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ABSTRACT 

In Condition-Based Maintenance (CBM), Fault Detection 
(FD) systems monitor the health state of the components 
and aid the operator to decide whether a maintenance 
intervention is necessary. A FD system is a decision-aid tool 
typically based on i) a reconstruction model that estimates 
(reconstructs) the values of measurable signals in normal 
conditions, and ii) an analyzer of the differences (residuals) 
between the measured and reconstructed values: abnormal 
conditions are detected when residuals are statistically 
significant. The performance of the reconstruction model is 
influenced by several sources of uncertainty which can 
influence the operator decision: 1) measurement errors, 2) 
intrinsic stochasticity of the physical process, 3) uncertainty 
on the settings of the model parameters, and 4) uncertainty 
on the model output due to incompleteness of the training 
data. The objective of the present work is the quantification 
of the overall uncertainty affecting the model 
reconstructions. The proposed novel approach for 
uncertainty quantification relies on the estimation of 
Prediction Intervals (PIs) by using Order Statistics (OS) for 
a pre-defined confidence level. The proposed approach is 
verified with respect to an artificial case study; the obtained 
results show that the approach is able to guarantee the 
desired level of confidence on the correctness of the 
detection and provide the decision maker with the required 
information for establishing whether a maintenance 
intervention is necessary.  

Keywords: Signal Reconstruction, Fault Detection, 
Uncertainty, Prediction Intervals, Auto-Associative Kernel 

Regression, Order Statistics, Scale Factor. 

1. INTRODUCTION 

Recent developments in data processing and computational 
capabilities are encouraging industries such as nuclear, oil 
and gas, chemical, automotive and aerospace to apply 
Condition-Based Maintenance (CBM) (Campos, 2009) for 
increasing system availability, reducing maintenance costs, 
minimizing unscheduled shutdowns and increasing safety 
(Thurston & Lebold, 2001).   

A typical scheme of CBM can be described as follows: a 
Fault Detection (FD) system continuously collects 
information from sensors mounted on the component of 
interest (Ahmad & Kamaruddin, 2012; Montes de Oca, Puig 
& Blesa, 2012) and delivers a decision regarding its health 
state (either normal or abnormal conditions). In case of 
abnormal conditions, an alarm is triggered and the decision 
maker decides whether it is necessary to perform a 
maintenance action or it is possible to postpone it. In this 
work, we consider a FD system architecture based on an 
empirical reconstruction model and a decision tool. 

Different empirical models have been used with success to 
estimate (reconstruct) the expected values of the signals in 
normal conditions. Typical examples include Artificial 
Neural Networks (ANNs) (Hines, Wrest & Uhrig, 1997; 
Safty, Ashour, Dessouki & Sawaf, 2004; Rahman, 2010), 
Auto-Associative Kernel Regression (AAKR) (Chevalier, 
Provost & Seraoui, 2009; Baraldi, Canesi, Zio, Seraoui & 
Chevalier, 2010; Baraldi, Di Maio, Pappaglione, Zio & 
Seraoui, 2012), Evolving Clustering Method (ECM) (Zhao, 
Baraldi & Zio, 2011), Principal Component Analysis (PCA) 
(Garcıa-Alvarez, 2009; Baraldi, Zio, Gola, Roverso & 
Hoffmann, 2011), Independent Principal Component 
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Analysis (Ding, Hines & Rasmussen, 2003), Support Vector 
Machines (SVMs) (Zavaljevski & Gross, 2000; Batur, Zhou 
& Chan, 2002; Laouti, Sheibat-Othman & Othman, 2011) 
and Fuzzy Similarity (Baraldi, Di Maio, Genini & Zio, 
2013). 

The decision tool is typically constructed on the analysis of 
the differences (residuals) between the measured and the 
reconstructed values of the n signals at time t, ( )testx t  and 

( )testx t
 , respectively, in order to decide whether the 

component is in normal or abnormal conditions (Figure 1). 
In practice, two possible cases may arise at time t: a) 
reconstructions are similar to measurements, 

( ) ( )test testx t x t
   b) reconstructions are different from 

measurements, ( ) ( )test testx t x t
  . In the former case, the 

component is recognized to be in normal conditions (nc) and 
the alarm is not triggered, whereas in the latter case 
abnormal conditions (ac) are detected and the alarm is 
triggered.  

 
Figure 1. Traditional FD system. 

Independently from the choice of the reconstruction model 
and of the method adopted to analyze the residuals, different 
sources of uncertainty may influence the performance of the 
FD system and can cause false or missing alarms (Helton, 
1994; Zheng & Frey, 2005; Aven & Zio, 2012).  

