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ABSTRACT 

As the licenses of many nuclear power plants in the US and 
abroad are being extended, the accurate knowledge of 
system and component condition is becoming more 
important. The US Department of Energy (DOE) has funded 
a project with the primary goal of developing lifecycle 
prognostic methods that generate accurate and continuous 
remaining useful life (RUL) estimates as components 
transition through each stage of the component lifecycle. 
These stages correspond to beginning of life, operations at 
various expected and observed stress levels, the onset of 
detectable degradation, and degradation towards the 
eventual end of life. This paper provides an overview and 
application of a developed lifecycle prognostic approach 
and applies it to a heat exchanger fouling test bed under 
accelerated degradation conditions. The results of applying 
the lifecycle prognostic algorithms to the heat exchanger 
fouling experiment are given, followed by a discussion of 
the strengths and shortcomings of the developed techniques 
for this application. 

1. INTRODUCTION 

The field of systems and component level prognostics 
focuses on the determination of overall system health and 
RUL to provide safety, reliability, and financial benefits. 
The interest in this field is growing as more commercial 
reactor licenses seek to extend operations past original 
design lifetimes. As the operating life of the nuclear plant is 
increased, concern for the reliability and safety of the 
system components also grows. Development of online 
prognostic models for the RUL of many components can 
lead to more efficient maintenance scheduling, and when 
used for on-line monitoring, can reduce sudden loss of 
operations from unexpected component failure. The goals of 

well-made prognostic models are to lessen plant down time 
and the related loss of revenue. 
 
Current research focuses on the development of prognostic 
methods and models for estimating RUL throughout the 
lifetime of a component. To validate the developed 
methods, three accelerated degradation test beds have been 
constructed. These test beds include setups for induction 
motor degradation, pump impeller degradation, and heat 
exchanger fouling. Nuclear Power Plants (NPP) contain 
many heat exchangers, each of which is crucial to the 
overall performance of the plant. This is why accurate 
monitoring and modeling of the RUL for these heat 
exchangers is so important. Possibly the most important 
heat exchanger for maintenance purposes is the NPP 
condenser. Failure to remove waste heat in the system by 
the condenser can significantly reduce plant capability to 
maintain vacuum resulting in derating the NPP, which has 
occurred during hot summer months at several NPPs, 
including Watts Bar, resulting in a derating from loss of 
efficiency (Buecker 2009). Between 2008 and 2010, the 
North American Electric Reliability Corporation (NERC) 
stated that condenser associated performance issues were 
responsible for the removal of over 9.1 million megawatt 
hours from the energy grid (Fayard 2011). In an effort to 
reduce the effects of this efficiency loss for NPPs, the 
analysis given in this paper is implemented on the data 
collected from the small scale heat exchanger fouling 
experiment onsite at the University of Tennessee. This paper 
presents the development of a data-driven model for 
degradation detection methods, collection of system health 
indicators, and finally lifecycle prognostic prediction model 
development.   
 
The structure of this paper is as follows: A brief discussion 
of the background for heat exchanger fouling research and 
the steps necessary to develop a lifecycle prognostics model 
for a heat exchanger system with a short explanation of each 
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step. Next is a description of the heat exchanger setup and 
operating procedure used to generate the data for lifecycle 
prognostics model generation. This will be followed by a 
detailed report of the steps taken to develop the lifecycle 
model such as signal/feature selection, auto-associative 
kernel regression model development, prognostic parameter 
generation, general path model generation and Bayesian 
updating implementation. These methodologies will be 
followed by the lifecycle prognostics model results and a 
conclusion.  

