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ABSTRACT 

In this paper, the Generalized Cell Mapping (GCM) method 
for a linear system is compared with a new stochastic 
method for novel cell-to-cell mapping.  The authors 
presented the new stochastic method in a previous paper last 
year.  The two methods are compared in an application 
example of a vehicle alternator.  The alternator may 
experience three faults including belt slippage, a broken 
diode, or incorrect controller reference voltage.   Fault 
detection and isolation (FDI) is performed using the two 
cell-to-cell mapping methods.  The results show that the 
new stochastic method is more computationally intensive 
but yields better isolation results than the GCM method. 

1. INTRODUCTION 

Besides high performance, the other most important and 
desirable features of modern technological systems are 
safety and reliability. Owing to their increasing complexity, 
technological systems are becoming more and more 
vulnerable to faults. These faults, if not handled timely and 
properly, may lead to severe failures causing damage to 
property or even human lives. This is particularly true for 
the complex dynamic systems made of interconnected 
components where one faulty component can lead to 
malfunction of the overall system. Therefore, detection and 
isolation of the faults is of extreme importance in modern 
technological systems. Early detection and proper handling 
of faults essentially improve the dependability of the 
dynamic system ensuring safe operation. 

An important tool for analyzing dynamic systems is cell-to-
cell mapping as described by Hsu (1980).  The dynamic 
state space of the system is quantized into cells that the 
system may occupy as time evolves.  State variables are 
considered in intervals instead of a continuum of points.  
Such a system is justified due to the inherent inaccuracy of 
physical measurements.  Using this framework, the 

probability of cell transitions can be computed using various 
approaches such as Monte Carlo and GCM methods. 

In the Monte Carlo method, repeated random samplings and 
deterministic computations are used to find possible 
outcomes and their associated probabilities (Kastner, 2010).  
Using this information, a state probability transition matrix 
for the system can be constructed (Wang, 1999).  The more 
samplings performed, the more accurate the probability 
transition matrix (Sobol, 1994).   

In the GCM method, the boundaries of image cells are 
important in determining state transition probabilities (Hsu 
1981).  The image cell of the current cell are found first.  
Then the boundaries of the image cell are mapped back to 
locations on the current cell and when linearly connected 
form an area within the current cell.  Now this area is known 
to transition to a particular image cell area.  The probability 
associated with this transition is calculated given the total 
area of the current cell. 

The main motivation for formulating the GCM method was 
to analyze global dynamics of a system (Hsu, 1982). The 
purpose of the method was to find equilibrium states and 
periodic motions in the system that can be identified after 
many mapping steps are performed (Hsu & Chiu 1986).  
This global analysis can yield a stationary probability 
transition matrix that does not change with time. Stationary 
transition matrices allow the global behavior of the system 
to be analyzed through Markov Chain theory where the 
entire evolution of cell mapping over time is determined by 
the stationary transition matrix (Hsu & Guttalu, 1980). 

The Monte Carlo and GCM method each rely on repetitive 
simulations during each time step to calculate transition 
probabilities. Each method effectively uses information 
about the initial cell and image cell(s). The amount of 
computation involved could overwhelm a microcomputer 
trying to calculate transition probabilities in real-time. These 
methods are most suitable for offline approaches. Therefore, 
a new method that only uses information about the initial 
cell would be a beneficial step toward real-time 
applications. 
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The Monte Carlo and GCM approaches can also be 
computationally burdensome with respect to high 
dimensional nonlinear systems. Performing the Monte Carlo 
method on these systems requires huge sampling 
populations. The GCM method also requires many 
calculations in order to find image cell boundaries for a 
nonlinear system. Then all these image cell points must be 
inversely mapped into the original cell. The feasibility of 
these methods with nonlinear systems is severely limited. 