In this context, the present work focuses on the analysis of 
the uncertainty in the signal reconstruction phase of the FD 
process. In particular, we consider the following sources of 
uncertainty: 1) the measurement errors, 2) the inherent 
variability (stochasticity) of the physical process, 3) the 
uncertainty on the settings of the reconstruction model 
parameters, and 4) the uncertainty on the reconstruction 
model output due to incompleteness of the training data. 
The objective is the quantification of the overall uncertainty 
which the reconstructions provided by the empirical model 
are subject to. To this aim, we propose a novel method 
based on the estimate of Prediction Intervals (PIs) by using 
Order Statistics (OS) theory. For illustration purposes, we 
adopt the AAKR technique to build the reconstruction 
model, but the approach proposed is general and can be 

applied to any other techniques for developing the 
reconstruction model. 

The method for the quantification of the uncertainty on the 
signal reconstructions is verified with respect to an artificial 
case study representing the behavior of a component during 
operational transients. This situation, characterized by a 
non-stationary behavior of the signals, has been chosen due 
to the criticality of the FD task during operational transients 
(Baraldi et al. 2012). In particular, the time evolution of 4 
signals during various start-up transients have been 
simulated and used to assess the performance of the method 
in the quantification of the uncertainty on the 
reconstructions. Artificial data have been used in order to 
allow testing the approach on a large number of different 
simulated transients and, thus, to evaluate its capability of 
correctly quantify the uncertainty on the reconstruction. 

The remaining of this paper is organized as follows; in 
Section 2, a description of the four sources of uncertainty to 
which a FD system is subject is provided. In Section 3, a 
reconstruction model for signal reconstruction during 
operational transients is developed, and a method for 
estimating the PIs of the reconstruction is proposed. In 
Section 4, an artificial case study representing the 
component behavior during typical start-up transients is 
introduced and, in Section 5, the results of the application of 
the proposed method are discussed. Finally, some 
conclusions are proposed in Section 6. 

2. SOURCES OF UNCERTAINTY IN FD SYSTEMS 

The reconstructions provided by an empirical model, e.g., 
AAKR (Chevalier et al., 2009; Baraldi et al., 2010; Baraldi 
et al., 2012), are subject to the following 4 sources of 
uncertainty (Lin & Stadtherr, 2008; Baraldi et al., 2011; 
Ramuhalli, Lin, Crawford, Konomi, Braatz, Coble, 
Shumaker & Hashemian, 2013): 
 

1. the measurement errors, which can be due to systematic 
or random errors of the sensors; 

2. the inherent variability (stochasticity) of the physical 
process, which causes different evolutions of the signal 
during identical operational transients: e.g., during two 
different start-up transients of the same component in 
the same environmental and operational conditions, 
different signal evolutions are observed. 

3. the uncertainty on the correct setting of the AAKR-built 
model parameters. In practice, according to the AAKR 
method, signal reconstructions are built on the basis of 
a measure of similarity between the test pattern and 
“neighbouring” training patterns (Appendix A.1). The 
computation of the similarity measure is based on a 
kernel function characterized by a parameter, called 
bandwidth, whose value is typically set by following a 
trial and error procedure on some validation data. 

4. the uncertainty caused by the incompleteness of the 
training data. The performance of an empirical signal 
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reconstruction model built by AAKR is remarkably 
influenced by the quality and quantity of the training 
patterns (Appendix A.1). 

3. RECONSTRUCTION MODEL AND UNCERTAINTY 
QUANTIFICATION 

A typical reconstruction model receives in input at time t a 
vector ( ) ( ,1), ( , ),..., ( , )test test test testx t x t x t j x t n   



containing the test measurements of n signals, j=1,…,n. On 
the basis of historical measurements performed in normal 
conditions, the reconstruction model produces in output a 

vector ( ) ( ,1), ( , ),..., ( , )test test test testx t x t x t j x t n   
   

containing the values of the input signals expected in case of 
normal conditions at the present time t. For the sake of 
simplicity, the signal index j will be omitted from the 
notations ( , )testx t j and ( , )testx t j

, and will be used 
only when strictly required.  

3.1. Reconstruction of operational transients 

In Baraldi et al. (2012), different approaches to the problem 
of signal reconstruction during operational transients have 
been compared. The obtained results have shown that in 
order to reduce the computational efforts and to increase 
model reconstruction accuracy, it is useful to develop a final 
reconstruction model made by several reconstruction 
models, each one dedicated to a different operational zone 
of the component. To this aim, the training patterns are split 
into different sets, according to the different operational 
zones. Then, for each operational zone, a dedicated AAKR 
model is built using the corresponding training set. Once the 
reconstruction model has been built, it can be used on line 
for the signal reconstruction task by sending the test pattern,

( ),testx t
to the corresponding reconstruction model (Figure 

2). In this case, looking at the signal value it is possible to 
select the corresponding AAKR model. However, for more 
complex case studies, where discontinuity of the 
reconstructed variable should be avoided when the model 
change, one can rely on other algorithms like Takagi-
Sugeno concept and Bayes approaches for AAKR model 
averaging. 
 

 
Figure 2. Scheme of AAKR model selection. 

It is worth mentioning that abrupt signal changes that might 
be induced by AAKR model switching have been 
accommodated in our approach because different models 
have different thresholds on detection and triggering the 
alarm. 