2. BACKGROUND 

Research into heat exchanger degradation modeling is 
focused mainly on simulated heat exchanger system data, 
such as plate heat exchanger with simulated milk fouling 
(Georgiadis and Macchietto 2000). Unlike the physical heat 
exchanger test bed, simulated models provide the ability to 
quickly generate large sample data sets with multiple failure 
modes. Ardsomang et al. (2013) utilizes physics models for 
heat transfer and effectiveness to estimate the RUL of 
simulated heat exchanger data. Physics based methods for 
detecting fouling in heat exchangers, such as Kalman 
filtering utilizing first principles models, are also currently 
used (Jonsonn et al. 2007). Because the models are physics 
based, some of the parameters used for development are 
dependent on the heat transfer coefficient of the heat 
exchanger. For example, when significant fouling occurs, 
there is a reduction in heat transfer, which can be seen as 
changes in model parameters over time. This application of 
extended Kalman filtering is also sensitive when moderate 
fouling is introduced, showing this as a physics based 
approach that is well suited for on-line fouling detection in 
heat exchangers. The use of extended Kalman filters with 
temperature and flow rate sensor data shows an example of 
a state spaced model that can implement physics based 
approach to effectively detect heat exchanger fouling. 
 
Alternatively, a physical test bed allows for validation of the 
degradation models with real world signals collected from 
the heat exchanger. Simulated models must be designed to 
include a robust set of different conditions and failure 
mechanisms, whereas with real world experimentation 
different natural failure mechanisms, operations, and noise 
are inherent to the physical setup. Another inherent 
advantage of test beds is that unexpected developments in 
testing may not be considered when designing simulation 
models. For example, if a simulation of an induction motor 
system is developed to model the conditions of onset 
bearing failure, there may actually be several different 
failure modes, such as electrical, shaft or bearing, which the 
simulation will not implement. Using test bed data prevents 
the need for additional concerns in design. Simulated heat 
exchanger modeling is presently used mainly for on-line 
monitoring, diagnostics and fault detection (Upadhyaya et 
al., 2004). Unlike many first principle models, empirically 

driven models are developed almost exclusively on historic 
unfaulted data. Real-time data can be passed through to 
these models and monitored for deviations from expected 
normality.  
 
One type of empirical modeling technique is based on the 
auto-associative kernel regression (AAKR) (Wand and 
Jones 1995). AAKR models are built using vector selection 
techniques on unfaulted data to construct a memory matrix. 
The AAKR model in this study is an error correction model 
constructed using fault free data built off of methods 
developed by Yang et al (2006).  When faulted data is input 
to the model, the output is a corrected version of the faulted 
input data.  When the corrected data is compared to the 
actual data, the difference between them is termed residuals.  
As a component degrades, the residuals will increase until 
failure. Figure 1 shows the basic arrangement of the AAKR 
based prognostic system. Operational data is input and 
residuals are calculated. These residuals can be combined 
into a prognostic parameter, which is related to the health of 
the system.  A prognostic model is developed to explain the 
degradation process and predict the system RUL. These four 
steps, AAKR modeling, prognostic parameter generation 
and prognostic modeling, are discussed in subsequent 
sections. 
 

 
Figure 1 – Basic arrangement of an AAKR based prognostic 

system. 

Prognostic models can be classified into three types based 
on the type of data used in the model (Hines et al. 2007). 
The first of these, Type I, or simple time-to-failure 
distribution models, are used to estimate the failure times of 
a system, generally before operation begins or if there is no 
information available from the query system other than run 
time. Stressor information such as the flow rates for heat 
exchangers can be used to improve the estimates starting at 
the early stages of operation when expected or continuing 
stress levels are known with the second type of model, a 
Type II prognostic model. When quantifiable measured or 
inferred degradation is detected in the system, Bayesian 
techniques can be used to further transition to a Type III 
model, such as the general path model, for more accurate 
RUL estimates. 
 
The general path model (GPM) was first proposed by Lu 
and Meeker (1993), and was first used for prognostics by 
Upadhyaya et al. (1994). GPM is commonly used to 
extrapolate some measure of system health, called the 
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prognostic parameter, built from degradation data by means 
of a regression fit. For prognostics, past degradation cycles 
can be analyzed, and an appropriate functional fit type 
(linear, quadratic, etc.) can be determined and applied to an 
unfailed case with detectable levels of degradation. The 
regression model is then extrapolated to some failure 
threshold and the time to failure (TTF) is calculated. This 
method of utilizing GPM, along with Bayesian inference, is 
applied to the heat exchanger test bed.  
 
