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ABSTRACT 

This paper presents the development of a diagnostic method 

which uses the measurement of motor currents in order to 

detect defects in electromechanical systems. It focusses on 

two main topics: the acquisition of experimental data, and 

the development of the diagnostic method. The data 

acquisition was crucial for the successful development of a 

dedicated signal analysis method. For this purpose, a test rig 

for generating experimental training data was created. The 

rig provides the ability to simulate a wide range of defects 

experimentally. Different types of artificial defects, such as 

bearing damage or misalignments, were used; these are 

described in detail in the second section of the paper. The 

experimental data was obtained under varying operational 

conditions. Using all possible settings of operational 

parameters for data generation would mean excessive 

experimental time and effort. Therefore, a special approach 

using the theory of “Design of Experiments” was applied. 

By using a fractional factorial design based on orthogonal 

arrays, the number of experiments could be reduced 

significantly. Details of this approach are given in the third 

section. The main ideas of the classification algorithm, 

including some of the results, are summarized in the fourth 

section. A special method using a combination of Principal 

Component Analysis and Linear Discriminant Analysis was 

designed for the correct detection of damage or 

misalignments. With this method, a successful classification 

of the systems’ health state could be obtained.  

1. INTRODUCTION 

Electric motors are usually inexpensive in comparison with 

the equipment of the powered process (e.g. a conveying 

system, a machine tool, or an assembly line). This is 

especially true for small engines with a power consumption 

below 1 kW. The use of additional sensors for such a motor 

increases the price of the component significantly. 

Therefore, such an approach to defect detection seems 

practically unfeasible in many cases. That is why 

monitoring the health conditions of electric motors is 

uncommon for industrial applications. However, in the case 

of a motor standstill, a stop of the entire process, for 

example a production line, may be required. In such a case, 

the monetary cost is usually significant. The problem may 

be prevented by collecting information about the motor 

condition and the dependent process from the motor’s 

internal physical quantities. Much research has been done 

on the development of methods for condition monitoring 

using motor currents. Stack, Habetler, and Harley (2004), 

for example, focus on categorizing bearing faults as either 

single-point defects or generalized roughness; they describe 

the detection fault signatures by investigating machine 

vibration and shaft current. Widodo, Yang, Gu, and Choi 

(2009) apply discrete wavelet transform to transient current 

signals, followed by a component analysis as well as a 

support-vector-machine-based classification. Tran, 

AlThobiani, Ball, and Choi (2013) use a decomposition of 

current signals via a Fourier-Bessel expansion and classify 

the features with a special class of neural networks. Zhen, 

Wang, Gu, and Ball (2013) present the application of so-

called “dynamic time warping”, a special time-domain-

based method, to motor current signals to detect common 

faults. In all these contributions, application-specific 

features are considered. However, in contrast to previous 

research, a generic approach to feature extraction using 

phasor description of motor current signals is pursued in the 

present paper (see Section 4). 
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For synchronous motors, the electric phase currents are 

measured to enable correct control of the motor operation. 

Hence, all currents are already known; they could thus be 

used to determine the current motor condition and its trend 

over time, offering the possibility of detecting defects with 

minimum resources by reusing these currents and without 

requiring additional sensors. The proposed method uses the 

motor’s phase currents for the detection of faults and 

damaged components, such as e.g. rolling bearings in the 

electric motor itself or in the powered equipment.  

To develop this diagnostic method, experimental data was 

required. The generation of suitable experimental data is a 

complex task, especially when the investigation focusses not 

on one specific type of damage, but rather on different types 

of defects in different components, as well as on 

combinations of such defects. The long-term aim is to 

integrate the proposed method into drive systems by using 

existing current measurements within frequency inverters in 

industrial applications. Therefore, systematically generated 

data of relevant damage and operational conditions must be 

available to develop the required diagnostic methods. 

This paper will describe the necessary test setup, the design 

of experiments, and the development of the algorithms to 

detect defects in commonly used machine components, such 

as rolling bearings and gears. It will focus especially on the 

creation of a sophisticated database, which is essential for 

the development of the diagnostic method.  

2. DEFECT SIMULATION VIA TEST SETUP 

To generate experimental data, a specific test rig was 

developed and constructed. The test rig is a modular system 

to ensure flexible use of different artificial defects (or 

inaccuracies). A defect is a “non-fulfilment of a requirement 

related to an intended or specified use” (DIN EN ISO 9000, 

2005). In this paper, defects are divided into two groups: 

damage and faults. Damage is constituted by defects which 

arise in a technical system after a period of time. They 

appear as a change in the shape of one or more components, 

e.g. fractures or pitting in gear wheels or bearings. The term 

fault is used for any defect that exists in a technical system 

from the start, such as assembly defects, as well as for any 

reversible defect which is forcibly introduced by the 

operational conditions, such as shaft deflection under high 

loads.  