3.2. Uncertainty quantification using PIs 

The uncertainty on the signal reconstruction provided by an 
empirical model can be quantified by using PIs. With 
respect to a component in normal conditions, a PI with 
confidence level 1-σ is defined as an interval, 

( ), ( )lower upperx t x t  
 

, such that the probability that the 

measurement of signal j at time t, xtest(t), falls within the 
interval is equal to 1-σ (Eq. (1)) (Office of Nuclear 
Regulatory Research, 2007; Rasmussen, Wesley Hines & 
Gribok, 2003). In other words, assuming that the component 
is in normal conditions: 

  ( ) ( ), ( ) 1test lower upperp x t x t x t     
 

 
  (1) 

In order to assess the correctness and effectiveness of the 
estimated prediction intervals, two indicators are usually 
considered: the coverage, i.e., the fraction of patterns in a 
validation set which actually fall within the prediction 
interval and the prediction interval width. Desiderata are 
that a PI with confidence 1-σ has coverage of at least 1-σ 
and width is as small as possible.  

Satisfactory PI estimates of time series data have been 
obtained by using nonlinear regression techniques such as 
Artificial Neural Networks (ANN), Neural Network Partial 
Least Squares (NNPLS), Kernel Regression (KR) and 
Evolving Clustering Method (ECM)) (Rasmussen et al., 
2003; Zhao et al., 2011; Ak, Li, Vitelli & Zio, 2013; Zhao, 
Tao, Ding & Zio, 2013). In applications developed for the 
nuclear industry, PIs associated to normal component 
operations have been calculated, using Eq. (2) (Rasmussen 
et al., 2003; Office of Nuclear Regulatory Research, 2007): 

 , /2( ) ( )upper lower test
Nx t x t t A B   

 
(2) 

  1,...,( )
val

val
m NA var x t  

  

  
2

1
( ) ( ) /

valN
val val

m m val
m

B x t x t N


  
 

 

where, ( )val
mx t  is the value of signal  j measured at time 

tm after the beginning of the transient of a validation set, 
( )val

mx t
is the signal reconstruction value of signal j 

provided by the empirical model at time tm of a validation 
set, Nval is the number of patterns in a validation set 

MODEL SELECTION
Test transient 

AAKR MODEL 1
OPERATIONAL ZONE 1

AAKR MODEL 2
OPERATIONAL ZONE 2

…( )testx t
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containing time series measurements performed in normal 
conditions, N is the number of training patterns used to train 
the empirical model, 1-σ is the confidence level (0≤ σ≤1), 

/2
Nt  is the t-distribution value for a given σ and number of 

training patterns.  

It is important to mention that the patterns in the validation 
set are different from those in the training set, the former 
being used to optimize the kernel bandwidth parameter (see 
Appendix A.3 for more details) and to calculate the PIs, and 
the latter to train the reconstruction model, and that the 
quantity A B is typically referred to as prediction 
error. In this work, it is denoted as ε. 

In this work, a confidence level, 1-σ equals to 95% is 
considered. It is worth mentioning that this latter value has 
been chosen as per the Nuclear Regulatory Commission 
guidelines that require using the 95th percentile largest 
uncertainty estimate (Office of Nuclear Regulatory 
Research, 2007; Denning, Aldemir & Nakayama, 2012). 
However, setting up the confidence level depends upon the 
industrial application. In that case, the value of /2

Nt   for 
N>30 is close to 2. Notice that from the point of view of the 
FD, the higher is the confidence level, 1-σ, the larger is the 
obtained prediction interval and the lower is the expected 
false alarm rate (γ). On the other side, the larger is the 
prediction interval, the higher is the expected missing alarm 
rate (β) and the longer is the detection delay time. 

A drawback of performing PIs quantification using Eq. (2) 
is that the prediction interval width is independent from the 
test patterns, ( )testx t

. This is not satisfactory since the 
empirical model performance may vary in different zones of 
the training space, according to the density and information 
content of the training patterns available to build the model. 
Thus, prediction interval widths are expected to be different 
for different patterns ( )testx t

, with smaller PI width when 
the test pattern is in a zone characterized by a high density 
of training patterns. 

Furthermore, when the AAKR is applied to the 
reconstruction of operational transients, Eq. (2) typically 
leads to very large PIs for all measurements. This is due to 

the term  1,...,var ( )
val

val
m Nx t 


which, even in the case of 

reconstructions very close to the signal measurements, can 
be large due to the variability of the patterns in the 
validation set.  

To overcome these limitations, in the present work we 
propose to: 

1. reduce the variability of the patterns in the validation 
set by considering, for the computation of the PI at time 
tk, k=1,...,Np, only the reconstructions in the validation 

set performed at time tk after the beginning of the 
transient, with Np equals to the number of patterns in 
each test, validation and training transients. Thus, 
instead of considering, as in Eq. (2), the variance of all 
the Nval reconstructions of the validation set, the 
variance is computed by considering the NV<Nval 
reconstructions referring to patterns measured only at 
time tk. 