The new stochastic method proposed by the authors uses the 
system vector field to calculate state transition probabilities 
as time evolves without computing image cells.  In this 
paper, the new method will be called the flow method.  The 
flow in/out of a cell through its perimeter is analyzed similar 
to Green’s theorem.  The total flow through a cell is 
comprised of summation of the flow through the sides of the 
cell.  This flow directly impacts the probability of state 
transition.  At each time step, the flow through each side of 
current state is calculated and then normalized to total flow 
through whole state perimeter.  A time-varying probability 
transition matrix can be created from these calculations. 

Once armed with the above methods for obtaining the 
probability transition matrices, they can be applied to FDI 
problems.  For example, if an expected state transition has a 
very low probability, and then the state transitions to this 
state and possibly continues to transition to low probability 
states, then this could indicate a fault in the system.  This 
paper applies and compares the GCM and flow methods for 
fault detection in an alternator system previously described 
by Mohon and Pisu (2013).  Results show that the GCM 
method yields faster detection time with incomplete 
isolation of faults.  On the other hand, the new stochastic 
method results in slower detection time and complete 
isolation at the cost of more computational complexity. 

The first section of this paper describes the GCM method.  
The second section describes the flow method.  The third 
section applies the two methods to an application example 
with a faulty automotive alternator and compares FDI 
results.  Lastly, some concluding remarks about the 
usefulness of each method is provided. 

2. GENERALIZED CELL MAPPING METHOD 

The method for generalized cell mapping is described by C. 
Hsu in his book (Hsu 1987).  Unlike simple cell mapping, 
where one cell is mapped into a single image cell, 
generalized cell mapping allows one cell to be mapped to 
several image cells.  Each image cells represents a fraction 
of the total probability. 

Consider the following simple example.  Suppose we have a 
system described by Eq 1.  There are two states z1 and z2 
and only z2 is observable in output.  We can illustrate the 
state space divided into quantized states 1 through 7 in 

Figure 1.  We will also assume some maximum and 
minimum values for z1. 
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Figure 1:  Quantized states in state space example 

 
Obtaining the image cell boundaries can be thought of as a 
Monte Carlo exercise.  By randomly choosing a large 
sample of random points within the initial cell (state 4) and 
applying the dynamic system equations, the new location of 
the points can be plotted on the 2D state space.  Figure 2 
and Figure 3 illustrate how the randomly sampled points 
move in time.  A large number of points will clearly 
delineate the boundary of the new image cell. 

 
Figure 2:  Initial cell with randomly sampled points 
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Figure 3:  Image cell containing new position of sampled 

points after a finite time delta t 
The new image cell in this example is clearly a quadrilateral 
with four vertices.  These vertices represent the boundaries 
of the image cell.  Note that the image cell is now spanning 
states 3, 4, and 5.  By using the system dynamic equations, 
these vertices and other important points can be mapped 
back into the original cell shown in Figure 4.  This will 
allow us to determine the regions of the original state that 
map into other states. 

 
Figure 4:  Inverse mapping important points on image cell 

back into original cell 
The regions of the area now defined in the original cell can 
be used to calculate probabilities of transitioning up or 
down in the system.  Region A2 is mapped back into region 
A1.  Region A4 is mapped back into region A3.  The 
probability to transition up, down, or stay in state 4 is given 
by the following. 

 

Pup = A1Acell
Pdown = A3Acell
Pstay =1− Pup − Pdown

 (2) 

This process can be repeated as the system’s state changes 
along with input values. 

3. PROPOSED FLOW METHOD 

The flow method was proposed by the authors in a previous 
paper (2013).  This method uses the system’s vector field F 
to determine flow into and out of the current state/cell.  The 
method exploits the divergence theorem and determines the 
total potential of flow through the cell as the sum of flows 
through the perimeter of the cell. 

A two-dimensional form of the divergence theorem is 
defined in Eq. (3).   We define C as a closed curve, A as the 
2D region in the plane enclosed by C, n as the outward 
pointing normal vector of the closed curve C, and F as a 
continuously differentiable vector field in region A.  A 
graph of the 2D divergence theorem for the same 2D system 
in Eq. 1 is shown in Figure 5.   