The basic components of the test rig are the drive motor, a 

torque-measuring shaft, the test modules, and a load motor 

(see Figure 1). Different types of faults and damage could 

be generated using the test modules. An implementation of 

several defects in combination was also possible. The 

detection of defects was carried out using measured motor 

current signals from the test data.  

 
Figure 1. Modular test rig for generation of experimental 

data: drive motor (1), torque-measuring shaft (2), rolling 

bearing module (3), gear module (4), flywheel (5), load 

motor (6) 

 

2.1. Test Rig 

As described above, the test rig consists of different 

modules. The motor is a 425 W Permanent Magnet 

Synchronous Motor (PMSM) and is operated by an inverter 

with a switching frequency of 16 kHz. This inverter has a 

sensorless closed-loop structure. The motor phase currents 

were measured by a current transducer of the type MCTS 

60/ IT60-S with a conversion ratio of 1:600. The signals are 

filtered by a 12.5 kHz low-pass filter and converted from an 

analogue to a digital signal with a sampling rate of 100 kHz. 

These devices were used for proof-of-concept instead of the 

inverter’s internal ammeters because of their higher 

sampling rate and accuracy. 

In industry, power inverters with pulse-width modulation 

are commonly used for driving synchronous motors. 

Therefore, all experiments described in this paper were 

performed using an industrial power inverter, even though 

the motor current signals show significant noise because of 

the disturbances from the pulse-width modulation. In 

previous experiments, better defect detection results were 

obtained with an alternatively used sine-wave generator 

(Lessmeier, Piantsop Mbo’o, Coenen, Zimmer, & Hameyer, 

2012). Nevertheless, it was determined that it is possible to 

detect the defects despite noisy signals; thus, the noisy 

signals were chosen because of the prevalence of power 

inverters in industry. This practice-oriented selection 

ensures that an industrial application of the method 

developed here will be as easy as possible.  

To record the operational conditions and to have the 

possibility of supplementing the diagnosis with additional 

information, the following parameters were measured: the 

radial force on the rolling bearings, load torque, rotational 

speed, surface acceleration of the housing, and the 

temperatures of both oil and housing.  

The torque-measuring shaft has a nominal torque of 2 Nm 

and an accuracy of ±0.1 % of the nominal torque. It was 

used to measure and to record the torque synchronously to 

the motor currents. 

The rolling bearing module provides the possibility of using 

a specifically prepared test bearing under continuously 

adjustable variable radial loads and shaft tilting. The 

http://www.dict.cc/englisch-deutsch/frequency.html
http://www.dict.cc/englisch-deutsch/inverter.html
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assembly group consists of an outer and an inner housing. 

Only the inner housing with additional components is 

shown in Figure 2. The test bearing (1) is installed in a 

spherical bearing (2) to allow tilting of the outer ring in 

relation to the shaft. This tilting is forced by tilted discs (3) 

and pressure rings (4) on the outer ring of the test bearing. 

The self-aligning ball bearings (5) compensate force and 

deflection of the shaft by diverting it into the outer housing. 

The radial force on the test bearing is generated by 

tightening a screw between the outer housing and the thread 

(6). This force is measured and recorded by a load cell. The 

housing is sealed by radial shaft seals (7) and filled with oil 

through an inlet (8). 

 
Figure 2. Shaft and inner housing of the rolling bearing 

module 

 

In total, the following experimental conditions were 

implemented to generate faults in the rolling bearing test 

module under different conditions: 

1. Tilting of the shafts (vertical or horizontal) to 0.1°, 0.2°, 

0.3° or 0.5°; 

2. Different types of mechanical damage in the rolling 

bearings; 

3. Different rolling bearing types (6203 – ball bearing, 

N203 and NU203 – cylindrical roller bearings); and 

4. Different lubricants and lubricant filling levels.  

The gear module (Figure 3) consists primarily of a set of 

gear wheels (1) with a gear transmission ratio i = 1, each of 

them on a shaft (3) in a housing (4). The gear wheels can be 

changed for damaged ones, and can be tilted by changing 

the spacer ring (2) to an angled one. With different spacer 

rings, the housing of the second shaft can be tilted 

horizontally or vertically.  

The shaft offset because of gear and tilting is compensated 

by moving the subsequent modules of the powertrain. The 

positions are held by fixing and adjusting elements. So a 

change between different testing setups is easily possible 

without losing the alignment of the powertrain. 

 

Figure 3. Sectional drawing of the gear module 

 

The following experimental conditions were implemented to 

generate faults in the gear module: 

1. Tilting of the shafts and gear wheels due to loads by 

external forces as well as manufacturing inaccuracies 

(vertical [y-axis] or horizontal [z-axis]) to 0.5°.  

2. Different mechanical damage (e.g. wear, pitting, 

fracture). 

