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ABSTRACT

In this paper we introduce a method to identify if a bearing is

damaged by removing the effects of speed and load. In fact,
such conditions influence vibration data during acquisitions
in rotating machinery and may lead to biased results when di-
agnostic techniques are applied. This method combines Em-
pirical Mode Decomposition (EMD) and Support Vector Ma-
chine classification method. The vibration signal acquired is
decomposed into a finite number of Intrinsic Mode Functions
(IMFs) and their energy is evaluated. These features are then
used to train a particular type of SVM, namely One-Class
Support Vector Machine (OCSVM), where only one class of
data is known. Data acquisition is done both for a healthy
bearing and for one whose rolling element presents a 450 um
damage. We consider three speeds and three different radial
loads for both bearings, so nine conditions are acquired for
each type of bearing overall. Feature evaluation is done using
EMD and then healthy data belonging to the various condi-
tions are taken into account to train the OCSVM. The remain-
ing data are analysed by the classifier as test object. The real
class each element belongs to is known, so the efficiency of
the method can be measured by counting the errors made by
the labelling procedure. These evaluations are performed by
applying different kinds of SVM kernel.

1. INTRODUCTION

Rolling bearings are among the most widely used compo-
nents in machinery. Their condition monitoring and fault di-
agnosis are then very important in order to prevent the oc-
currence of breakdowns. A wide range of different methods
has been proposed since the Seventies to get proper fault di-
agnosis techniques. Signal analysis is an important topic in
mechanical fault diagnosis research and applications thanks
to its ability to extract the fault features and identify the fault
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patterns. Methods such as Fourier analysis and time-domain
analysis take into account the acquired signal and are based
on the assumption that the process generating the signal it-
self is stationary and linear. Unluckily, the faults are time
localised transient events, so this kind of techniques could
provide a wrong information.

Some possible ways to overcame these aspects are presented
in Randall and Antoni (2011). They develop an interesting
review of diagnostic analysis of acceleration signals from
rolling element bearings, especially when a strong mask-
ing noise is present due to other machine components such
as gears. They show industrial applications that confirm
the reliability of their methods. Another interesting method
that could be efficiently used in the vibration-based condi-
tion monitoring of rotating machines is presented in Antoni
(2006). He shows how the Spectral Kurtosis (SK), in contrast
to classical kurtosis analysis, provides a robust way of detect-
ing incipient faults even in the presence of strong masking
noise. The other appealing aspect is that it allows to design
optimal filters efficiently to filter out the mechanical signature
of faults.

A useful tool to analyse non-stationary signals such as those
related to bearing vibrations is wavelet transform. Its strength
comes from the simultaneous interpretation of the signal in
both time and frequency domain that allows local, transient
or intermittent components to be exposed. As drawback there
is the dependence on the choice of the wavelet basis func-
tion. An example of wavelet-based analysis technique for the
diagnosis of faults in rotating machinery from its vibrating
signature is Chebil, Noel, Mesbah, and Deriche (2009).

An innovative technique in the time—frequency domain is the
Empirical Mode Decomposition (EMD) (Huang et al., 1998).
It allows any complicated signal to be decomposed into a col-
lection of Intrinsic Mode Functions (IMFs) based on the lo-
cal characteristic time scale of the signal. It is self-adaptive
because the IMFs, working as the basis functions, are deter-
mined by the signal itself rather than being pre-determined.
Hence, EMD is highly efficient in non-stationary data analy-
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sis. It has been applied to a wide variety of problems, going
from geophysics to structural health monitoring (Huang &
Shen, 2005). Lots of authors apply EMD to rotating machines
and bearings with diagnostic intents, usually in association
with other techniques. Some examples are Gao, Duan, Fan,
and Meng (2008), where combined mode functions are intro-
duced, Junsheng, Deije, and Yu (2006), that use EMD jointly
with an AutoRegressive model and Yu, Deije, and Junsheng
(2006), that train an Artificial Neural Network (ANN) classi-
fier with the EMD energy entropies.