2. replace /2
Nt  with a scaling parameter called scale factor 

(α) which is used to rescale the prediction error ε, so 
that, at each time tk it yields a PI with a specified 
coverage and with an acceptable width (Bouckaert, 
Frank, Holmes & Fletcher, 2011). The proper number 
NV of measurements to estimate the PIs with a given 
coverage 1-σ is selected relying on Order Statistics 
(OS), according to Secchi, Zio and Di Maio (2008). In 
this regard, using the 95% confidence level; the number 
NV of measurements used to estimate the PIs at each 
time tk is estimated and is equal to 59. 

In practice, at time tk after the beginning of the transient, for 
a reconstructed signal j, ( )test

kx t
, Eq. (2) becomes (for 

large values of NV): 

 
 , ( ) ( )upper lower testx t x t C D   

 
(3) 

  1,...,ˆ ( )val
i NV kC var x t

 
 

  
2

1

ˆ ( ) ( ) /
NV

val val
i k i k

i
D x t x t NV



 
 

 

The method goes along the following steps. It entails an 
offline procedure for quantifying the scale factor α, and an 
online procedure for FD.  

Step 1: Offline signal reconstruction. Using N training data, 
the AAKR-built model provides the reconstruction 
ˆ ( )val

i kx t of signal j in the i-th validation transient of length 
Np, i=1,…,NV, (i.e., N=Np*NT, where NT is the number of 
training transients each of length Np). These historical 
measurements are collected into the matrix X  whose 
generic element x(tk,j) is the measured value of signal j at 
time tk, k=1,…,Np. 

Step 2: Residual calculations. At each k-th time, the 
absolute difference between the measured value and its 
reconstruction of signal j is calculated as 

( ) ( ) ( )val val
i k i k i ke t x t x t 

of the i-th validation 

transient, i=1,…, NV. 

Step 3: Prediction error calculations. At each time k, the 
prediction error of signal j is calculated as 
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   ( ) var ( ) ( )val val
k k k k kt x t bias x t    by 

calculating the variance  var ( )val
k kx t

 (Eq. (4)) and the 

bias  ( )val
k kbias x t

 (Eq. (5)) of the NV reconstructions 

of signal j (for large values of NV): 

 
 

 
2

1 1
( ) ( ) /

var ( )

NV NV
val val
i k i k

i ival
k k

x t x t NV
x t

NV
 

 
 

 
  


 

(4) 

  
 2

1
( ) ( )

( )

NV
val val
i k i k

val i
k k

x t x t
bias x t

NV




 


 

(5) 

Step 4: Scale factor calculations. At each time k, α is 
calculated as the 95th percentile of the NV αi(tk), i=1,…, NV 
where αi(tk)=ei(tk)/ε(tk). The coverage capability depends on 
the number of the NV validation transients used. The 
advantages of using the scale factor are: 1) the trade-off 
between the coverage and the width is satisfied; 2) the 
technique is independent from the reconstruction method 
applied (Bouckaert et al., 2011); and 3) α deals with the 
uncertainty caused by the AAKR-built model. In practice, at 
each time k, if the AAKR reconstructions are inaccurate, 

then, the α values are large (i.e.,  

( ) ( ) ( ) , 1,...,val val
i k i k i ke t x t x t i NV  

is large) in 

order to achieve the desired coverage level (1-σ), and vice 
versa. 

In order to guarantee a certain coverage 1-σ (i.e., (1-σ) of 
the measurements xtest(tk) of signal j in normal conditions are 
within the PI at each time k), we need to find a scale factor 
such that (1-σ) of the αi(tk) are lower and the remainder 
higher than α. This value is denoted as αS(tk) where S
stands for “Sorted” and is found by sorting the NV available 
αi(tk) (Bouckaert et al., 2011), where NV is properly defined 
by OS (Wald, 1947; Secchi et al., 2008). For σ = 0.05; the 
correct scale factor may be denoted as α95 percentile(tk). 

Finally, within the online FD, for any test measurement 
xtest(tk) of a given signal j at each time k, Eq. (3) can be re-
written as: 

 , 95( ) ( ) ( ) ( )upper lower test percentilex t x t t t   
 (6) 

4. CASE STUDY  

In this work, an artificial case study has been designed to 
generate transients representative of the start-up behavior of 
a component (Baraldi, Di Maio & Zio, 2013). Each 
transient, fi (x(t, 1),...,x(t, 4)), is four-dimensional (i.e., n= 4 

signals) and has a time horizon of Np=101 time steps, in 
arbitrary units of measurements.  

With respect to normal conditions, 5500 transients 
representing the start-up of the component have been 
simulated. The signal evolutions are characterized by a 
sigmoid behavior ( )nc

i kx t , k=1,…,101, i=1,…,5500 given 
by Eq. (7): 

 3( ) 2 1 10
2

nc k
i k

tx t a erf        
    

(7) 

where α, μ and ζ are random parameters in arbitrary units. In 
practice, the simulations have been performed by sampling 
random values of the parameter ζ from a Gaussian 
distribution ζ~N(0,1) and of the parameters α, μ from 
uniform distribution functions with lower and upper bounds 
reported in Table 1.  

