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ABSTRACT

Using condition-based maintenance (CBM) to assess machin-
ery health is a popular technique in many industries, espe-
cially those using rotating machines. CBM is relevant in en-
vironments where the prediction of a failure and the preven-
tion and mitigation of its consequences increase both profit
and safety. Prognosis is the most critical part of this process
and the estimation of Remaining Useful Life (RUL) is essen-
tial once failure is identified. This paper presents a method of
synthetic data generation for hybrid model-based prognosis.
In this approach, physical and data-driven models are com-
bined to relate process features to damage accumulation in
time-varying service equipment. It uses parametric models
and observer-based approaches to Fault Detection and Iden-
tification (FDI). A nominal set of parameters is chosen for
the simulated system, and a sensitivity analysis is performed
using a general-purpose simulation package. Synthetic data
sets are then generated to compensate for information missing
in the acquired data sets. Information fusion techniques are
proposed to merge real and synthetic data to create training
data sets which reproduce all identified failure modes, even
those that do not occur in the asset, such as Reliability Cen-
tered Maintenance (RCM), Failure Mode and Effect Analysis
(FMEA). This new technology can lead to better prediction of
remaining useful life of rotating machinery and minimizing
and mitigating the costly effects of unplanned maintenance
actions.

1. INTRODUCTION

The use of Condition-Based Maintenance (CBM) has increa-
sed rapidly over recent years, largely because CBM can pre-
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dict failure in such a way that the profit and safety of the as-
set are increased. Once failure occurs, however, it is crucial
to continue the prognosis process, estimating the Remaining
Useful Life (RUL) of the asset.

Physical or theoretical models can be used for this purpose.
Theoretical models are determined from the physics of the
system and expressed by means of equations (Isermann &
Münchhof, 2011). These equations, either ordinary or partial
differential equations, can be classified as the following:

• Balance equations (i.e. chemical reactions)

• Physical or chemical equations of state (i.e. equations
that relate state variables)

• Phenomenological equations (e.g. Fourier’s law of heat
conduction)

• Interconnection equations (e.g. Kirchhoff’s current law)

Once a set of equations is obtained, the theoretical model is
defined. Complex equations are simplified by means of lin-
earizations, approximations with lumped parameters, and or-
der reductions, among others (Isermann & Münchhof, 2011),
making mathematical treatment feasible.

These models are very useful for describing the behaviour
of time-varying systems, taking into account different oper-
ating modes, transients, and variability in environmental con-
ditions. The greater the complexity of the model, the greater
the effort required to develop and validate it (Galar, Kumar,
Villarejo, & Johansson, 2013). This calls for more computa-
tional resources. Thus, a limit in the complexity of the physi-
cal model should be defined.

There are many physical models used for rotating machin-
ery. (Qiu, Seth, Liang, & Zhang, 2002) simplify a bearing
as a single Degree-of-Freedom (DOF) model using a mass-
spring-damping system. (Harsha, 2006) and (Purohit & Puro-
hit, 2006) take a 2 DOF approach when modelling a bearing
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to study the motion of the shaft in the plane of the bearing.
Other authors such as (Jain & Hunt, 2011) consider the dy-
namics of the rolling elements of a bearing by using a 3 DOF
model for the shaft and a 2 DOF model for each ball.

(Sawalhi & Randall, 2008) develop a 5 DOF model for a
rolling element bearing in which they consider the rolling el-
ements as angularly equidistant; they also propose a 6 DOF
model for a gear, and use the model to obtain the response of
a gearbox test rig. The work of (Baguet & Jacquenot, 2010)
combines a shaft-gear model and hydrodynamic journal bear-
ing model. In this case, a pinion-gear pair is represented by
means of two shaft finite elements with two nodes each; the
stiffness is calculated taking into account the tooth deflec-
tion and the foundation flexibility. (Abbes, Hentati, Maatar,
Fakhfakh, & Haddar, 2011) present a model that combines
the dynamics of a ball bearing and a gear transmission. They
introduce a time-varying stiffness matrix, where the number
of teeth in contact and the variability of periodic and mesh-
frequency based mesh stiffness are considered as varying pa-
rameters.