 ∇⋅F
!"( )dA = F

!"
⋅n
"( )dr

C
∫

A
∫∫

 

(3) 

 
Figure 5.  Graph of 2D Divergence Theorem for 2D state 

space system 
 
We consider that the vector field 𝐹 describes transition flow 
in and out of the current state along the state boundaries.  
For the DC electric machine model, 𝐹 is defined as Eq. (4) 
where 𝚤 and 𝚥 are coordinates of vector field F and functions 
f1 and f2 are defined by states z1 and z2 from the state space 
model in Eq. (1).  

 
F
!"
= f1 î + f2 ĵ
#z1 = f1(z1, z2,u1,u2,u3)
#z2 = f2 (z1, z2,u1,u2,u3)

 

(4) 
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The flow through the left and right sides of the area A in 
Figure 5 will be assumed zero for the alternator system 
shown in Figure 6. The line integrals along the state z 
boundaries will determine flow in and out of the state.  The 
vector field F is illustrated by grey slope field in Figure 6.  
Flow out of state z is defined as a positive value φ+ and flow 
into state z is a negative value φ-.  Since each side may have 
flow in and flow out sections, the flow transition point z** 
or z* is found if necessary and the appropriate limits of 
integration for flow in and flow out are integrated for each 
side.  Transition points are shown in Figure 6.  Without loss 
of generality assume f2 < 0 if z1 < z*,z** and f2 > 0 if  z1 > z*, 
z** such that Eq. (5) holds.  The upward and downward flow 
through each side of state z is given by Eq. (6). 

 
Figure 6.  Graph of quantized DC electric machine system 

with flow definitions 

 
f2 (z

*, z2
(1),u1,u2,u3) = 0

f2 (z
**, z2

(2),u1,u2,u3) = 0

 

(5) 
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(6) 

Next we define φin, φout, and φtotal in Eq. (7) in order to build 
probabilities.  The sum of the absolute value of all inward 
flow in defined as φin.  The sum of all outward flow is 
defined as φout. The total flow φtotal is the sum of φin and φout. 

 

ϕin = ϕ1
− +ϕ2

−

ϕout =ϕ1
+ +ϕ2

+

ϕtotal =ϕ1
+ + ϕ1

− + ϕ2
_ +ϕ2

+

 

(7) 

The notion of probability can be interpreted as counting 
types of occurrences and then normalizing the count of each 
type by the total occurrences.  Suppose the occurrences of 
outward and inward flow defined in Eq. (6) are normalized 
by the total flow defined in Eq. (7).  For example, the 
probability to transition up will be defined as the outward 
flow through side 2, φ2

+, divided by the total flow φtotal. We 
can then define z+ as the state above current state z and 
define z− as the state below current state z.  Equation (8) 
gives the probability to stay within the current state and the 
probability to transition up or transition down to an adjacent 
state.  Uniform probability distribution is assumed along the 
borders of each state. 

 

1= ϕin

ϕtotal

+ ϕout

ϕtotal

1=
ϕ1

− +ϕ2
−

ϕtotal

+ ϕ2
+

ϕtotal

+ ϕ1
+

ϕtotal

1= Pr(z ' = z | z)+ Pr(z ' = z+ | z)
+ Pr(z ' = z− | z)  

(8) 

At each time step the probability to stay or transition up or 
transition down is calculated using the current state 
boundaries and the current input.  This information builds a 
time-varying probability transition matrix named L that can 
be constructed as shown in Table 1 for the example of 
current state z=2 at time t. 

Table 1. Example of probability transition matrix L for 
current state z=2 at a time t 

 
Thus far, the new method formulation has shown the 2D 
case.  The new method can also be extended for the 3D case 
using 3D divergence theorem defined in Eq. (3).  Define V 
as a closed volume, A as the surface area of V, 𝑛 as the 
outward pointing normal vector of the closed volume V, and 
𝐹 as a continuously differentiable vector field in volume V.  
A picture for a cubic volume is shown in Figure 7. 