Figure 3 shows the obtained evolutions of the four signals in 
the 5500 transients, 1:5500 ( )nc

i kx t


.   

   
Figure 3. Simulated time evolution in normal conditions of 

the 4 signals in 5500 start-up transients. 

Among them, we have used NT=300 transients to train the 
AAKR-built model, NV=59 transients as validation set to 
optimize the value of the model parameter, i.e., the kernel 
bandwidth h, and for calculating the scale factors αi(tk). The 
remaining transients are used to verify the performance of 
the proposed method. 

Furthermore, 50 additional abnormal conditions transients 
(Eq. (8)) have been simulated in order to reproduce the 
signal behaviours in abnormal conditions (Figure 4) by 
assuming a different time evolution for one signal randomly 
chosen among the four available. It is worth mentioning that 
this situation, characterized by assuming only one signal in 
abnormal conditions to create the abnormal transients has 
been chosen due to the criticality of the FD task under this 
assumption, i.e., this situation is considered the most 
challenging case. 

 3( ) 10ac
i k kx t a t    (8) 
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where a  is a random parameter whose values are sampled 
from a uniform distribution with lower and upper limits 
reported in Table 1. 

Table 1. Limits of the uniform distributions from which the 
parameters in Eq. (7) and Eq. (8) have been sampled. 

 

Parameter Lower bounds Upper bounds 
a 0.45 0.55 
μ 2.2 2.7 
a  0.3 0.4 

 

 
Figure 4. Simulated time evolution in abnormal/normal 

conditions of signal 1 and the other three signals, 
respectively, in 50 start-up transients. 

4.1. Reconstruction model  

The final model for the reconstruction of signals during 
start-up transients is made by 5R  AAKR-built 
reconstruction models, each one dedicated to a different 
operational zone. The different operational zones are 
defined according to the time elapsed from the start of the 
transient and are reported in Table 2. In order to develop the 
overall reconstruction model, the training patterns are split 
into different sets, according to the time at which they have 
been measured. Then, for each operational zone, an AAKR 
model is built using the corresponding training set. Once the 
FD system has been built, it can be used on line for the 
signal reconstruction task by sending the test pattern to the 
corresponding reconstruction model. 

Table 2. Definition of the five operational zones and their 
optimal h values for the four signals. 

 

Zone 
# 

Time 
period Operative conditions h 

values 
1 1-20 Slow start up 0.05 
2 21-40 Fast start up 0.05 
3 41-60 Start converging to a steady state 0.01 
4 61-80 Almost  steadiness 0.009 
5 81-101 Steady state (nominal value) 0.005 

The AAKR models have been trained and their parameters 
optimized as described in Appendix A.3. In particular, the 
parameter h values have been identified by optimizing the 

accuracy of the signal reconstructions in normal conditions 
and their robustness in abnormal conditions. The obtained 
optimal values of parameter h in the different operational 
zones are reported in Table 2. 

5. VERIFICATION OF THE PROPOSED METHOD FOR 
UNCERTAINTY QUANTIFICATION 

In this Section, the results obtained by applying the method 
for PI estimation to the case study of Section 4 are 
presented. In Subsection 5.1 the PIs obtained by applying a 
traditional approach for PI estimation, based on a single 
AAKR-built reconstruction model and Eq. (2), are 
compared to those obtained by using the proposed method. 
Subsection 5.2 presents the results of an extensive test 
performed in order to understand whether the obtained PIs 
with confidence level 95% provide satisfactory coverage 
levels, i.e., the fraction of patterns in a validation set that 
actually falls within the quantified prediction interval is at 
least equal to 95%, whereas in Subsection 5.3 the ability of 
the method to properly represent the four sources of 
uncertainty affecting the signal reconstructions (namely, 
measurement errors, intrinsic stochasticity of the physical 
process, uncertainty on the correct setting of the AAKR 
parameter, and uncertainty caused by the incompleteness of 
the training data) is discussed. 

5.1. PI estimation 

The PIs obtained in the reconstructions of signal 1, xtest(tk,1), 
of a test transient by considering a single AAKR-built 
reconstruction model and Eq. (2), are shown in Figure 5. 
Notice that, as expected, the obtained PI widths are constant 
and very large. This is due to the fact that, according to Eq. 
(2), the PI widths are independent from the test patterns, 
xtest(tk, 1), and are computed by considering the variance,

 1,...,var ( ,1)
val

val
m Nx t 


, of the reconstructions of patterns 

taken in different zones of the operational transients, and 
thus characterized by an high variability of signal values. 

 
Figure 5. PIs of the reconstruction of 21 patterns obtained 

using Eq. (2). 
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PI widths are variable during the time evolution and with a 
reduced width with respect to those obtained in Figure 5. 

 
Figure 6. PIs of the reconstruction of 21 patterns obtained 

using the proposed method. 