Bayesian methods for including prior information are based 
on Bayes’ theorem and can be used for regression problems. 
It has been shown by Coble and Hines (2011) that Bayesian 
inference for application in prognostics problems can be 
successfully used to update GPM regression weights based 
on prior information. By appending weighted inputs to the 
matrices, GPM regression can be purposefully biased 
towards historical paths or failure times. This method of 
Bayesian updating for use on the heat exchanger experiment 
data is discussed in section 4. 

3. EXPERIMENTAL SETUP AND DATA ACQUISITION 

The heat exchanger fouling test bed experiment was 
designed to increase the rate of fouling degradation of a tube 
and shell heat exchanger by expedited process side fouling.  
The system contains 8 sensors to monitor temperature, flow, 
and pressure within the 64 tube cross-flow heat exchanger, 
shown in Figure 2 and summarized in Table A1. 
 

 
Figure 2 – Schematic of heat exchanger physical setup  

 
As seen in Figure 2, there are thermocouples at each of the 
four entrances and exits of the heat exchanger used to 
measure the incoming and outgoing temperature of the hot 
and cold legs: sensors 1, 2, 3, and 4, respectively.  Pressure 
transducers are at both ends of the heat exchanger hot leg to 
measure the pressure variation (sensors 7 and 8). There are 
two turbine style flow meters to measure flow velocity of 
the hot and cold legs (sensors 5 and 6, respectively). A 
LabVIEW data acquisition (DAQ) system is used to sample 
and record the signals at 0.1 Hz. Three 250 watt heaters are 

used to heat the reservoir water for the hot leg supply, and a 
0.5 horsepower (HP) pump is used to facilitate flow. The 
heat exchanger used for this test bed is the Basco 64 tube 
and shell. Each hot leg tube is 0.25 inches in diameter and 
24 inches in length. A full list of system components is 
given in Table 1.  
 
Table 1 – Major systems components, brand, and location 

 Component Brand Location 

S
en

so
rs

 

Thermocouple Omega 

Hot Leg Inlet 
Hot Leg Outlet 
Cold Leg Inlet 
Cold Leg Outlet 

Turbine Flow 
Meter 

Blancett 
Hot Leg Inlet 
Cold Leg Outlet 

Pressure 
Transducer 

Dwyer 
Hot Leg Inlet 
Hot Leg Outlet 

Data Acquisition 
System 

Texas 
Instruments 

N/A 

C
om

po
ne

nt
s 

Heat Exchanger Basco N/A 

250 Watt  Heater Tempco 
Two on top of tank 
One on bottom of tank 

15 Gallon 
Reservoir Tank 

McMaster-
Carr 

Hot Leg - Below Heat 
Exchanger 

0.5 HP Pump Berkeley Below Tank 

 
Tube and shell heat exchanger degradation occurs most 
commonly as continuous fouling within the tubes, that 
results in a reduction in heat transfer to the point where it no 
longer meets specifications (Upadhyaya et al. 2004). For the 
scope of this experiment, this reduction in heat transfer is 
due to particulate fouling inside the process side tubes. To 
accelerate fouling of the test bed experiment, kaolin (china 
clay) is added to the hot leg water. At startup, a mixture of 
water and 105 grams of clay is added to the system, with 
additions of 75 grams of clay in solution every 48 hours 
during the cycle. This regular addition of clay helps to 
maintain a consistent clay density in solution within the 
system. Without these regular additions, the clay has a 
tendency to fall out of solution and settle in the reservoir 
tank. The typical cycle is 14 days of continuous operation at 
1 gallon-per-minute in the hot and cold legs (excluding 
down time during clay addition).  
 
Operational data have been collected for eight cycles run at 
one gallon-per-minute. For the purposes of this paper, the 
average flow rate can be considered a stress related variable 
as it is directly related to the fouling rate. The flow rate is 
important for the stressor-based prognostic algorithms, and 
in future research will be varied during a data collection 
cycle; for the extent of this paper, each cycle is held at near 
constant flow rate.  
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4. MODEL DEVELOPMENT 

To determine an optimal lifecycle prognostic method, 
multiple competing models were created. Four signal sets 
were selected to build the models, and ordinary least squares 
regression of each residual set was used to produce 
prognostic parameters. For the GPM, a linear and quadratic 
fit was used for each case, and Bayesian updating was 
applied. These will be further discussed in the following 
sections.  