Another worth of interest aspect is the search for methods
able to remove effects produced in vibrations by external fac-
tors, such as environmental temperature or test rig assem-
blies. Some examples are presented in Pirra, Gandino, Torri,
Garibaldi, and Machorro-L6pez (2011) and in Machorro-
Lépez, Bellino, Garibaldi, and Adams (2011), where the
multi-variate statistical technique named Principal Compo-
nent Analysis (PCA) is used successfully in bearing fault de-
tection and rotating shaft. Other factors influencing vibrations
related to rotating elements are varying load and speed. In
fact a variation in these factors produces some difficulties in
recognising the presence of fault in a signal. Bartelmus and
Zimroz (2009) show how in condition monitoring of plane-
tary gearboxes is important to identify the external varying
load condition. In particular, they analyse in detail how many
factors influence the vibration signals generated by a system
in which a planetary gearbox is included and show how the
load has a consistent contribution. As far as bearings are con-
cerned, instead, some works are presented in Cocconcelli,
Rubini, Zimroz, and Bartelmus (2011) and Cocconcelli and
Rubini (2011). They inspect the continuous change of rota-
tional speed of the motor, that represent a substantial draw-
back in terms of diagnostics of the ball bearing. In fact,
the large part of algorithms proposed in the literature needs
a constant rotation frequency of the motor to identify fault
frequencies in the spectrum. They tackle the problem with
encouraging results aided by ANN and Support Vector Ma-
chine (SVM).

These two last techniques could be grouped under the terms
of soft or natural computing. They are well developed in
Worden, Staszewski, and Hensman (2011), an exhaustive tu-
torial overview of their basic theory and their applications in
the context of mechanical systems research. SVM in particu-
lar, is widely used for condition monitoring and damage clas-
sification (Widodo & Yang, 2006), (Rojas & Nandi, 2006). It
is based on the concept of separating data objects into differ-
ent classes through an hyperplane. However, this method as-
sumes that all types of instances are known before applying it.
A particular case of SVM is the One-Class SVM (OCSVM),
that is well suited for a diagnostic technique purpose. In fact,
it allows the creation of the separating hyperplane starting
from the knowledge of only one class, that is what usually
happens in damage detection. Shin, Eom, and Kim (2005)
adopt this method for machine fault detection and classifi-
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Figure 1. Acceleration signal and its decomposition for a
healthy bearing (left) and for a faulty rolling element one

(right).

cation in electro-mechanical machinery from vibration mea-
surements.

The intent of our work is to find a parameter able to remove
the influence of various external conditions in order to detect
properly a damage in a roller bearing. This paper is organised
as follows. In next two sections EMD method and OCSVM
are presented with some theoretical background. Our algo-
rithm is explained in Section 4 and then its application on a
test rig is developed in the following session.

2. EMPIRICAL MODE DECOMPOSITION

Empirical Mode Decomposition is a method presented by
Huang et al. (1998) and based on the local characteristic time
scales of a signal. This approach could be seen as a self-
adaptive signal processing method that can be applied to non-
linear and non-stationary process. In particular, it allows a
complex signal function to be decomposed into a number of
intrinsic mode functions (IMFs). Each one of these compo-
nents contains frequencies changing with the signal itself and
it has to satisfy the following definition:

e In the entire data set, the number of extrema and the num-
ber of zero crossings must either be equal or differ at
most by one.

e At any point, the mean value of the envelope defined by
the local maxima and the envelope defined by the local
minima is zero.

Thanks to this definition, each IMF represents the simple os-
cillation mode involved in the signal. According to Huang et
al. (1998) a sifting process is used in order to extract the IMFs
from a given signal x(¢). It consists of different steps:
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1. Identify all the extrema of the signal, and connect all the
local maxima by a cubic spline line as the upper enve-
lope. Repeat the same procedure on the local minima to
produce the lower envelope.