3. Different lubricants and lubricant filling levels. 

The flywheel and the load machine simulate the inertia and 

the load of the driven equipment, respectively. The load 

motor is a PMSM with a nominal torque of 6 Nm (Power of 

1.7 kW).  

Moreover, there are further test modules available for the 

test rig, such as a gearbox with planetary gears or an 

electromagnetic brake. These modules allow for follow-up 

investigations, which are, however, not in the focus of the 

present paper. 

2.2. Defects: Faults and Damage  

Before designing the test rig, the relevant defects were 

identified by a failure mode and effects analysis (FMEA) of 

a real system. Such a system may, for example, consist of a 

drum motor (Enge-Rosenblatt, Bayer, & Schnüttgen, 2012), 

and a conveyor belt. The failures identified as most relevant, 

which were therefore used for the experiments, are types of 

damage to bearings and gear wheels, as well as 

misalignments of the shafts due to loads or manufacturing 

inaccuracies. 

To reduce the number of experiments, the defects were 

selected based on the resulting values from the FMEA. 

These values indicate the defect importance in combination 

with a factor related to the chance of detection. The 

following defects were selected: 
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Rolling bearing module: 

- Tilting around the horizontal axis (y-axis)  

- Damage in cylindrical roller bearing N203 

Gear module: 

- Tilting around the horizontal and vertical axis 

Based on these evaluations, three levels were defined for 

each tilt defect (see Table 1).  

 

Table 1. Tilt levels of bearings and gear wheels 

Tilting of 

bearing 

Tilting of gear wheel 

[tilting axis] 

Name Angle Name Angle 

AN0 0 WF0 0 

AN2 0.2° WF1 [z-axis] 0.5° 

AN5 0.5° WF2 [y-axis] 0.5° 

 

Special artificial damage preparation is particularly 

necessary for the bearings in order to obtain reproducible 

test conditions. The types of damage were selected based on 

the completed FMEA while respecting the technical 

possibilities of their manufacturing. 

For the experiments, four cylindrical roller bearings with 

different levels of damage, which represent pitting, were 

selected (Figure 4). The damage was limited to the 

cylindrical roller bearings, with severe damage at the outer 

ring. These simplifications were chosen, because a better 

possibility of detection and therefore an easier development 

of the classification method was expected. One bearing 

without damage was used as a reference (numbered LS0). 

The damage type denoted by LS1 was manufactured 

manually using an electric engraver and is 2 mm long in the 

rolling direction over the entire width of the outer raceway. 

The damage types denoted by LS2 and LS3 were 

manufactured using a wire-cutting electrical discharge 

machine. LS2 is a cylindrical groove (radius = 8 mm) and a 

depth of 0.2 mm at the centre. The last type of damage is a 

repetition of LS2 at irregular intervals, covering 120° 

degrees of the outer ring. These damaged bearings were 

used in the rolling bearing module in the high-load zone of 

the outer ring.  

The damage introduced is based on investigations of 

damaged bearings from industrial applications. In particular, 

damage types LS1 and LS2 have a similar shape and size as 

the ordinary pitting of investigated bearings. Damage type 

LS3 is a severe damage type similar to the advanced 

damage caused by high numbers of cycles after the start of 

pitting. Because of this geometric similarity between the 

artificial defects and real bearing defects, it is assumed that 

a sufficient equivalence has been achieved in emulating real 

damage.  

 

Name Picture  

LS0 

 

LS1 

 

LS2 

 

LS3 

 
 

Figure 4. Outer rings of the prepared cylindrical roller 

bearings 

 

For future experiments, more damage types in bearings have 

been generated, including bearings from an accelerated 

lifetime test. These damage types are equivalent to damaged 

bearings from industrial applications. However, the artificial 

damage types were used for developing the diagnostic 

methods because they could be generated easily and 

quickly. In future experiments, the corresponding impact on 

the physical quantities of artificial and real damage has to be 

proven.  

2.3. Operational Parameters 

The test rig can be operated under different operational 

conditions (described by corresponding parameters of the 

test rig e.g. speed or load torque). To develop a detection 

method which is robust in the face of different operational 

conditions, it is also necessary to vary these parameters.  

The main operational parameters are the rotational speed of 

the drive system, the load torque, and the radial force on the 

test roller bearing. To ensure constant boundary conditions 

and comparability of the experiments, three fixed levels 

were defined for each parameter (Table 2). All three 

parameters were kept constant for the measurement time of 

each data set.  

 

Table 2. Levels of operational parameters 

Rotational speed Load torque Radial force 

Name [rpm] Name [Nm] Name [N] 

N04 400 M01 0.1 F04 400 

N09 900 M04 0.4 F10 1000 

N15 1500 M07 0.7 F20 2000 
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Another parameter is the temperature, which was kept 

constant at roughly 45°C during all experiments after 

warming the test rig before every measurement. 