4.1. Signal and Feature Sets 

From the data, certain features such as log mean 
temperature difference (LMTD), heat rate, and delta 
temperatures are calculated. The two features used in the 
prognostics models are heat rate and overall heat transfer 
coefficient given by equations 1 and 2b respectively.  
 

ሶܳ ௛/௖ ൌ 	 ሶ݉ ௣ሺܥ ଵܶ െ ଶܶሻ                        (1) 
 

LMTD =	
൫݄ܶ1െܶܿ2൯െ൫݄ܶ2െܶܿ1൯

logቆ
݄ܶ1െܶܿ2
݄ܶ2െܶܿ1

ቇ
                 (2a) 

 

ܷ௛/௖ ൌ
ொሶ೓/೎

௅ெ்஽∗஺
                         (2b) 

 
where A is the surface area of heat transfer. 
 
These signals and features define the state of the system and 
are selected for inclusion into the AAKR models. When 
cleaning the training data for the AAKR model, it is 
important that the data is fault-free and the test cases operate 
in the same conditions. To reduce system noise, especially 
for the mass flow rates, a median filter was applied to 
remove outliers exceeding three standard deviations. This 
procedure removed many of the large spikes seen in the 
mass flow rate signals, which should have been in near 
steady state.  
 
It is important to develop AAKR models with groups of 
related variables. Therefore, the linear relationships between 
the signals and features were analyzed via correlation 
coefficients. Absolute coefficient values of greater than 0.7 
correspond to strong correlations between signals, and 
coefficients of 0.25 and below are considered to show no 
significant linear correlation. Figure 3 shows a plot of the 
correlation coefficients of the raw data and calculated 
feature indices, with indices summarized in Table A1.  
 
Figure 3 shows that there is a strong correlation between 
signal indices 1 to 4 (measured temperatures). There is also 
a strong correlation between signals 1 and 2 and features 13 
to 15 (LMDT and heat transfer coefficients). There are 
moderate correlations between signals 1 to 6 (5 and 6 are the 
flow rates) and 13 to 15. 

 
Figure 3 – Correlation coefficients of signals and features 

 
Four sets of related variables were chosen based on 
correlation coefficients and understanding of the system 
processes. Other signal sets were tested during initial 
modeling attempts, but did not return desirable residual 
values and trends, and therefore were not considered for 
final lifecycle prognostic methods. The selected signals and 
features were chosen either for being moderately-to-highly 
correlated to one another or for the strong trend observed in 
them, such as the increasing trend of the hot leg 
temperatures and the decreasing trend of the heat transfer 
coefficients. The indices chosen for each signal set are given 
in Table 2. 
 
Table 2– Signal sets used for modeling 

Signal Set Signal/Feature Indices Used 

1 2, 3, 11, 12, 14, 15 

2 1, 2, 3, 4, 11, 12, 14, 15 

3 1, 2, 3, 4 

4 1, 2, 3, 4, 14, 15 

 
In signal sets one, two, and four, the heat transfer 
coefficients, heat rates, and temperature signals are used.  
Since the overall heat transfer coefficients (indices 14-15) 
are calculated from first principles models that are 
dependent on temperature signals (Schmidt et al. 1993), 
including them in an empirical AAKR model has the effect 
of increasing both the model’s and prognostic parameter’s 
weightings toward the temperature signals. This may 
improve modeling attempts when the temperature signals 
have strong increasing trends, and is expected to be more 
effective than other methods of artificially increasing the 
weightings, as it collapses signals to known, important 
dimensionalities.   
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4.2. Auto-Associative Kernel Regression 

After feature selection is completed, the unfaulted heat 
exchanger data is divided into three data sets termed 
training, testing, and validation.  Training data is used to 
train the model and should consist of unfaulted data that 
covers the range of operating values. Testing data is used for 
bandwidth optimization, which will be deferred to later 
discussion, and validation data is used to validate the 
performance ability of the model. AAKR models for the 
heat exchanger were developed and evaluated with the PEM 
toolbox (Hines and Garvey 2006). Kernel regression 
requires a parametric kernel function, in this case a 
Gaussian function, defined by a bandwidth that specifies the 
region of localized weighting for an input vector to the 
memory matrix output. An optimal bandwidth can be 
selected by altering it to minimize the error between known 
unfaulted observations and the model output. This method 
of determining the bandwidth increases the accuracy of the 
kernel regression model (Wand and Jones 1995). The 
training residuals from an AAKR model of signal set 2 are 
shown in Figure 4. 