2. Designate the mean of the two envelopes as m;, and the
difference between the signals x(¢) and m; as the first
component, hq, i.e.

Ideally, if hy is an IMF, then take it as the first IMF com-
ponent of z(t). Otherwise, consider h; as the original
signal and repeat the first two step obtaining

hi —mq1 = hq. (2)

Repeat the sifting process up to k times when hjj be-
comes an IMF, that is

hi(k—1) — mik = hag. 3
The first IMF component is then designated as

C1 = hlk. (4)

3. Separate ¢; from the original signal z(t) to obtain the
residue r1:

r1 =x(t) — ¢1. 5)

4. Consider r; as the original signal and repeat the above

process n times, obtaining the other IMFs ¢, c3, ..., ¢,
satisfying

Ty —Co = T9
(6)

Tn—1—Cn = Tn

5. Stop the decomposition process when r, becomes a

monotonic function from which no more IMFs can be

extracted. The sum of Eq. (5) and Eq. (6) gives

x(t) = Zci + 7. @)
i=1

From Eq. (7) we can see how the signal x(¢) can be decom-
posed into n empirical modes and a residue r,, that could
be interpreted as the mean trend of the signal. Each IMF ¢;
includes different frequency bands ranging from high to low
and is stationary.
Figure 1 shows two signals, a healthy and a damaged one.
The last one refers to a 450 um fault on a rolling element. In
both cases, the original signal and 3-IMFs decomposition of
the signal itself are presented.

3. ONE-CLASS SUPPORT VECTOR MACHINE

Support vector machine (SVM) is a computational learning
method developed during the 80s, based on the statistical
learning theory (Vapnik, 1982). It is well suited for classi-
fication, because given some data points which belong to a
certain class it is able to state the class a new data point would
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Figure 2. One-Class SVM classifier where the origin is the
only member of one class.

be in. If we consider an n-dimensional input data made up of
a number of samples belonging to a class, namely positive
or negative, SVM constructs a hyperplane that separates the
two classes. Moreover, this boundary would satisfy the con-
dition that the distance from the nearest data points in each
class is maximal. In this way, an optimal separating hyper-
plane is created, namely the maximum margin. The points in
both classes nearest to this margin are called support vectors
and, once selected, they contain all the information necessary
to define the classifier. Every time a new element appears, it
could be classified according to where it places respect to the
separating hyperplane.

SVM could also be applied in case of non-linear classifica-
tion using a function ¢(z) that maps the data onto a high-
dimensional feature space, where the linear classification is
then possible. Furthermore, if a kernel function K (z;,x;) =
(@7 (x;) - ¢(x;)) is applied, it is not necessary to evaluate
explicitly ¢(x;) in the feature space. Various kernel func-
tion could be used, such as linear, polynomial or Gaussian
RBF. This property enables SVM to be used in case of very
large feature spaces because the dimension of classified vec-
tors does not influence directly the SVM performance.

When more than two classes are present, a Multi-class SVM
could be adopted. Two different approaches are taken into ac-
count: One-against-all (OAA) and One-against-one (OAO).
In the first one the i-th SVM is trained with all the examples
in the j-th class with positive labels and all the other examples
with negative labels, while in the latter one each classifier is
trained on data from two classes.

It is clear that in the previous cases, two or more classes of
data are given since the beginning of the analysis. In more
general diagnostic applications, instead, only one type of data
objects is usually acquired: the healthy one. This could be
seen as the detection of patterns in data that do not conform to
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a well defined notion of normal behaviour, so we could refer
to anomaly detection. One-Class SVM is the application of
the SVM approach to the general concept of anomaly detec-
tion, as presented by Schlkopf et al. in Schlkopf, Williamson,
Smola, Taylor, and Platt (2000). In their method they con-
struct a hyper-plane around the data, such that this is max-
imally distant from the origin and can separate the regions
that contain no data. They propose to use a binary function
that returns +1 in region containing the data and -1 elsewhere.
For a hyper-plane w which separates the data x; from the ori-
gin with maximal margin p, the following quadratic program
has to be solved:

. 1., 1
verf e P +Id G- ®

(w-®(zi)) 2p—& &=0 ©)
where £ represents the slack variable and v is a variable taking
values between 0 and 1 that monitors the effect of outliers
(hardness and softness of the boundary around data).