3. DESIGN OF EXPERIMENTS 

The test rig was used to generate data experimentally for the 

purpose of distinguishing several defect phenomena from 

healthy system behaviour. For this purpose, an algorithm 

was developed and tested as described in Section 4. This 

algorithm must be robust and able to decide correctly under 

different operational situations. Hence, such an algorithm 

must be developed based on a broad data set, considering all 

defect phenomena in question as well as a variety of 

operational situations.  

In a real system, each of the defect phenomena (see Section 

2.2) and each of the operational parameters (see Section 2.3) 

can change any number of times. Each defect phenomenon 

would have to be investigated under different operational 

conditions in order to determine whether such a situation 

could be detected using only signals from electric phase 

currents. To consider the problem to its full extent, multiple 

measurements would have to be performed for all defect 

phenomena, in combination with all possibly occurring 

operational conditions. This would lead to an enormous 

number of experiments. A way around this dilemma is 

described in this section. It is based on completing a 

comparatively small number of experiments while still 

gathering all relevant information. 

From the mathematical point of view, two groups of input 

parameters must be distinguished when simulating different 

situations using a test setup. First, there is the group of 

defects. The main attribute of this group is that there is 

exactly one level of every input parameter which 

corresponds to a functioning system, while all other levels 

of the input parameters belong to a damaged system. This 

group of input parameters describes the health conditions of 

a system. Secondly, there are the operational parameters. 

These parameters can vary between different levels during 

the operation of a system without impacting the health 

conditions of the system.  

In Section 2.2, the most important levels of defect 

phenomena are described. This leads to a minimum of 4 

levels of pitting in bearings, at least 3 levels of shaft 

misalignment, and 3 levels of gear wheel misalignment. 

Taking only these levels into account for investigation, it 

results in 36 possible combinations. In Section 2.3, some 

carefully selected levels of operational parameters are 

defined, leading to 3 different levels for each of the 

parameters revolution speed, load torque, and radial force 

on the main bearing. This gives additional 27 combinations. 

In total, 36 * 27 = 972 different experiments would have to 

be performed to examine all possible combinations. Hence, 

despite taking into account only the most important levels of 

input parameters, the number of possible combinations is 

still too high. 

In order to significantly reduce the amount of work 

necessary for the experiments, the theory of Design of 

Experiments (DoE) was applied. This theory offers a broad 

range of approaches for carrying out experiments in a 

scientifically well-founded way (Box, Hunter, & Hunter, 

2005), (Dean & Voss, 2008), (Wu & Hamada, 2009). In this 

context, several assumptions are made concerning particular 

linear and non-linear relationships between the input 

variables and the (usually just one) output variable. Using 

such assumptions, it is possible to deduce the complete 

results logically from a few – well-chosen – experiments, 

with a very high degree of confidence. Often, a so-called 

fractional factorial design based on orthogonal arrays is 

used for this purpose.  

An example of such an approach is shown in Figure 5. It is 

assumed that there are 3 input parameters (x1, x2, x3). Each 

parameter can take 2 different values, one lower value 

(denoted by –1) and one higher value (denoted by +1). The 

3D representation on the left side of Figure 5 shows 2
3
 = 8 

different combinations, represented by the 8 corners of the 

cube. All of these combinations have to be investigated to 

generate a complete statement about the parameter’s 

influence on an output variable. But using an orthogonal 

array OA (4,2
3
) as shown on the right side of Figure 5, the 

effort can be reduced to 4 experiments. These experiments 

are represented by the 4 rows of the matrix. The disposition 

in 3D space can be seen on the left side, shown by the 4 dots 

at the cube’s corners. 

 

                   
Figure 5. Fractional factorial experiment schema for 3 

parameters: representation in 3D space (left), orthogonal 

array OA (4,2
3
) of parameter values (right) 

 

In the context of generating an appropriate experimental 

data set using the test rig, the DoE approach is used to select 

a well-suited set of combinations of defect phenomena and 

operational parameters. This procedure was applied in two 

separate steps. First, an orthogonal array for all possible 

combinations of defect phenomena was determined. 

Because the levels to be investigated were assumed to be 4 

by 3 by 3, the OA (12,4
1
3

2
) was found to be suitable, 
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resulting in 12 combinations of defect phenomena. The OA 

(12,4
1
3

2
) is shown in Figure 6. It consists of the lines 1 to 12 

of the left array.  

In a second step, an orthogonal array for all possible 

combinations of operational parameters was determined. In 

this case, each parameter was assumed to have 3 different 

levels. Hence, the OA (9,3
3
) was found to be suitable, 

resulting in 9 combinations of operational parameters. The 

OA (9,3
3
) is shown in Figure 6. It consists of the lines 1 to 9 

of the right array. These two steps lead initially to a total of 

108 necessary experiments. 