In all these approaches, a system model is at the centre of the
development process, from requirements analysis, through
design, implementation and testing. Today, nevertheless, the
model-based approach is also designed for maintenance pur-
poses, especially condition monitoring. The main advantage
of these approaches to CBM over data-driven approaches is
their ability to incorporate a physical understanding of the
monitored system (Luo et al., 2003). Data-driven models
miss the link between data and the physical world, thus ques-
tioning the reliability of the algorithm, but physical models
make the prediction of results intuitive because of their use
of case-effect relationships. Their main drawback is the ef-
fort required to develop them. Moreover, they require as-
sumptions regarding complete knowledge of the physical pro-
cesses; parameter tuning may require expert knowledge or
learning from field data. Finally, high fidelity models may be
computationally expensive to run.

2. MODELLING FAILURES

Physical models are used to estimate the response of systems
in both healthy conditions and failure conditions. The models
can be used to simulate component or system failures, and
with adequate modelling of the failure modes, the model can
be adjusted. In other words, different system responses can
be obtained, with and without failure, using the equation set
forming the physical model.

The literature notes several ways of modelling failure in the
field of rotating machinery. For example, (Rafsanjani, Abba-
sion, Farshidianfar, & Moeenfard, 2009) reproduce the tran-
sient force that occurs when a rolling element bearing comes
into contact with a defective surface creating a series of im-
pulses that repeat the characteristic frequencies of the ele-

ments of the bearing. (Kiral & Karagülle, 2003) amplify the
contact forces using a predefined constant when the bearing
contact is produced in a damaged area.

(Nakhaeinejad, 2010) proposes modelling faults as surface
profile changes instead of introducing mathematical impulse
functions based on fault frequencies. (Tadina & Boltežar,
2011) develop a 2D model of a bearing in which defects are
modelled as geometric changes. In this case, a fault in a race
is modelled as an ellipsoidal depression whereas a fault in a
ball is modelled as a flattened sphere.

For fault modelling of gears, (Chen & Shao, 2011) develop
a mesh stiffness model in which a gear tooth is divided into
thin pieces; the stiffness of each piece is calculated taking
into account bending, shear and axial compress (function of
fault properties). Then, the whole tooth stiffness is obtained
by integrating the stiffness of each slide. (Jiang, Shao, &
Mechefske, 2014) introduce spalling faults in a gear model
as a variation in the mesh stiffness of the teeth contact. The
length of the contact line is modified to change the value of
the stiffness.

However, it is difficult to predict the RUL once there is a spall
in the system. Thus, failure evolution and how some failure
modes initiate or aggravate others should be defined. Crack
propagation failure modes are the most commonly developed
behavioural models for prognostics (Sikorska, Hodkiewicz,
& Ma, 2011). For example, the Paris-Erdogan law (Paris &
Erdogan, 1963) can be used to define the evolution of the
growth of a sub-critical crack under a fatigue stress regime
and is expressed as:(

da

dN

)
n+1

= C · (∆K)
m (1)

where a is the crack length, N is the number of load cycles, n
is the current iteration, ∆K is the range of the stress intensity
factor, and C and m are material constants. Following this
theory, as well as Forman and NASGRO 2/3 laws, (Drewniak
& Rysiński, 2014) provide an analytical gear teeth fatigue
life estimation. (Li, Kurfess, & Liang, 2000) use a stochastic
defect-propagation model to calculate the RUL of a bearing.

3. CREATION OF DATA SETS

System prognosis requires data which can be obtained from
two sources: an operating system using different sensors or a
physical model. In certain cases, the latter source has some
advantages, as for example, the case of an aircraft.

Data from an aircraft system can be recorded when the asset is
healthy, but once the Key Performance Indicator (KPI) of the
system reaches the maintenance threshold limit, maintenance
processes are carried out. Thus, data can only be acquired
until near time tm, the time when the limit is crossed, taking
into account some tolerance, as shown in Figure 1. The asset
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Figure 1. Trend analysis for the remaining useful life

will never be allowed to exceed the predefined safety thresh-
old limit (reached at an unknown time ts) for the following
reasons:

• Security: some faults put both the asset and the people
using it at risk.

• Cost: the development of a fault in a component of an
aircraft can be very expensive.

• Environmental issues: the effect of a fault can be detri-
mental for the environment.

Consequently, faulty conditions cannot be recorded from the
real system. However, such data can be created with a phys-
ical model. Failure modes can be defined using Reliability
Centred Maintenance (RCM) and Failure Mode and Effect
Analysis (FMEA), among others. When these failure modes
are modelled, the data generated are called “synthetic” data.

In conclusion, the final data set is formed by data generated
from both real systems and a physical model of the system.
As both physical-model and data-driven approaches are used,
a hybrid model is formed, as illustrated in Figure 2.

