG 

elements R, C, I and RS. SSeand SSf are the signal sources 

(measurement signals from real system) andδR ,δI, δC, 

δRS,δTF, δGY are values of multiplicative uncertainty. Natural 
interval extension function IEF (Moore, 1996), B of the 

uncertain part b is formed by replacing each parameter 

multiplicative uncertainty with its prescribed interval 

uncertainty as in Eq.(8).The IEF, 

),],],......[[],([ ,,2,1 SSfSSeB nqnn    where q  is the 

number of uncertain elements considered, agrees with the 

uncertain ARR function ),,....( ,,1 SSfSSeb nqn    such 

that Eq.(8) is satisfied for each of the degenerate intervals 

],],.......[,[],,[ ,,,2,2,1,1 nqnqnnnn  .Through 

Extended Fundamental Theorem of Interval Analysis 

(Moore, 1996), Eq.(9) is satisfied for every interval set of 
Interval Uncertainty. 


















inn

nnnn

wRSGY

TFICRSSfSSeSfSe
R

,,

,,,,,,,,
 

(3) 

brR   (4) 










nn

nnnn

RSGY

TFICRSSfSSeSfSe
r

,

,,,,,,,,
 

(5) 

},,,....,{ ,,2,1 SSfSSewb nqnni    
(6) 










RSGYTFCIRnn

nnnn

RSGY

TFICRSSfSSeSfSe
w

 ,,,,,,,

,,,,,,,,
 

(7) 

),],].......[[],[],([

),,.......,,(

,,3,2,1

,,3,2,1

SSfSSeB

SSfSSeb

nqnnn

nqnnn








 

(8) 

When the system shows nominal behavior, an envelope 

around the residual R may be defined by the range of the 

function B . Under non-faulty conditions, the nominal 

residual r is around zero(theoretically). From Eqs.(5,6,7,8,9) 

the residual R can be written as in Eq.(10) and from Eq.(9), 

it is bounded by the interval valued thresholds B as shown 

in Eq.(11). Note that in this work, signals from dualised 

sensor effort sources and flow sources SSfSSe, respectively 

are not considered in the interval form following the 

hypothesis that sensor measurements are not considered 

faulty. 
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,,2,1

,,2,1

,,2,1
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SSfSSebrR

nqnn

nqnn

nqnn
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




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

 

(10) 

 

(11) 

Finding the most optimum thresholds narrows down to the 

problem of finding the exact range of IEFs (Armengol, 

1999).  The main limitation is that IEFs do not have some of 

the properties of real number arithmetic, for instance, the 

distributive property. This means that the exact range of a 
function is not always computable. However, the computed 

range is never an under-bounded one. The exact range is 

obtained if there are no multi-incident interval variables 

in ),,,.......,( ,,2,1 SSfSSeb nqnn   .The determination of 

the exact range of a function is a problem when there are 

multi-incident variables because each incidence is 

considered as an independent variable. In this case, this 

problem is similar to a global optimization one (Hansen, 

1992). 

3. FAULT PROGNOSIS THROUGH LINEAR REGRESSION OF 

INTERVAL EXTENSION ARRS (IE-ARRS) 

Consider the scenario when a set of faulty parameters of the 
system undergo degradation and rest of the uncertain 

parameters deviate within their prescribed limits. In such 

cases, point data valued ARRs are not capable of capturing 

the sufficient information provided by such deviating 

uncertain parameters. To deal with such cases, Interval 

Extension ARRs (IE-ARRs) are proposed in this work 

which captures system information in form of interval data 

where the uncertain parameters are modelled in form of 

intervals.   

3.1. Interval Extension ARRs (IE-ARRs) 

Interval-valued functions are obtained by selecting a real-

valued function f  and computing the range of 

values )(xf takes as x varies through some interval X.  By 

definition (Moore, 1996), the result is equal to the set image 

)(Xf . 

Interval extensions of ARRs can be obtained by bounding 

each uncertain parameter involved in the ARR, within its 

prescribed interval limit. This is done by considering the 

uncertainties on the negative and positive sides 
li,  and 

ui, respectively, over the nominal value 
ni ,  of the ith 

uncertain parameter
i , to obtain the interval form ][ i  as in 

Eq. (2). In Eq. (12) consider ai as any ARR with m 

independent parameters such that q ( mq  ), of them are 

uncertain, TuuU ...],[ 21 is the input vector, T

mq ]...,...[ 1   is 

the nominal parameter vector and TyyY ,...],[ 21 is the 

output vector. The corresponding Interval Extension (IE), 
IEai is obtained by bounding each uncertain parameter 

within their interval limits as shown in Eq.(12).In the BG 

framework, consider r in Eq.(5), which represents the point 

valued ARR with uncertain parameters with their nominal 

values nnnnnn RSGYTFICR ,,,,, . 