  Future State z’ 
  1 2 3 4 

C
ur

re
nt

 S
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te
 z

 1 0 0 0 0 

2    0 

3 0 0 0 0 

4 0 0 0 0 
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Figure 7.  Graph of 3D Divergence Theorem 

This method can also be extended to higher dimensions as 
well using the same procedure. 

4. APPLICATION EXAMPLE:  EPGS SYSTEM 

Today’s vehicles require higher electrical demands than 
ever before due to more mandated safety technology and 
popular consumer technology integrated within the vehicle.  
The purpose of the vehicle’s electrical power generation 
storage (EPGS) system is to maintain the necessary 
electrical power needed to start the vehicle and keep it 
running smoothly.  A healthy EPGS system is crucial for 
proper operation of a vehicle and have been investigated in 
previous literature. 

Scacchioli, Rizzoni, and Pisu (2006) proposed a fault 
isolation approach for an EPGS system using two equivalent 
alternator models.  One equivalent model for a healthy 
alternator and one equivalent model for an alternator with 
one broken diode.  Parity equations and three residuals with 
constant thresholds were used for fault isolation.  The 
approach assumed a 3000 second Federal Urban Driving 
Schedule (FUDS) cycle.   

Zhang, Uliyar, Farfan-Ramos, Zhang, and Salman (2010) 
proposed a fault isolation approach for an EPGS system 
using parity relations trained by Principal Component 
Analysis (PCA).  Three residuals with constant thresholds 
were used for isolation.  The approach assumed a staircase 
profile for both load current and alternator speed input, 
which is not a realistic scenario.   

Hashemi and Pisu (2011) proposed a fault isolation 
approach for an EPGS system using two observers and three 
residuals.  The approach assumed a staircase profile for load 
current and a portion of the FUDS cycle for alternator 
speed.  Adaptive thresholds were used for isolation.  In 
other similar work, Hashemi and Pisu (2011) showed the 
same approach but created a reduced order adaptive 
threshold model using Gaussian fit of data.  The second 
approach was less computationally intensive.   

Scacchioli, Rizzoni, Salman, Onori, and Zhang (2013) 
proposed a fault isolation approach for an EPGS system 
using one equivalent EPGS model that used parity equations 
to produce three residuals for fault isolation.  The approach 
used a staircase profile for both load current and alternator 
speed input. 

As stated, previous work for fault isolation in an EPGS 
system has included observers and parity relations.  The 
approaches with observers were built for linear systems that 
approximate the nonlinear behavior of the EPGS system.  
These approaches cannot be extended for direct use on the 
nonlinear system itself.  At least three residuals are required 
for all previous approaches.  It is also concerning that some 
approaches were not validated using real driving situations.  
Therefore these approaches have limited scopes. 

4.1. Model for EPGS System  

This paper analyzes the EPGS system shown in Figure 8 as 
modeled by Scacchioli et al. (2006).  It consists of a voltage 
controller, alternator, and battery.  The controller can be an 
electronic control unit or a voltage controller on the 
alternator itself.  In this paper, the controller is a part of the 
alternator to regulate field voltage.  The alternator model 
consists of an AC synchronous generator, three phase full 
bridge diode rectifier, voltage controller, and excitation 
field.   