It is worth noticing that the PI widths of the reconstructions 
in zone 1 (time from 1 to 20) are smaller than those obtained 
in zone 3 (time from 41 to 60). This is due to the variability 
of the training patterns used to train the AAKR-built 
reconstruction model, which is lower at the beginning of the 
transient. 

5.2. Verification of the prediction interval coverage 

In order to verify whether the coverage of the obtained 
prediction intervals with confidence level 95% is 
satisfactory, i.e., of at least 95%, we have performed an 
extensive test using 5000 normal conditions test transients. 
Figure 7 shows the coverage of the obtained prediction 
intervals for the first signal, xtest(tk, 1), at different times 
after the beginning of the transient. The test has been 
performed using NV value equal to 59. In practice, we have 
counted how many times the signal measurement falls 
within the prediction interval at the different times. 

 
Figure 7. Coverage of the PI with a level of confidence 95% 

at different times considering 59 validation transients. 

Notice that the obtained coverage values are, as expected, 
close to the confidence level 95%, as it is confirmed by the 
overall coverage throughout all the transient length which is 
equal to 94.6%. 

To investigate the impact of the number of validation 
transients to the overall coverage, the same test has been 

performed with a random number of validation transients, 
NV=20, lower than 59. As expected, the overall coverage 
drops down to 88% (Figure 8). This is indeed due to the 
inadequate use of OS. If the number NV had been taken 
larger than 59, the overall coverage would be exceed the 
95%. 

 
Figure 8. Coverage of the PI with a level of confidence 95% 

at different times considering 20 validation transients. 

5.3. PI capability of quantifying the different uncertainty 
sources 

In this Subsection, without any loss of generality, we focus 
on the signal reconstruction problem during the first 
operational zone of the component transient. The evolutions 
of the NT=300 training transients used to train the AAKR 
model in zone 1 are shown in Figure 9. 

In order to verify the capability of the PI estimates of 
properly quantifying the effect of different sources of 
uncertainty, we have performed the following experiments: 

1) variation of the measurement error 
2) variation of the intrinsic stochasticity of the 

physical process 
3) variation of the AAKR bandwidth parameter value  
4) variation of the number of transients used to train 

the AAKR model. 

Experiments 1), 2), and 4) require generating new sets of 
transients, whereas in experiment 3) different AAKR-built 
models are generated and trained using the same set of 
transients illustrated in Section 4. 

 
Figure 9. Training transients of signal 1 (zone 1). 
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5.3.1. Variation of the measurement error 

Five different sets of transients characterized by different 
values of the measurement error have been simulated. In 
practice, a noise characterized by different standard 
deviations has been added to the signals generated 
according to Eq. (7) and Eq. (8). Table 3 reports the five 
levels of standard deviation considered. The simulated 
transients have been used to train the AAKR model, to find 
the prediction intervals according to the proposed method 
and to compute the overall coverage of the prediction 
intervals. For each level of noise, we have repeated the 
AAKR development of the model and the PI estimation five 
times using different random partitions of the available 
transients in training, test and validation sets. The same 
cross-validation procedure is applied also in Subsections 
5.2.2, 5.2.3 and 5.2.4. In what follows, we present the 
average of the five obtained coverage values and their 
standard deviations.  

Table 3. Five levels of standard deviation characterizing the 
noise in the signals generated by Eq. (7) and Eq. (8). 

 

Noise Levels Standard Deviations values 
1 0.5 
2 1 
3 1.5 
4 2 
5 2.5 

Figure 10 (top) shows the overall coverage obtained 
considering the different measurement noise levels. Notice 
that the obtained coverage values are close to 95% and that 
the coverage is not influenced by the measurement error. 
Figure 10 (bottom) shows the average width of the 
prediction interval. As expected, the higher is the 
measurement noise, the larger is the prediction interval 
width. This experiment confirms the ability of the proposed 
method to properly quantifying the effect of the 
measurement error on the PI estimate: the method is able to 
achieve the desired coverage level regardless of the level of 
the noise, by adjusting the PI width. 

 
Figure 10. Overall mean coverage (top) and PI width 

(bottom), considering different measurement noise levels. 

5.3.2. Variation of the intrinsic stochasticity of the 
physical process 

In the considered artificial case study, the stochasticity of 
the physical process is represented by the variation of the 
parameters α, μ, and a  in Eq. (7) and Eq. (8), which 
determines the transients behaviour. In order to simulate 
different levels of stochasticity in the process, we have 
sampled the values of these parameters from different 
probability distributions. Table 4 reports the considered 
distributions in the four cases: the larger is the range of the 
uniform distributions, the higher is the stochasticity of the 
process. 

Table 4. Distributions from which the parameters of Eq. (7) 
and Eq. (8) are sampled, in the considered four cases 

characterized by different levels of process stochasticity. 
 