0....),,),....

).,...,,.....((,(),,(

1

21





 YY

UUfYUfa

T

mm

qi






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),,),])....],...[[],(([

,....,()],[,,(

121 YY

UUFYUFIEa

T

mmq

i











  

 

 

(12) 

The IE, R is formed by considering each uncertain 

parameter as intervals Eq. (13). Note that the dualised signal 
sources (sensor measurements) are not considered faulty or 

uncertain. Also, it must be noted that IE of ARRs consider 

the parameter with uncertainties in the interval form ][ i , 

whereas for the generation of interval valued thresholds in 

Eq. (9), only the  parametric uncertainties are considered in 

the interval form ][ i . 














][],[

],[],[],[],[,,,,
)(

RSGY

TFICRSSfSSeSfSe
tR ii

 
(13) 

3.2 Fitting a Linear Regression Model to Time Series 

Interval Valued Data 

One way to represent this type of data is through the mid-

point and range of interval (Lima Neto & De Carvalho, 

2008).When such data are collected in chronological 

sequence, the time series of interval valued data is obtained. 

At each instant of time, t=1,2,3,….n, where n is the number 

of intervals observed in the time series , tlx ,  and tux ,  

with 
tutl xx ,,  , are the upper and lower bounds of the 

interval respectively. The method employed here uses two 

time series: the interval mid-point series
cx ; and the half 

range interval series 
rx  . Considering the interval time 

series in Eq.(14) , mid-point and  half-range time series can 

be represented as in Eq.(15). 

),...,2,1(

2
,

2

].,[],.......,,[],,[

1,1,1,1,

,,2,2,1,1,

nt

xx
x

xx
x

xxxxxx

ULR

t

ULC

t

nUnLULUL







  

(14) 

 

(15) 

In this work, the centre and range method (Lima et al., 

2008) is adapted to fit a linear regression model to interval 

valued time series data.  
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Let }.......,{ 21 keeeE  be the set of time indexed data 

described by interval valued dependent variable Y and 

independent time variable T such that for each 

)..1( kiEei  , },,:],{[],[ ,, baRbabayyY iuili   and 

 ],[ ,, iuili ttT . Parameter vector  , is estimated using 

the information contained in the mid-points and ranges of 
the intervals. 

Let 
c

iY and 
c

iT respectively, assume the value of the mid-

point of the interval valued variables Yi and Ti. Also let 
c

iY and 
r

iT  assume the value of the half range of  interval 

valued variables Yi  and Ti. 

Then, each ei is represented as interval quantitative 

feature ),( c

i

c

ii ytw   and ),( r

i

r

ii ytr   where, 

,2/)(

,2/)(

,2/)(

,2/)(

,,

,,

,,

,,

iliu

r

i

iuil

c

i

iliu

r

i

iuil

c

i

yyy

yyy

ttt

ttt









 

 

 

(16) 

are the observed values of 
crc YTT ,, and 

rY respectively. 

Consider the dependent variables 
cY and Yr related to the 

independent time variable Tc and Tr according to the 

following linear regression relationship, 

r

i

r

i

rrr

i

c

i

c

i

ccc

i

ty

ty


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(17) 

(18) 

The sum of squares of deviations is given in Eq. (19). It 

represents the sum of the mid-point square error plus the 

sum of the range square error, considering independent 

vectors of parameters to predict the mid-point and the range 

of the intervals. 
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(19) 

Values of 
rcc

010 ,,  and 
r

1  that minimize S are found 

by differentiating Eq. (19) with respect to the parameters 
and setting the result equal to zero as in Eq. (20). It gives set 

of equations as shown in Eq. (21).The estimated parameter 

set ̂  can be obtained by solving Eq.(21), as in Eq. (22). 

Note that imprecision on the independent time variable has 

been accommodated by modeling it in form of intervals. 