The engine crankshaft mechanically spins the generator’s 
rotor by use of a belt and pulley.  The rotor is a ferrous 
metal wrapped with a single conductive winding.  When the 
controller applies a small field voltage to the winding, a 
small field current flows through the winding.  The flow of 
current through the winding produces a magnetic rotor with 
a north and south pole.  However, the stator is composed of 
three phase stationary windings.  As the magnetic rotor 
moves relative to the conductive stator windings, an 
electromotive force is induced in the stator windings.  If the 
stator windings are connected to an electrical load, then AC 
current will flow in each of the three stator windings.  The 
three currents are sent to a diode bridge rectifier to produce 
DC current for electrical loads or for recharging the battery.  
Therefore, the alternator takes mechanical energy of the 
engine and produces electrical energy for the battery or 
loads of the vehicle.  
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Figure 8.  EPGS model 

 

The model for the EPGS system results in a complex 
nonlinear system but can be more easily modeled by an 
equivalent DC electric machine as described by Sacchioli et 
al. (2006).  The dashed line in Figure 8 encompasses the 
components represented by the DC model.  

The DC electric machine is modeled by the state space 
system in Eq. (9) as shown by Hashemi (2011). 
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(9) 

Equation (9) has two states z1 and z2 and inputs u1, u2, and 
u3.  The system inputs represent the alternator field voltage 
Vf, angular frequency of alternator ωe, and dc voltage of the 
battery Vdc also shown in Eq. (10).  The coefficients a12, a22 
and b11…b23 are functions of engine speed and were found 
using system identification by Hashemi (2011) using test 
data at different constant engine speeds. In this model, state 
z2 is the measurable quantity Idc which is the rectified output 
current of the alternator. 

 

y2 = Idc = z2
u1 =Vf

u2 =ω e

u3 =Vdc

 
(10) 

4.2. Possible Faults in EPGS System  

The EPGS system is important in every vehicle and faults in 
the system need to be detected and isolated as quickly as 
possible to prevent costlier damage.  This paper considers 
three common faults that occur in an EPGS system.  
Possible fault locations in EPGS system are bolded in 
Figure 9. 

1. Voltage controller fault:  This fault occurs when the 
reference voltage Vref is incorrectly raised or lowered 
by a percentage of the nominal Vref.  The fault can 
cause the alternator to overcharge or undercharge the 
battery. 

2. Open diode rectifier fault.  This fault occurs when a 
diode in the diode bridge rectifier breaks.  The fault 
results in a large ripple in battery voltage Vdc and 
alternator output current Idc thereby decreasing the 
efficiency of alternator output. 

3. Belt slip fault.  This input fault occurs when the belt 
between the engine crankshaft and alternator pulley 
slips due to insufficient tension.  The belt slip causes a 
decrease in alternator rotational speed ωe and a decrease 
in alternator output voltage.  To compensate, the 
voltage controller increases the field voltage and/or the 
battery must discharge more often to meet load 
demand.  This can age the battery prematurely.  Belt 
slip can signify the belt is worn and needs to be 
replaced. 

 
Figure 9:  Possible faults in EPGS model 

4.3. Simulation Results 

Previous work by Scacchioli et al. (2006) yielded a 
complete nonlinear EPGS model.  This nonlinear model 
uses ωe, Iload, and Vref as inputs and yields Vf, Vdc, and 
battery dc current Idc as output.  Diagnostics for the belt 
fault case, diode fault case, and voltage controller fault case 
are accomplished by using the flow model and GCM model.  
The flow model procedure is illustrated in Figure 10 and the 
GCM model procedure is illustrated in Figure 11.  

 
Figure 10.  EPGS model with flow method 
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Figure 11:  EPGS model with GCM method 

 
The inputs for the nonlinear EPGS Simulink model are 
provided in Mohon et al (2013). 

Table 2 details the selected injection time and magnitude of 
fault relative to nominal that were injected during 
simulation.  In other words, the nominal inputs were 
modified to simulate a fault. 

Table 2.  Fault injection time and magnitude 

 
Output z2 range for nominal and faulty cases must be 
quantized into rectangles to find the probability transition 
matrix over time.  Output z2 is quantized into 12 states with 
names 1-12.  The same boundaries and names will be used 
for faulty cases as well. 

The z1 range for this simulation is z1
min is -2.210e+06 and 

z1
max is 6.683e+06.  Given the z1 range, the quantized states, 

and u1, u2, and u3, the probability transition matrix can now 
be calculated using the f2 function from Eq. (1).   