 

               

Figure 6. Results of Design of Experiments application: 

orthogonal array OA (12,4
1
3

2
) for defect phenomena (left), 

orthogonal array OA (9,3
3
) for operational conditions (right) 

 

The possibility of using only one DoE design for all 6 input 

parameters was also considered, but quickly rejected. Using 

the same numbers of levels introduced above, this would 

have led to an orthogonal array OA (12,4
1
3

5
). A number of 

12 experiments did not seem to be an appropriate 

investigation for such complex physical interrelations as 

those in the present case. 

From the mathematical point of view, the two DoE designs 

shown in Figure 6 were found to be suitable. However, for a 

good understanding of the physical interrelations, there are 

some slight disadvantages to these two designs. All 

phenomena appear solely in combination; thus, there is no 

phenomenon for which its influence can be investigated 

singly. Hence, for a better understanding of the influence of 

varying a single phenomenon, the idea of including 3 

additional experiments for the 3 defects and 3 additional 

experiments for the 3 operational parameters arose. Such 

additional experiments have no influence on the results of 

the two suitable DoE designs, as DoE theory was only used 

for decision support while planning the experiments.  

As additional experiments, the edges of the parameter space 

were used, meaning the maximum parameter level in each 

case. The 3 additional experiments for defect phenomena 

are shown in the last 3 rows (numbers 13 to 15) of the left 

table in Figure 6. The last 3 rows of the right table in Figure 

6 (numbers 10 to 12) show the additional experiments for 

operational parameters. Thus, 15 * 12 = 180 experiments 

were finally found to be necessary in total as a result of a 

DoE-based selection. 

All 180 experiments were carried out repeatedly, leading to 

at least 5 data sets of phase currents for each experiment. 

Based on these measurement results, a well-organized basis 

for development of an appropriate classification method 

could be established. 

4. CLASSIFICATION ALGORITHM AND RESULTS 

The goal of the research project was to find an algorithm 

which is able to distinguish between different defects (or 

health states) and operational conditions solely from 

measured electrical currents. For this purpose, two of the 

three phase currents of the synchronous motor were 

evaluated. For the classification approaches presented, all 

states and conditions found by DoE as well as the 

measurements from the test setup mentioned above were 

used. 

Since the motor investigated was a synchronous machine, 

the phase currents are directly related to the angle of 

rotation of the device. Therefore, it is useful to relate the 

currents measured to this angle as well. Two of the currents 

behave as a rotating phasor with an elliptical shape of the 

amplitude trace, due to the 120° relative phase shift. Figure 

7 shows the ideal trace as a dotted line. However, this trace 

will vary in real applications with the condition of the 

system and even with every cycle of rotation. During each 

experiment, a number of cycles were measured for each 

state and condition and each cycle was added to the phasor 

plot. Afterwards, the continuous angle of rotation   was 

divided into uniformly distributed sections in the range 
[    ] leading to intervals [       ] with a certain number 

of measurement samples in each interval. These sample 

groups are suitable for statistical analysis. As a result, a 

modified phasor is obtained which has only one data point 

within each interval. A combination of statistical values can 

be used to obtain an artificial phasor, as shown in Figure 7 

(solid line). This is simply derived using the mean value of 

all single phasors within one angular section. The amplitude 

of such a phasor with respect to the intervals can be used as 

a feature for classification purposes. This means n sections 

within [    ] yield n features which characterize the phasor 

and its corresponding measurement. 
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Figure 7. Ideal rotating phasor (dotted line) and artificial 

phasor determined using the mean value of original phasors 

within each section (solid line). 

 

The complete experiment evaluates different health states 

and operational conditions where each state is measured 

multiple times. This leads to a large number of feature sets, 

as each measurement corresponds to one set of features. 

Each set can be arranged in a feature vector. The number of 

features, i.e. the length of such a vector, is typically too 

large for complete classification or visualisation and may 

contain redundant information. Therefore, two approaches 

were applied to reduce the number of features, which are 

described in detail by Bayer, Bator, Enge-Rosenblatt, 

Mönks, Dicks, and Lohweg (2013), or by Paschke, Bayer, 

Bator, Mönks, Dicks, Enge-Rosenblatt, and Lohweg (2013).  

Principal Component Analysis (PCA), as discussed by 

Dunteman (1989) or Jolliffe (2002), and Linear 

Discriminant Analysis (LDA), as discussed by Mardia, 

Kent, & Bibby (1979) or Duda, Hart, & Stork (2000), were 

used to find structure in the data. Both methods lead to a 

reduced mathematical basis, which can be used to represent 

the original feature vectors by a linear combination. The 

related coefficients form a new and significantly reduced 

feature set, which can then be used for classification. The 

methods were examined separately to show different aspects 

of their usability. PCA turned out to be suitable for the 

recognition of unusual states throughout the entire test 

system. 

The PCA may be used to find any similarities in the data. 