 
Figure 4 – Training residuals for signal set 2. 

 
For this experiment, the training residuals of the temperature 
signals are desired to be less than 1oC since the temperature 
signals change less than 10°C over the faulted range. The 
training residuals of the heat rate should optimally be less 
than 50 W, and the heat transfer coefficient residuals should 
be less than 10 ܹ/݉ଶܭ. These levels were chosen based 
off knowledge of signal and feature operating ranges over 
normal cycles. After the model is built, faulted data is 
passed through and residuals for each faulted cycle are 
calculated. An example of faulted residuals for the 
temperature sensors in signal set 2 is plotted in Figure 5. 

 
Figure 5 – Faulted residuals of temperature signals (indices 

1-4) using the signal set 2 model 
 
From the failure residuals shown, strong increasing trends 
can be seen for the hot leg temperature signals. Dominantly 
monotonic trends are important when combining residuals 
to make a prognostic parameter. When combining the 
residuals, the objective is for the resulting health indicator to 
increase or decrease over the lifecycle to help indicate the 
degree of system or component degradation. If the observed 
trends of the residuals show a strong increasing/decreasing 
trend then the resulting prognostic parameter will also have 
a strong trend and be more useful for RUL predictions. 

4.3. Prognostic Parameter Generation 

The prognostic parameter is a single metric of the amount of 
deviation from normal behavior of the system and is ideally 
linked to the overall health of the system.  In this project, it 
is calculated as a linear combination of the residuals from 
the AAKR model. While Coble (2010) used a genetic 
algorithm to find a linear combination of weights for the 
residuals, the algorithm is computationally expensive. 
Instead, an ordinary least squares (OLS) regression is 
applied that mimics the optimization and is less 
computationally intensive for smaller data sets. The 
monitoring model residuals of multiple runs to failure are 
collected into a single matrix by concatenating each test 
case. This creates an n x s matrix, X, where n is total data 
points in all test cases, and s is the number of signal 
residuals output from the model. This X matrix is regressed 
against the n x 1 vector y where each yi corresponds to the 
percent of the total unit life at that observation. This means 
that the residuals of each test case are fitted to a linear curve 
from 0 to 1. The linear weights are then  
 

መߚ      ൌ ሺ்ܺܺሻିଵ்ܺ(3)     ݕ 

where ߚመ  is an s x 1 vector.  
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4.4. General Path Model and Bayesian Updating 

When using the GPM approach, a parametric function is fit 
to the degradation parameter, and extrapolated until it 
crosses a predefined failure threshold. Typically, the failure 
threshold is based on historical failures but need not directly 
indicate a point of catastrophic failure.  The failure 
threshold can be set as any point where a system no longer 
conforms to the necessary specifications and demands 
placed upon it.  
 
Because of the limited number of test cases, the GPM and 
all components are created by the use of a leave one out 
cross validation (LOOCV) technique. Hence, to calculate 
the RUL of a specific case, every other case is used to build 
the model. This avoids invalidating a model by keeping 
training and testing data separate, yet general enough to 
compare over all cases. With more data an alternative 
approach could be to simply divide the cases in half and 
build one model.  
 
The degradation path is assumed to have the general linear 
form that is shown in equation 4: 
 

y|β, X, ۤσۥ	 ~ଶ NሺXβ, σଶ	Iሻ	                    (4) 
 
where y is the response a vector, X is the input data matrix, 
and β is the vector of regression parameters. This model 
assumes normally distributed errors with variance σ2.  
 
Development of failure thresholds had to be generated with 
respect to the data. The values were chosen as a reflection of 
an unacceptable amount of degradation, limited by the least 
degraded cycle for any given model. Any data collected 
after this point was considered past failure and removed 
from the data analysis. A histogram plot of failure times for 
the lifecycle prognostics models is shown in Figure 6. 