This way, imprecision arising due to sensor/measurement 

(acquisition) delay can be taken into account. In cases where 

the time variable is not treated as an imprecise quantity, the 

upper and lower bound remain the same resulting in the 

interval centre being equal to the time value at that instant as 

i

c

i tt   and the time interval range equal to zero. It is a 

special case when the Centre-Range method reduces to the 
Centre method (Lima et al). 

3.3 Remaining Useful Life Estimation 

Beginning of degradation is indicated by the diagnostic 

module when the point valued ARRs go outside the interval 

valued thresholds, developed in section 2. Once, 

degradation is indicated, IE-ARRs are taken into account. 

With single degrading parameter, the IE-ARR evolves into 

time as the degradation proceeds. 
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3.3.1 Parametric Failure Threshold 

For prediction of RUL of the degrading parameter, the value 

of the IE-ARR at the parametric failure state must be 

known. This is not known beforehand from the real system. 

It can however be provided by the system model. Let us 

denote the degrading parameter candidate as 
deg . Its value 

at failure must be fixed. This can be fixed based upon 

system performance, stability or user defined 

conditions/thresholds. This value can be bounded in interval 

form as per the user/system dependant conditions. Let us 

denote such a value as 
faildeg, . Then the deviation that the 

parameter must go in order to reach the failure state is 

nfailfail deg,deg,deg,   . Thus, it provides the value 

of parametric failure deviation
faildeg, . 

Consider the interval thresholds in Eq. (9) generated in 
section 2, which form the envelop around the residual under 

nominal system condition. When the same expression is 
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considered with the value of failure deviation
faildeg, , 

parametric failure thresholds are obtained as Eq. (23), where 

the parametric uncertainty-interval form is considered for all 

the uncertain parameters sensitive to the corresponding 
residual. Also, unlike the diagnostic thresholds where sensor 

measurements from real system (SSe, SSf) are used, Bfail 

considers the corresponding outputs from nominal system 

model which has all the respective parameters in nominal 

state. Due to the considered parametric uncertainty of each 

uncertain parameters, upper and lower bounds of 
failB are 

generated as Eq.(24). 

),]).....[

],...[],([,(

modmod,

,2,1deg,

elelnq

nnfail

DfDe

B
fail









 

],[ ,, ufaillfailfail BBB   

 

(23) 

 

 

(24) 

3.3.2 RUL Estimation 

The degradation information provided in form of interval 
valued data from the IE-ARRs is used to fit a linear 

regression model in a sliding window framework. Let the 

time window length be k. The interval time series data of 

degradation be obtained as }....,,{ 21 kjjjj eeeeE  , 

where for each time indexed )( kjijei  , 

],[ ,,, uifaillfailii BBY 
 

and ],[ ,, uilii ttT  . rc TT , and 

cY , rY are to be obtained using Eq. (16). The parameter 

vector ̂  is estimated using Eq. (22). Once ̂  is obtained, 

the degradation can be approximated by the piece wise 

linear model of degradation for the k time instants in the 

present jth time window. The regression model is fitted with 
parameter failure value to assess the RUL in jth time window 

as, 

2/)()(

,2/)()(

ˆ/)ˆ()(

ˆ/)ˆ()(

,,

,,

10

10

lfailufail

r

fail

ufaillfail

c

fail

rrr

fail

r

fail

ccc

fail

c

fail

BBjB

BBjB

Bjt

Bjt













 

 

 

(25) 

],[ r

fail

c

fail

r

fail

c

failfail ttttt   
(26) 

The time window is shifted to t=j+1 for next k time instants 

and a similar routine is followed. 

Thus, the value of the RUL can be obtained in the bounded 

form based on the piece wise linear approximation of 

degradation in sliding time window framework. The routine 

is repeated to obtain the RUL in the next time window. It 

should be noted that the RUL estimated, corresponds to the 

linear approximation of degradation. As such, in cases of 

gradual linear degradation an approximate constant value of 

RUL is obtained in interval form. However, in cases of non-

linear or accelerated degradation, a distribution of RUL will 

be obtained. Analysis of such a distribution form has not 
been done here. The choice of window length is important 

in determining the correct linear approximation of 

degradation as in, a large window width is better in cases of 

gradual-linear degradation. This aspect has not been 

analyzed in this work and forms the future perspective.  