The idea is to represent each state, i.e. the respective feature 

vector, by a linear combination of typical states. These 

states are equivalent to the first few principal component 

vectors provided by performing a PCA of all available 

measurement data. The vectors then span a new sub-space, 

which the feature vectors are projected into. The coordinates 

of projected feature vectors form the final, reduced feature 

set.  

If the conditions of the system are similar, data points will 

accumulate in the projected feature space and build clusters. 

Different health states as well as operating states will form 

independent clusters. Figure 8 shows the clustering for a 

particular health state class under different operating 

conditions, such as rotational speed or load. There were 12 

operating states in total, of which at least 8 can be seen in 

the figure. The remaining 4 states overlap with existing 

clusters, as only two axes of the feature space were used for 

visualisation. The results indicate that, in general, different 

states can be distinguished using the PCA approach. The 

variation within each cluster is sufficiently small, which is 

mandatory for reproducibility. 

 
Figure 8. Clustering of operational condition states within a 

health state class after performing PCA: The features 1 and 

2 are the first two of the reduced feature set. They already 

allow for the separation of at least 8 of 12 states measured in 

total. 

 

However, the clustering of operational states prevents a 

good classification of actual health states. Each health state 

would consist of sub-clusters produced by different 

operating conditions; hence, a health state cannot be 

described by a single cluster function, e.g. multivariate 

normal distribution. In reality, only health states as actual 

“classes” to be distinguished from each other are relevant 

here. The LDA provides a method of producing coherent 

health state clusters in the feature space independently of 

operational conditions. However, sample measurements 

from each class are required for LDA, which is usually a 

problem in practical applications. Since the experimental 

setup used here allows for damage and fault emulation, 

different health states are known from the measurement 

procedure. LDA offers a reduced mathematical basis for 

data representation, which ideally separates known and pre-

defined classes in the present application. For different 

health states, the results are shown in Figure 9.  



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

8 

 
Figure 9. Separation of health state classes after LDA: The 

features 1 and 2 are the first two of the reduced feature set. 

The notations of the health states are declared in Table 1 and 

Figure 4. 

 

Here, the clusters are independent of operation conditions. 

The separation of classes is not ideal for two reasons. First, 

at least 5 features are necessary to separate the 6 classes 

safely, but only two of the features, i.e. two axes, are used 

for visualisation. Second, some states may not be different 

enough for reliable classification. The LDA approach works 

quite well, but requires comprehensive knowledge about the 

system. In general, the results show that distinguishing 

health states would be possible. The classification itself is 

typically carried out using a fuzzy pattern approach. For 

example, the clusters may be described by particular 

multivariate normal distribution functions, which yield 

fuzzy membership values with respect to all known states. 

From this result, the most likely class membership can be 

determined for each measured state.  

In many practical cases, there is no reference data for pre-

defined health states. Even the consideration of operating 

conditions might be too costly in terms of effort. Therefore, 

the classification was restricted to the recognition of a 

previously trained, “good” state, regardless of operating 

conditions. The proposed method uses self-learning 

techniques and is based on PCA. The goal is to 

automatically find system states that are unusual and may 

represent arbitrary failures or defects. The challenge is to 

avoid false alarms caused by varying operating conditions. 

It must be assumed that the system is in a healthy condition 

during the learning phase and that all relevant operating 

conditions have appeared in the past. From the data 

gathered, one can construct a reduced mathematical basis 

using PCA. This basis spans a subspace that contains 

approximately all the measured data from the past. Any data 

measured in the future that lies outside this subspace 

represents an unknown state. This new state is then 

generated either by new operating conditions or by some 

defect or failure of the system. The geometric distance of a 

measured state to the known subspace was regarded as an 

error indicator. In Figure 10, the result obtained from the 

experimental setup is shown. The reference state 

LS0_AN0_WF0 has no artificial defects, and represents the 

system in good condition. Regardless of the operating 

conditions, the state is identified correctly. All other states 

shown are characterized by introduced defects, whereas the 

set of operating conditions was the same as for the reference 

state. The dashed line is determined by the variance of the 

error indicator produced using the reference state. It 

separates healthy states from defective states. This 

classification method works quite well and is mostly suited 

as an additional indication for maintenance service. 

However, it may not expose the actual defect or source of 

deviation. 

 
Figure 10. Indicator for unknown states of the system: 

LS0_AN0_WF0 is the reference health state, which also 

contains different operating conditions. 

  

To verify the robustness of the algorithms developed here, 

signals gathered directly from the frequency inverter were 

also evaluated. Typically, these signals exhibit more noise 

and the sample rate is reduced. However, the data analysis 

approach also proved to be effective under these 

circumstances. This provides the basis for a possible 

integration of the algorithms into the motor control or the 

automation system.  