 
Figure 6 – Histogram of failure thresholds 

 
If the test case data is censored such that only data before a 
time step is available, then the RUL can be calculated at 

each time step by extrapolating the current path to the 
threshold. To do this, a suitable parametric fit must be 
chosen. The fit can be of any linearly separable form such 
as, linear, quadratic, exponential, etc. The OLS method is 
used for regression of the parametric fittings because the 
OLS regression on a joint Gaussian distribution of 
parameters gives the maximum likelihood estimate. This 
method assumes that the error is normally distributed 
around zero.  The OLS solution can be found using the 
pseudo-inverse given in equation 3.  
 
By adjusting the functions in the columns of the input 
matrix X, different fits can be applied to any test path. It is 
assumed that for a certain failure mode the degradation 
paths will follow similar fits. Therefore once a suitable fit is 
chosen for the failed data, it is assumed the censored faulted 
data will follow the same fit.  
 
Bayesian priors can also be incorporated into the OLS 
model (Gelman et al. 2004) to reduce the uncertainty and 
increase the stability of RUL estimates. Bayesian statistics 
combines prior distributions with sampling data to create a 
posterior distribution. When few data points are available, 
without incorporating any form of Bayesian prior 
estimations, the model can easily be affected by noise and 
give widely varying predictions of time to failure.  Coble 
and Hines (2011) use Bayesian methods to incorporate prior 
knowledge of regression parameters in the GPM.  This 
approach requires historical run-to-failure data in order to 
evaluate the prior distributions of regression parameters.  An 
alternative approach instead uses RUL estimates from Type 
I prognostic models as prior information (Nam 2013).  In 
this approach, the Type I RUL distribution is treated as an 
additional data point in the OLS regression.  The measured 
data are augmented with the distribution according to 
equation 5: 
































RUL

y

MTTF

X
X

thresh

y
Y

0

0
,,

   

 (5) 

 
where y is the observed prognostic parameter, thresh is the 
failure threshold, x is the timestamps (or appropriate 
transformation thereof), MTTF is mean failure time from the 
Type I distribution (or appropriate transformation thereof), 
 ௬ is the noise or uncertainty associated with the observedߑ
prognostic parameter, and ߑோ௎௅ is the uncertainty in the 
Type I RUL estimate.  The OLS regression is then solved 
according to equations (6) – (8): 

β෠ ൌ ቀX୘Σ‐ଵXቁ
‐ଵ
X୘Σ‐ଵy                       (6) 

 
ଶߪܸ ൌ ሺ்ܺିߑଵܺሻିଵ                     (7) 

 

σଶ ൌ
ଵ

୬‐୩
൫y‐Xβ෠൯

୘
Σ‐ଵ൫y‐Xβ෠൯                (8) 
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where k is the degree of the parametric function used in the 
GPM. 
 
The weight of the prior information in the OLS regression 
depends on two main factors: the variance of the prior 
relative to the variance of the data, and the number of 
observations collected. If the variance of the prior is small 
compared to the noise of the data, the prior 0  will be 

weighed more heavily. However, no matter the difference in 
variance, with enough observations, the data should 
eventually swamp out the prior in calculating the posterior. 

4.5 Bayes Method Implementation 

For each of the four AAKR models, two prognostic 
modeling methods are used: 

GPM Method 1: No Bayesian updating 

GPM Method 2: Type 1 Bayes priors 

To compare the two methods, plots of the predicted TTF 
versus the actual TTF are examined. In each plot, the 
multiple blue lines correspond to the determined TTF of 
each cycle over time. Figure 7 shows a plot of the TTF 
comparison when no Bayesian updating is used. 

 

Figure 7 – Plot of the GPM method 1 TTF predictions 
across cycles without Bayesian updating 

 
Without Bayesian updating, TTF prediction times have 
large spikes, and prediction accuracy is reduced. While 
some peaks are due to the noise and artifacts in the heat 
exchanger data acquisition system, the somewhat larger and 
broader peaks at regular intervals are most likely the result 
of the regular additions of clay into the hot fluid. The extra 
clay would change the thermodynamics as well as mass 
flows of the otherwise closed system. In an attempt to 
improve TTF estimation, past cycle failure times are 
incorporated as prior information (Type I) as shown in 
Figure 8. 