3.1. Semi-supervised learning

Classification techniques are divided into three groups: un-
supervised, supervised and semi-supervised learning. Unsu-
pervised classification or cluster analysis consists of a set of
techniques used to group individuals in unknown groups. The
objective is to relate p individuals to q groups in such a way
that each element is associated with only one group and the
distribution of each group is internally homogeneous. Super-
vised learning, also known as machine learning, begins with
data that belong to 2 or more groups. The objective is to ob-
tain a relationship between the inputs (data) and the outputs
(groups) in such a way that it is possible to assign a group to
a new data case.

Figure 2. Hybrid model approach

Semi-supervised learning falls between the two other methods.
Looking again at the aircraft, data can only be recorded when
the system is healthy. Figure 3 shows some healthy data tak-
ing into account two features. Newly acquired data near the
individuals in Figure 3 will belong to the healthy case, but if
not they will belong to a faulty case. Therefore, only healthy
and faulty cases can be distinguished.

Faulty data cannot be captured from the aircraft because of
the reasons already presented. When synthetic data are gen-
erated by a physical model, however, different failure modes
can be recognized besides the healthy case. This improves the
initial classification criterion. Data belonging to healthy (H)
and some faulty cases (F1, F2 and F3) can be seen in Figure 4.
Newly acquired data will belong to any of these cases.

Once the data set is created, semi-supervised learning is car-
ried out using such techniques as Support Vector Machine

H
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Figure 3. Learning using healthy data recorded from the real
system
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Figure 4. Learning using both healthy data acquired from
the real system and synthetic data generated by the physical
model

(SVM), k Nearest Neighbour (kNN) and Neural Networks
(NN), among others.

4. TUNING PROCESS

When the learning process is completed, newly acquired data
can easily be classified using the aforementioned methods.
However, data that do not fit into any of the clusters defined
in the learning process can also appear. This state in which an
abnormal or unknown fault is produced is known as No-Fault-
Found (NFF). A graph illustrating this is shown in Figure 5.
Here, the new data do not belong to any of the predefined
groups (H, F1, F2 and F3) are labelled NFF. There are two
main reasons for the appearance of NFF data:

• The physical system is not sensitive to one of the studied
failure modes, and the acquired data do not reflect the
response of the physical system.

• The acquired data belong to a failure mode not previ-
ously identified.

The appearance of this kind of data must be used to update
the already established classification criteria. They are con-
sidered data related to another failure mode, and the semi-
supervised learning is repeated. The process of automatically
updating the classification criteria is called the tuning pro-
cess. A scheme of this process appears in Figure 6. New data
acquired from the real system are considered input data and
are classified according to the clusters previously obtained us-
ing synthetic and raw data. The output is used to retrain and
improve the classification method.
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Figure 5. No-fault-found case

Once the tuning process is developed, it gives a better under-
standing of failure evolution; consequently, the prognostics
process is more easily carried out.

5. CONCLUSIONS

The main purpose of the hybrid model is to compensate for
the weaknesses of data driven and physical models. Data-
driven techniques are based on complete data sets that do not
usually cover all the identified failure modes because of eco-
nomic, security or environmental reasons. Additional data are
needed from models based on knowledge to fill the gap. Phys-
ical models are able to represent the response of a system in

Input + Supervised
classification

Output

Synthetic
data

Physical model
of real system

Raw
data

Real
system

Figure 6. Tuning process of the classification method
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normal operating conditions and include fault modelling with
the objective of determining the behaviour of the system in
different faulty cases detected by different failure mode anal-
yses. It is not new to get data from physical models, but the
way these data are integrated in the system and how the phys-
ical model is tuned to increase the accuracy of these synthetic
data are certainly new. In addition, the system must be able
to produce data for all the failure modes identified by means
of FMEAs and other failure analysis techniques.

As a consequence of this interaction, “synthetic” data sets are
created. These, in combination with raw data acquired from
the real system, can be used in semi-supervised learning to
improve the accuracy of estimations using only the real data.
When newly acquired data suggest the presence of a failure
that has not been considered, the data are used to update the
learning process. The goal is to create the most complete
date sets covering all relevant failure modes to obtain better
remaining useful life estimation.
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Tadina, M., & Boltežar, M. (2011). Improved model of a ball
bearing for the simulation of vibration signals due to
faults during run-up. Journal of Sound and Vibration,
330(17), 4287-4301.

5



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

BIOGRAPHIES

Madhav Mishra is a PhD Researcher at Luleå University
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