4. SIMULATIONS AND RESULTS: 

The proposed methodology is applied over a DC-motor 

model. Fig.1 shows the model schema and Fig.2 its 

associated BG in integral causality. The integral causal 

model is used for simulation purpose. The model parameters 

are taken as: Ra = 2.4 Ω, the resistance of stator; La = 0.84 

H , the inductance of the stator; ke= 0.14 N-m/A, the motor 
constant; Jm = 0.08 kg m2, the moment of inertia of rotor; fm 

= 0.01 Ns/ m , coefficient of friction of motor shaft, with the 

inputs Ua(t) being the input voltage of 220 V in magnitude 

and )(t
 
being the load torque of 5 N m in magnitude. The 

observed outputs are: im(t) current of inductor, and m (t) 

being the angular velocity of the motor shaft (rad/s). 

Considered model has uncertain parameters as La, ke, f,  Jm 

and Ra. Single fault hypothesis is followed with the 

assumption that sensors/measurements are not faulty. 
Parametric degradation of the electrical resistance Ra is 

considered and simulated under various cases of 

degradation. Simulations have been carried out on 

SIMULINK® which is integrated with MATLAB® .Interval 

computations have been carried out through INTLAB, 

(Rump, 1998) a toolbox designed for MATLAB 

environment. It allows the more traditional infimum-

supremum as well as the midpoint-radius representations of 

intervals. 

 
Figure1. Schema of DC motor 
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Figure 2. Integral causal BG model of DC motor 

Consider the BG-LFT model in preferred derivative 

causality of DC-motor in Fig.3. The fictive inputs 

),,,,(, mmeaai fJkLRiw   are related to fictive outputs 

),....(, mai fRiz   as follows. 
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(27) 

where 
mmeaa JfkLRa  ,.,,.,. are the multiplicative 

uncertainties on the respective parameters. 

 
Figure 3: BG-LFT model of DC Motor 

The ARR relations are derived from the model as, 

}.{}.{}.{

}{)/}{.(}.{

}.{|}.{}.{

}{}.{)/}{.(

2

,2

.,,,2

1

,1

,1

2

2

1

1

memmmm

b

keJmfm

r

mnemnmmnm

memama

b

kLR

r

mnemnamnaa

ikwJwfb

www

ikdtwdJwfR

wkiLiRb

www

wkiRdtidLUR

eaa















  

  



  

  



 

 

 

(28) 

 

 

 

(29) 

where b1 and b2 represent the uncertain part of each residual 

R1 and R2 with 
i  denoting the additive uncertainty on 

parameter 
i .Then, each additive uncertainty is bounded in 

interval form to form the interval valued thresholds B1 and 

B2 respectively as Eq. (30) and Eq. (31). 

Since Ra is sensitive to R1 only, R2 is not considered for 

subsequent analysis. La and ke are considered to deviate 

within their interval limits but do not undergo any kind of 

degradation:  

)]5.0*(),1.0*([
nanananaa LLLLL 

)]2.0*(),1.0*([
nenenenee kkkkk  .  

Allowed deviation on Ra is such that, 

)]1.0*(),2.0*([
nanananaa RRRRR  . 
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}]{,[
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

 

 

(30) 

(31) 

4.1Case I: No Degradation. 

All the three parameters Ra, La and ke which are sensitive to 

R1 deviate within their interval limits. Fig.5 shows the 

interval thresholds generated from Eq. (30) such that 

],[ ,1,11 ul BBB 
 

where the considered allowed interval limits are: 

2.0*,1.0*,5.0*

,1.0*,1.0*,2.0*

neuenelenaua

nalanauanala

kkkkLL

LLRRRR




. 

Fig. 5 shows the simulated residual R1 which is generated 

from the real system with uncertain parameters deviating 

inside their prescribed interval limits. It is under the 

thresholds indicating no fault or degradation. The residual is 

different from zero indicating that parameters deviate within 
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prescribed limits. Note that for the purpose of illustration, 

there is no noise considered in the simulations, assuming 

that sensor measurements are present with negligible noise. 

 
Figure 5. Residual r1 under nominal conditions 

4.2 Case II: Gradual and Linear Degradation in 

Winding Resistance Ra 

A degradation of the form )1()( tRtR
naa   is considered 

in the real system model, where 45.2  e . Fig. 6 shows 

the degradation profile. The diagnostic threshold should be 

crossed at t=400s when
uanaa RRR  . The failure value 

of Ra is set to be  3
, failaR  so that  6.0

failaR . 