5. CONCLUSION 

The paper presents the main steps in the development of a 

diagnostic algorithm for defect detection in technical 

systems driven by electric motors. For this purpose, only 

measurement signals from the motor’s electric currents are 

used. Additional sensors were applied to the system in order 

to obtain the process parameters, but were not used for 

detection of defects. Following this idea, the complete 

system of defect detection becomes a complex one in a 
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mathematical sense. However, such a system can be realised 

at low expense because of the absence of additional sensors. 

Often, the mathematical algorithms can be executed on the 

existent control unit of the motor. 

This paper focusses on three steps which are necessary for a 

successful preparation of such a complex algorithm for 

signal analysis. Firstly, a sufficient basis of measurement 

data is needed. This data was obtained using a test setup 

designed for this special purpose. The capabilities of this 

setup in mimicking particular defects are described in detail 

in the paper. Secondly, all possible operating conditions of 

such a motor have to be considered. This leads to enormous 

effort in order to measure all possible combinations of 

defects and operating conditions. Hence, specific methods 

for reducing this effort without risking loss of information 

have to be employed. Finally, a complex combination of 

different signal analysis methods has to be applied. Two of 

these primary methods are mentioned in the paper. 

Particular results of signal analysis and classification are 

shown. In doing so, the paper demonstrates that the method 

developed here works correctly under a broad range of 

circumstances. 

The present work focuses on synchronous motors. An 

expansion to other types of electric motors is part of planned 

future research. Furthermore, a combination of sensor-based 

information about the industrial process and the method 

discussed here, which is based on measurement of electric 

currents, is also worth being investigated. Last but not least, 

improved methods of introducing artificial damage in 

bearings are in progress. The defects are expanded to the 

inner rings and to ball bearings. Moreover, real damage 

from accelerated lifetime tests will be used to examine the 

impact of artificial bearing damage on the physical 

quantities as compared to real damage. The creation of a 

database with experimental data for a wide range of 

different bearing defects is another goal for future work.  
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NOMENCLATURE 

DoE Design of Experiments 

FMEA Failure mode and effects analysis 

i Gear transmission ratio 

LDA Linear discriminant analysis 

OA Orthogonal array 

PCA Principal component analysis 

PMSM Permanent magnet synchronous motor 

REFERENCES 

Bayer, C., Bator, M., Enge-Rosenblatt, O., Mönks, U., 

Dicks, A., & Lohweg, V. (2013). Sensorless Drive 

Diagnosis Using Automated Feature Extraction, 

Significance Ranking and Reduction. 18
th

 IEEE 

International Conference on Emerging Technologies 

and Factory Automation (ETFA 2013), September 10-

13, 2013, Cagliari, Italy. 

Box, G.E., Hunter, J.S., & Hunter, W.G. (2005). Statistics 

for Experimenters: Design, Innovation, and Discovery. 

Hoboken, NJ: Wiley & Sons. 

Dean, A., & Voss, D. (2008). Design and Analysis of 

Experiments. Springer Texts in Statistics. Berlin, 

Germany: Springer. 

DIN EN ISO 9000 (2005). European Committee for 

Standardization: Quality management systems – 

Fundamentals and vocabulary. Brussels, Belgium. 

Duda, R.O., Hart, P.E., & Stork, D.H. (2000). Pattern 

Classification. Wiley Interscience.  

Dunteman, G.H. (1989). Principal Component Analysis. 

Sage Publications. 

Enge-Rosenblatt, O., Bayer, C., Schnüttgen, J. (2012). 

Modeling a drum motor for illustrating wearout 

phenomena. 9th International Modelica Conference – 

Modelica’2012, (pp. 889-896), September 3-5, 2012, 

Munic, Germany. 

Jolliffe, I.T. (2002). Principal Component Analysis. 

Springer.  

Lessmeier, C., Piantsop Mbo’o, C., Coenen I., Zimmer, D., 

& Hameyer. K. (2012): Untersuchung von 

Bauteilschäden elektrischer Antriebsstränge im 

Belastungsprüfstand mittels Statorstromanalyse, 9. 

Aachener Kolloquium für Instanthaltung, Diagnose und 

Anlagenüberwachung (pp. 509-521), November 14-15, 

Aachen, Germany. Aachener Schriften zur Rohstoff- 

und Entsorgungstechnik, Band 81, Stolberg, Germany: 

Verlag R. Zillekens. 

Mardia, K.V., Kent, J.T., & Bibby, J.M. (1979). 

Multivariate Analysis. New York. 

Paschke, F., Bayer, C., Bator, M., Mönks, U., Dicks, A., 

Enge-Rosenblatt, O., & Lohweg, V. (2013). Sensorlose 

Zustandsüberwachung an Synchronmotoren. 23. 

Workshop Computational Intelligence, (pp. 211-225), 

December 5-6, 2013, Dortmund, Germany. 