 

Figure 8 - Plot of the GPM method 2 TTF predictions across 
cycles with Type I Bayesian updating 

 
The predictions using Type I prior information show visual 
improvement over those with no Bayesian updating.  

5. RESULTS AND DISCUSSION 

Initial modeling attempts revealed that using a quadratic fit 
is more accurate than using a linear fit; therefore, to 
conserve space, results will be confined to quadratic fit 
models. The different GPM methods and signal sets 
(models) are compared using several performance metrics. 

The first model comparison metric used is the absolute error 
mean (AEM), which returns the average absolute difference 
between the predicted RUL and the true RUL in real time 
units, shown in Figure 9.  Signal sets 1 and 3 have the 
lowest AEM, and GPM method 2 further improves the 
predictions.  Signal set 1 with GPM method 2 results in the 
most accurate RUL predictions for this data set. 

 
Figure 9 – Absolute error mean for four signal set models 

and two GPM methods 
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The second metric used to evaluate the prognostic models is 
the absolute error standard deviation (AES), which is a 
measure of the variation in error through time of each model 
and GPM method, shown in Figure 10.  Again, the model 
using signal set 1 and GPM method 2 shows the best 
performance, with highest precision in estimating the RUL.  

 
Figure 10 – Absolute error standard deviation for four signal 

set models and two GPM methods. 
 

To quantitatively compare the different GPM methods, the 
AEM, AES, spread, and coverage metrics are used (Saxena 
et al. 2010). A plot showing the results of these metrics for 
each GPM method for signal set 1 is shown in Figure 11 and 
the unnormalized metric scores are shown in Table 3.   

 

Figure 11 – Plot of normalized performance metrics for two 
GPM methods and signal set 1 

 

These metrics indicate that the Bayesian updating method 
(GPM Method 2) is more accurate for predicting RUL for 
this data set. 

 

 

Table 3 – Performance Metrics Scores  

G
PM

-1
 

AEM 1.7026E4 

AES 9.6206E3 

Spread 131.135 

Coverage 83 

G
PM

-2
 

AEM 1.1441E4 

AES 5.1395E3 

Spread 70.767 

Coverage 99 

 

6. CONCLUSION AND FUTURE WORK 

In analyzing the fouling of a heat exchanger, a method for 
the development of a lifecycle prognostics model was 
presented that spans from empirical modeling of the system 
to TTF calculations using the GPM. Across all test cases, 
the Bayesian transition using a type I prior outperformed the 
GPM with no Bayesian updating.  
 
The prognostics method presented here can be improved in 
several ways. The noise of the prognostics parameter can be 
reduced by improved filtering or prognostics parameter 
optimization. A more optimized prognostics parameter with 
a more well-defined degradation threshold could increase 
the prognosability and decrease the end of life RUL and 
TTF prediction errors. A crucial future implementation is 
the application of a fault detection method to cut beginning 
of life test data before a fault is detectable. Cutting data that 
is similar to clean or unfaulted data would increase 
trendability, particularly for linear GPM fits that would not 
accommodate a sudden increase in degradation. A 
mitigating factor to this is that all test cases are initially run 
with clay in the system. Therefore, physically, some form of 
degradation should be manifest from the beginning.  
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APPENDIX 

Table A1 – Measured signals and calculated features and 
their indices 

Signal Index Signal/Feature 

1 Hot Leg Inlet Temperature 

2 Hot Leg Outlet Temperature 

3 Cold Leg Inlet Temperature 

4 Cold Leg Outlet Temperature 

5 Hot Leg Flow Rate 

6 Cold Leg Flow Rate 

7 Hot Leg Inlet Pressure 

8 Hot Leg Outlet Pressure 

9 Delta Hot Leg Temperature 

10 Delta Cold Leg Temperature 

11 Hot Leg Heat Rate 

12 Cold Leg Heat Rate 

13 Log Mean Temperature Difference 

14 Hot Leg Overall Heat Transfer Coefficient 

15 Cold Leg Overall Heat Transfer Coefficient 
 