The probability transition matrix L contains the prediction 
of the most likely quantized state z’ = zL and its probability 
P(z’ = zL) at the next time step.  The most likely probability 
and most likely predicted state can be compared with the 
quantized output state [Idc] that actually occurs.    If there is 
a relatively high probability of a particular state transition 
occurring and that state transition does not occur, then a 
fault may be present.  An example of predicted state 
probabilities, predicted states, and output states over time 
for belt fault case is shown in Figure 12 and Figure 13. 

Disagreement between predicted and output states are clear 
after calculating the difference of quantized output state [Idc] 
and the predicted state.  This difference is defined as the 
residual r in Eq. (11).  The residual results for each fault 
case using flow method are shown in Figure 14 through 
Figure 16.  The residual results for each fault case using 
GCM method are shown in Figure 17 through Figure 19. 

 
Figure 12.  Belt fault outputs for flow method 

 
Figure 13:  Belt fault outputs for GCM method 

 

 r = [Idc ]− [Idc,predicted ]

 

(11) 

 

  

Fault 
Injection 

time 
(s) 

Modified 
Input 

Resulting % drop 
with respect to 

nominal 
Belt Slip 10 ωe 80 

Open Diode 10 Vdc 
N/A 

(one broken diode) 
Voltage 

Controller 10 Vref 30 
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Figure 14.  Belt fault residual for flow method 

 
Figure 15.  Diode fault residual for flow method 

 
Figure 16.  Voltage controller fault residual for flow method 

 
Figure 17:  Belt fault residual for GCM method 

 
Figure 18:  Diode fault residual for GCM method 

 
Figure 19:  Voltage controller fault residual for GCM 

method 
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4.3.1. Analysis of Flow Method Results 

All three fault cases using the flow method show a short-
term disagreement r ≠ 0 between predicted and output states 
at time t=0.2 seconds but returns to agreement r = 0 
immediately at t=0.3 seconds.  The disagreement occurs 
before a fault is injected at time t=10 seconds.  This 
disagreement at t=0.2 could trigger a false alarm during 
fault detection.  Similar rapid switching behavior also 
occurs in the diode fault residual in Figure 17.  To 
distinguish between the similar switching behavior of false 
alarms with real faults and to build confidence in the 
diagnostic algorithm, a fault will only be detected if the 
residual shows disagreement for at least 0.2 seconds.  The 
belt fault will be detected at t=38.4 seconds.  The diode fault 
will be detected at t=10.7 seconds.  The controller fault will 
be detected at 10.2 seconds. 

Isolation of a detected fault will be achieved by monitoring 
the switching behavior during a finite time window 
following detection.  The belt fault appears in the residual 
when the load current increases or decreases.  Due to the 
quick duration of load current change, the belt fault is also 
present for a short time in the residual lasting between two 
to four seconds.  The diode fault causes a large ripple in the 
alternator output current.  This ripple causes frequent and 
rapid switching behavior from agreement to disagreement in 
the residual.  The controller fault is the only fault case 
where there is residual disagreement for the entire duration 
of the fault.   Therefore, the mean 𝑟 of the absolute value of 
the residuals during a finite time window can be used to 
isolate each fault as defined in Eq. (12).  The time window 
is chosen based on data behavior.  For the data in this paper, 
a six second window was used.  Table 3 shows the mean 
value calculations for each fault using the six second 
window immediately after fault detection.  

 
r =

ri
i=1

n

∑
n

 

(12) 

 
Table 3.  Mean 𝑟 for six second window using flow method 

 
Appropriate constant thresholds for 𝑟 can isolate the fault.  
For this paper, if 𝑟 is between 0.5 and 1 the fault is due to 
belt slip.  If 𝑟  is 1 the fault is due to the controller.  
Otherwise, the fault is due to an open diode. 