Case # a μ a   
1 U(0.48,0.53)  U(2.33, 2.58)  U(0.33,0.375)  
2 U(0.45,0.55)  U(2.2, 2.7)  U(0.3,0.4)  
3 U(0.435,0.58)  U(2.08, 2.835)  U(0.28,0.425)  
4 U(0.4,0.6)  U(1.95, 2.95)  U(0.25,0.45)  

The overall coverage obtained in the four cases is shown in 
Figure 11 (top): the model achieves satisfactory coverage 
values regardless the level of stochasticity of the process. As 
in the previous case, this is obtained by adjusting the PI 
width (Figure 11 (bottom)): the wider the range of the 
uniform distributions of the parameters of the equations 
governing the transients behaviour, i.e., the higher the level 
of stochasticity in the process, the wider the width of the 
PIs. 

 
Figure 11. Overall mean coverage (top) and PI width 

(bottom), considering different cases of process 
stochasticity. 

5.3.3. Variation of the AAKR bandwidth parameter 
value 

In this experiment, the same set of transients illustrated in 
Section 4 have been used to train eight different AAKR 
models characterized by different values of the bandwidth 
parameter, h, (h = 0.005, 0.009, 0.02, 0.05, 0.3, 0.5, 0.9, 
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The overall coverage of the prediction intervals with 
confidence 95% obtained by the eight different AAKR 
models is shown in Figure 12 (top). Notice that the obtained 
coverage values are close to the target of 95%. Figure 12 
(bottom) shows that very small and very large values of h 
are characterized by large PI widths. This is due to the fact 
that the corresponding reconstruction models are 
characterized by bad performances and, thus, in order to 
obtain the desired coverage, the prediction interval is 
enlarged. Furthermore, it is interesting to observe that the PI 
width is minimum for the value of h=0.05, which minimizes 
the reconstruction error (see Appendix A.3). 

 
Figure 12. Overall mean coverage (top) and PI width 
(bottom), considering different AAKR-built models 
characterized by different values of the bandwidth 

parameter. 

5.3.4. Variation of the number of transients used to train 
the AAKR model 

In order to investigate the effect of the uncertainty caused 
by the incompleteness of the training data, different AAKR 
models have been developed using different numbers of 
training transients. In particular, we have trained three 
AAKR models based on 100, 300 and 500 training 
transients, NT. In each case, the optimal h value has been 
identified by considering the Mean Squared Error, MSE (see 
Appendix A.3). 

The overall coverage obtained in the three cases is shown in 
Figure 13 (top). As expected, the coverage is close to the 
target value of 95% and the PI width tends to decrease as 
the number of training transients increases (Figure 13 
(bottom)). This latter effect is due to the fact that model 
accuracy tends to increase with the number of patterns used 
to train the empirical model (see Appendix A.1). 

 
Figure 13. Overall mean coverage (top) and PI width 

(bottom), considering different number of training 
transients. 

6. CONCLUSIONS 

In this work, a novel method to quantify the uncertainty to 
which signal reconstructions are subject has been 
developed. Uncertainties are quantified in the form of 
prediction intervals which have been estimated using Order 
Statistics (OS) theory. The capability of the methods to deal 
with measurement errors, intrinsic stochasticity of the 
physical process, uncertainty on the settings of the model 
parameters and uncertainty on the signal reconstructions due 
to incompleteness of the training data has been shown with 
respect to an artificial case study regarding the monitoring 
of a component during start-up transients.  
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APPENDIX 

Appendix A.1 Auto-associative Kernel Regression 
(AAKR) 

Auto-associative kernel regression (AAKR) is a non-
parametric, empirical modelling technique that relies on 
historical measurements of the signals taken during normal 
conditions of the component to predict (reconstruct) the 
current signal measurements vector at a given time t, 

( )testx t
= [xtest(t, 1), xtest(t, j),…, xtest(t, n)], j=1,…,n; where 

n is the number of measured signals e.g., pressure, 
temperature, vibration, etc. as a weighted sum of those 
historical observations. The historical measurements 
performed at past time tk, k=1,...,N are collected into the 
matrix X  whose generic element x(tk, j) is the measured 
value of signal j at time tk  (Baraldi et al. 2012; Baraldi, 
Canesi, Zio, Seraoui & Chevalier, 2011; Di Maio, Baraldi,  
Zio & Seraoui, 2013).  

AAKR technique requires three different sets of data:  

1. Historical data (often called training data) which are 
historical measurements of the signals taken during 

normal conditions of the component used to 
train/develop the model for accurate reconstructions. 

2. Validation data which are historical measurements of 
the signals taken during normal/abnormal conditions of 
the component used to optimize the model parameters, 
such as the kernel bandwidth h, as we shall show in the 
following. 

3. Test data which are the measurements taken at current 
time t to perform a real-time health assessment of the 
component.  

In Figure 14, a sketch of the procedure for predicting one 
test measurement at time t: ( )testx t

 = [xtest(t, 1), xtest(t, 2)] is 
provided. Historical data which fall within the bandwidth h 
have a large impact on the reconstructed values ( )x t .  

 
Figure 14. AAKR basic principle. 