Failure value is expected to be reached at  t=1000s. Failure 

thresholds which consider model inputs can be formed 

following Eq. (23) as in Eq. (32), where the  measurement 
inputs are from the nominal system model. 

}]{,[

}].{,[}.{

mod,

mod,mod,,

elmul

elmulelmfailfailRa

wkeke

i
dt

d
LaLaiRaB




 

 

(32) 

Fault detection: Detection of the degradation on Ra is done 

by the diagnostic thresholds B1 as shown in Fig.7. As 

expected, the thresholds are crossed by the residual at 

t=400s indicating the beginning of degradation. Failure 

thresholds failRaB ,  are formed from the inputs of a nominal 

system model. 

Fault prognosis: As soon as the degradation is detected, the 

prognostic module is triggered on. The Interval Extension of  

r1, denoted by IEr1  is considered from there-on i.e. after 

t=400s as, 

}]{.,.[}.{

)/}{](.,.[1

munlnmna

muanalanaa

wkekekekeiR

dtidLLLLUIEr




 

(33) 

Fig.7 shows the evolution of r1 and IEr1  as the degradation 

proceeds in time. Failure threshold 

],[ ,,,,, ufailRalfailRafailRa BBB   considered for the estimation of 

RUL is also shown in the same figure. Fig. 8 shows the data 

of Fig. 7 between time 420s and 530s presenting the various 

intervals for better clarity.  

Linear regression model is then fitted to the interval data of 

IEr1 in a sliding window of length k=5. Fig. 9 shows the 

obtained RUL in the interval form. As expected, the RUL is 

bounded around 1000s in interval form. Thus, for linear-

gradual degradations, this approach is efficient in estimating 

the RUL . 

 

Figure 6. Linear Degradation induced in Ra 

 
Figure 7. Detection of Degradation at t=400s. 

 
Figure 8: IEr1 profile zoomed 
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Figure.9 RUL estimation for Case:II  

4.3 Case III: Gradual and Non-Linear Degradation of 

Ra 

A non-linear, gradual degradation of the form 
t

naa eRR .001.0  is considered on Ra.  The diagnostic 

threshold should be crossed at t=95s when 

1.0*
nanaa RRR  (so that its maximum limit for 

allowed deviation is reached).The failure state value is 

prefixed as  0.3
, failaR , the expected RUL is 223s. 

Fault detection and Prognosis: Fig. 10 shows the simulation 

of the residual which crosses the thresholds at t=95s, 

indicating the beginning of degradation. Once degradation is 

detected, IEr1 is considered upon which the linear regression 

model is fit in sliding window of length stk *5  where st 

is the sample time, taken as 0.01 s here. Fig.11 shows the 

estimated bounded RUL .It is noticed that the RUL evolves 

in time starting from 250s. It is estimated by approximation 

of the non-linear degradation through a linear fit model. At 

each instant, the obtained RUL depends upon the linear 

approximation of nature of degradation in that time window.  

The linear approximation is helpful in prediction with 

sufficient accuracy.  

 
Figure 10. Detection of Degradation and IEr1 profile 

 

Figure 11. RUL estimation (Case: III) 

5. CONCLUSION 

The proposed interval valued thresholds are successful in 
detecting the beginning of parametric degradation in linear 

cases and gradual non-linear cases. The diagnostic module 

formed by interval valued thresholds; is derived from LFT 

model in derivative causality which detects the beginning of 

degradation. This in turn, enables the prognostic procedure 

where in, Interval Extensions of ARRs are used to carry the 

parametric degradation information in form of interval 

valued data time- series. Such IE-ARRs consider parametric 

uncertainty intervals of non-degrading uncertain parameters 

allowing them to deviate within their prescribed limits. For 

gradual, linear parametric degradation, the Centre and 
Range method can accurately predict the RUL as taking into 

account the imprecision brought in by the deviating 

uncertain parameters. For gradual, non-linear degradation, 

this method predicts the RUL by approximating the 

degradation as a linear model in sliding time window 

framework, with sufficient accuracy. This work does not 

consider noise brought in by sensor measurements or any 

external disturbances. Also, it lacks in being robust to 

outliers while approximating the linear model of 

degradation. Thus, further development is motivated . The 

proposed method needs to be developed to deal with non-

linear cases, accurately. It should be noted that this 
methodology is developed in the BG framework of 

modeling, as it enables a simplified and holistic approach 

towards multi energetic uncertain dynamic systems. 
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