Based on this approach, the belt fault will be isolated at 
t=44.4 seconds; the diode fault will be isolated at t=16.7 

seconds; the controller fault will be isolated at time t=16.3 
seconds. 

4.3.2. Analysis of GCM Method Results 

The GCM method residuals show similar behavior 
compared to the flow method residuals.  For the GCM 
method, fault detection will occur when the residual shows 
disagreement for at least 0.2 seconds.  The belt fault will be 
detected at t=10.1 seconds.  The diode fault will be detected 
at t=52.5 seconds.  The controller fault will not be detected 
or isolated because the residual never deviates from zero.  
The controller fault causes the output to transition to a 
nonadjacent cell and GCM method allows for nonadjacent 
cell transitions.  Therefore, the residual of controller fault is 
always zero. 

Isolation of the detected fault can be attempted by Eq. (12) 
with using a six second window immediately after fault 
detection.  Table 5 shows the mean value calculation for 
each fault.  The belt slip fault can be isolated if 𝑟 is between 
0.1 and 0.2.  The open diode fault can be isolated if 𝑟 is 
between 0 and 1.  However, the voltage controller fault 
cannot be isolated.  The residual never deviates from zero 
during the entire dataset. Therefore, the voltage controller 
fault cannot be isolated using GCM method. 

Table 4.  Mean 𝑟 for six second window using GCM 
method 

 

4.3.3. FDI Summary 

Table 5 contains the detection and isolation times for both 
flow and GCM methods.  The flow method can isolate all 
three faults while the GCM method can isolate only belt slip 
and open diode faults.  The flow method can isolate the 
open diode fault faster than the GCM method.  The GCM 
method can isolate the belt slip fault faster than the flow 
method.  It is clear that the flow method gives best results 
since all fault detection and isolation is achievable. Fault Mean �̅� 

Belt Slip 0.75 
Open Diode 0.08 

Voltage Controller 1 
 

Fault Mean �̅� 
Belt Slip 0.15 

Open Diode 0.08 
Voltage Controller 0 
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Table 5.  Fault injection time and magnitude 

 
Different fault magnitudes might require different isolation 
thresholds.  This paper only considers three discrete fault 
modes. 

5. CONCLUSION 

This paper compares the GCM method and a new stochastic 
method for calculating state transition probabilities within a 
dynamic system.  The methods are compared by detecting 
and identifying faults in a vehicle alternator system.  The 
methods vary based on computational complexity and the 
ability to isolate all faults.  The GCM method could not 
detect the controller reference fault but did isolate the belt 
fault faster than the new stochastic method.  Overall, the 
new stochastic method is preferred since it can complete the 
FDI analysis even at the cost of computational effort. 
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NOMENCLATURE 

ωm engine rotational speed 
ωe alternator rotational speed 
Vdc battery DC voltage 
Vf field voltage 
Vref voltage controller reference 
Idc alternator output current 
Iload vehicle load current 
IB battery charging current 
z1 first state space state 
z2 second state space state and output 
u state space input 
a(ωe) state space parameter dependent on alternator 

rotational speed 

b(ωe) state space parameter dependent on alternator 
rotational speed 

z current state 
z’ possible future state 
z1

min minimum z1 value 
z1

max maximum z1 value 
z* flow transition point on z1 axis on side 1 of state z 
z** flow transition point on z1 axis on side 2 of state z 
z2

(1) upper boundary of state z 
z2

(2) lower boundary of state z 
φ+ flow up 
φ- flow down 
f general function 
𝐹 Field vector 
𝑛 normal vector 
C general closed curve 
A area within curve C 
r line integral direction along curve C 
φin total flow into state z 
φout total flow out of state z 
φnet net flow for given state z 
z+  state above state z 
z− state below state z 
L time varying probability transition matrix 
[Idc] quantized alternator output current 
r residual 
𝑟 mean of absolute value of residual 
n number of data points in residual 
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