In more details (Baraldi et al. 2011), the j-th component at 
time t of ( , )testx t j

is given by Eq. (9): 
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(9) 

Weights w(tk) are similarity measures obtained by 
computing the Euclidean distance between the current 
sensor measurement xtest(t, j) and the k-th observation of  

X , Eq. (10): 

  22

1
( ) ( , ) ( , )

N
test

k k
k

d t x t j x t j


 
 

(10) 

and inserting it in the Gaussian kernel Eq. (11): 
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where h  is the Gaussian kernel bandwidth. 

In order to provide in Eq. (10) a common scale across the 
different signals measuring different quantities, it is 
necessary to normalize their values. In the present work, the 
signal values at time t are normalized according to Eq. (12): 

ReconstructionHistorical measurements Test measurement

h

( ,1)testx t

( ,2)testx t

( ,1)testx t

( ,2)testx t
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Where, xtest(t, j) is a generic measurement of signal j, μ(j)  
and σ(j) are the mean and the standard deviation of the j-th 

signal in X : 
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A.2 Performance Metrics 

In order to evaluate the performance of AAKR model, the 
following criteria should be considered (Baraldi et al. 2011): 

1. The accuracy which is the ability of the model to 
correctly and accurately reconstruct the signal values of a 
component in normal conditions: An accurate Fault 
Detection (FD) system allows reducing the number of false 
alarms (γ). The accuracy metric is typically defined as the 
Mean Squared Error (MSE) between the model 
reconstructions and the signal measured values. 

Let 
test

ncX be a matrix of measured data whose generic 
element ( , )test

nc kx t j represents the k-th time measurement, 
k=1,...,Np, of the j-th measured signal, j=1,...,n, taken during 
normal conditions, and ( , )test

kx t j
its reconstruction in nc; 

then, the MSE with respect to signal j is given by Eq. (14): 
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(14) 

A global accuracy measure that takes into account all the 
monitored signals and test patterns is defined by Eq. (15): 
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(15) 

Notice that, although the metric is named accuracy, it is 
actually a measure of error and, thus, a low value is desired. 

2. The robustness which is the ability of the model to 
reconstruct the signal values of a component in abnormal 
conditions: a robust AAKR model reconstructs the value of 
a measured signal as if the component is in normal 

conditions thus, allows reducing the number of missing 
alarms (β). The robustness metric is here defined as the MSE 
between the model reconstructions and the mean of the 

historical data X . 

Let 
test

acX be a matrix of measured data whose generic 
element ( , )test

ac kx t j represents the k-th time measurement, 
tk, k=1,...,Np, of the j-th measured signal, j=1,...,n, taken 
during abnormal conditions, and ( , )test

kx t j
its 

reconstruction in nc and let  
mean

X be a mean matrix of the 
NT training transients, with length Np, computed at each 
time tk, k=1,...,Np whose generic element ( , )mean

kx t j
represents the mean of the k-th time observations performed 
at tk, k=1,...,Np, of the j-th measured signal, j=1,...,n, taken 
during normal conditions; then, the robustness  MSE  with 
respect to signal j is given by Eq. (16):  
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(16) 

 

A.3 Kernel’s Bandwidth (h) Optimization  

The value of the kernel bandwidth has to be optimized to 
have a balance between the AAKR accuracy and robustness. 
That is, the optimum bandwidth h value that minimizes the 
product (Eq. (17)) between the global model accuracy, MSE, 
and the global model robustness, MSEac: 

  x acObjective Function MSE MSE  (17) 

Without loss of generality, the optimization of the AAKR 
model parameter, i.e., the kernel bandwidth h, is hereafter 
presented with respect to only the operational zone “1”. A 
cross-validation approach can serve the scope of optimizing 
the objective function; for the sake of saving computational 
time, in this work a large set of data of the training and 
validation transients have been used, i.e., we have used 
NT=300 transients to train the AAKR-built model and 
NV=59 transients as validation set to optimize the value of 
the model parameter, h. Figure 15 shows the objective 
function (Eq. (17)) obtained when 11 potential settings of h 
(0.005, 0.007, 0.009, 0.01, 0.05, 0.09, 0.10, 0.15, 0.20, 0.25, 
0.30) are used. It is worth noticing that the optimal 
bandwidth value for the first operational zone is close to 
0.05. The optimum h values of the remaining four 
operational zones are estimated using the same procedure. 
The obtained optimal values of parameter h of the five 
operational zones are reported in Table 2. 
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Figure 15. Reconstruction error (objective MSE function) 

versus kernel’s bandwidth (h) values. 

A local optimum value of h and a misleading setting of h 
may lead to inaccurate reconstructions that have to be 
tackled by properly quantifying the reconstructions model 
uncertainty. As an example, in Figure 16 it can be seen that 
with a small bandwidth (h = 0.2) large weights (similarities) 
are assigned to historical data whose distance is very close 
to zero, whereas with a larger bandwidth (h = 1.5), the 
weight assignment is less specific (Office of Nuclear 
Regulatory Research, 2007).  

 
Figure 16. Gaussian Kernel Function with two h values. 
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