Stack, J. R., Habetler, T. G. & Harley, R. G. (2004): Fault 

classification and fault signature production for rolling 

element bearings in electric machines. IEEE 

International Symposium on Diagnostics for Electric 

Machines, Power Electronics and Drives (pp. 172–

176), August 24-26, Atlanta, GA, USA. DOI 

10.1109/DEMPED.2003.1234568. 

Tran, V.T., AlThobiani, F., Ball, A. & Choi, B.-K. (2013): 

An application to transient current signal based 

induction motor fault diagnosis of Fourier–Bessel 

expansion and simplified fuzzy ARTMAP. Expert 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

10 

Systems with Applications 40 (13), pp. 5372–5384. 

DOI: 10.1016/j.eswa.2013.03.040. 

Widodo, A., Yang, B.-S., Gu, D.-S., & Choi, B.-K. (2009): 

Intelligent fault diagnosis system of induction motor 

based on transient current signal. Mechatronics, 19, 

680–689.  

Wu, C., & Hamada, M. (2009). Experiments – Planning, 

Analysis and Optimization. Probability and Statistics. 

Hoboken, NJ: Wiley & Sons. 

Zhen, D., Wang, T., Gu, F., & Ball, A. D. (2013): Fault 

diagnosis of motor drives using stator current signal 

analysis based on dynamic time warping. Mechanical 

Systems and Signal Processing 34 (1-2), pp. 191–202. 

DOI: 10.1016/j.ymssp.2012.07.018. 

 

BIOGRAPHIES  

Christian Lessmeier (Dipl.-Ing.) was born in 

Bielefeld, Germany in 1985. He received his 

Degree in Mechanical Engineering from the 

University of Paderborn, Germany, in 2010. 

Since 2010, he has been working as a research 

assistant with Prof. Zimmer at the Chair for 

Design and Drive Technology, University 

Paderborn. There, he has managed and worked in a publicly 

funded research project, assists different lectures, and is 

working on his PhD thesis. His current research area is 

condition monitoring in electro-mechanical drive systems, 

especially artificial damage generation and systematical 

database creation. 

 

Olaf Enge-Rosenblatt (Dr.-Ing.), born in 

1961, received his Degree in Automation 

Engineering in 1986 and his Ph.D. in 

Electrical Engineering in 2005 from the 

Chemnitz University of Technology, 

Chemnitz, Germany. Since 1992, he has been 

working as a research fellow with the Institute 

for Mechatronics at the Chemnitz University of Technology. 

He has been researching a unique description of 

electromechanical systems and the modelling of systems 

with variable structure of description. Since 2005, he has 

been with the Fraunhofer Institute for Integrated Circuits, 

Design Automation Division, in Dresden, Germany. He has 

led the group Mechatronic Systems since 2007, and since 

2011 he has been responsible for the business field 

Condition Monitoring Systems. His research interests are 

the development of intelligent mechatronic systems using 

multi-domain modelling approaches and innovative 

methods of signal analysis and classification. 

 

 

Christian Bayer (Dipl.-Ing.) received his 

Master’s Degree (Dipl.-Ing.) in Electrical 

Engineering from the Ilmenau University of 

Technology, Germany, in 2003. Since 2008, 

he has been with the Fraunhofer Society and 

joined the Fraunhofer Institute for Integrated 

Circuits, Design Automation Division, in 

Dresden, in 2009. Since then, he has been the head of the 

group Multiphysics Simulation; his particular interests are 

innovative methods in modelling systems and in statistical 

data analysis. 

 

Detmar Zimmer (Prof. Dr.-Ing.), born in 

1958, received his Doctor of Engineering with 

honors in 1989 at the Institute for Machine 

Design and Gearings at the University of 

Stuttgart. His dissertation was commended by 

the GfT (Gesellschaft für Tribologie, 

Germany). 

From 1990 to 2001, he worked for the drive system and 

automation supplier Lenze AG, Germany, initially as a 

R&D manager for geared motors; later, he was responsible 

for the geared motors business unit as an authorized officer. 

He represented Lenze in the scientific board of the FVA 

(Forschungsvereinigung Antriebstechnik, Germany). 

Since July 2001, he has held the Chair for Design and Drive 

Technology at the University of Paderborn, Germany. He is 

a member of WiGeP (Wissenschaftliche Gesellschaft für 

Produktentwickung), the Scientific Community for Product 

Development in Germany, and of the Direct Manufacturing 

Research Center (DMRC) in Paderborn. In Paderborn, he is 

also responsible for the cooperation with the Chinese 

German Technical Faculty in Qingdao, China.  

His main research interests are theoretical and experimental 

investigations of drive train concepts and expansion of their 

application limits. A further field of interest is the 

optimization of parts, assemblies and machines by 

systematic, function- and production-oriented design. 

http://www.gft-ev.de/
http://fva-net.de/
http://mb.uni-paderborn.de/kat/
http://mb.uni-paderborn.de/kat/