If w and p solve the minimisation problem presented in Eq.
(8) - (9), the decision function

f(x) = sign((w - (z:)) — p) (10)
is positive for most instances representing the majority of
data.

Figure 2 shows graphically the idea presented here, with only
few points around the origin that are negatively labelled.

subject to

4. METHODOLOGY

The previous sections introduced the background and the the-
oretical aspects of the two methods that now we want to use
jointly. The goal of this study is the search for a method able
to identify a damage in a rotating element of a roller bearing
by removing the effect of external conditions influencing vi-
brations.

The diagnosis method consists of different steps:

1. Collect vibration signals under various condition of
speed and radial load applied, both for a healthy and a
damaged bearing.

2. Apply EMD and decompose the original signal into some
IMFs; then choose the first n to extract the features used
during the analysis.

3. Evaluate the total energy for the n selected IMFs:

+o00
Ej:/ le;®)Pdt j=1,...,n. an
— 0o

4. Create a feature vector with the energies of the n selected
IMFs:

F=1[E, ..., E,]. 12)
5. Normalise the feature vector dividing F’ for this value:
n
> 1B (13)
j=1

Figure 3. DIRG test rig (a) and roller bearing used during the
tests with the damaged roller in the white circle (b).

6. Obtain the n-dimension normalised feature vector:

F'=[E\/EN, ..., Ep/EN]. (14)

7. Consider 75% of healthy data as training and the remain-
ing 25% as test together with damaged data. All loads
and speeds are analysed together.

8. Train the one-class SVM classifier on training data and
evaluate the label assigned by the classifier to test data.
The real class is known so mistakes in labelling could be
computed.

9. Repeat point 7. and 8. 30 times permuting healthy data
order to give statistical significance to the analysis and
evaluate the error percentage in labels assignment.

5. APPLICATION TO BEARING DATA

Several conditions can influence data during acquisitions in
our test rig analysis: speed, external load, temperature vari-
ations. Detecting and removing the effects of these factors
is important to avoid any bias during the application of diag-
nostic techniques. In fact, a small variation in speed or in the
temperature of the oil circulating in a system produces devi-
ations that a diagnostic algorithm may erroneously detect as
a damage, thus providing a false alarm. In this paper we try
to introduce a method able to identify a damage in a rotating
element of a roller bearing by removing the effect of speed
and external load.

Accelerations are acquired on a test rig assembled by Dy-
namics & Identification Research Group (DIRG) at Depart-
ment of Mechanical and Aerospace Engineering (Figure 3 a).
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Figure 4. RMS value.

This bearing test rig is designed to perform accurate testing
of bearings different levels of damage in a controlled labo-
ratory conditions, especially regarding the minimization of
spurious signals coming from the mechanical sounds of other
bearings, rotating shafts, gear wheels meshing and other vi-
brating elements. Hence, we are sure that the only variations
in accelerations are given by speed and load that can be prop-
erly changed and monitored.

We consider three different speed values (9000, 10500 and
12000 RPM) and three radial loads (1.4, 1.6 and 1.8 x 103 N)
and we acquire data for each combination. In particular, 10
acquisitions registering 1 second of vibrating signal at sam-
pling frequency 102.4 kHz are collected for each of the nine
cases. This is done both for a healthy bearing and for a dam-
aged one. In the last case, we analyse a bearing with a greater
than 450 pm fault on a rolling element (Figure 3 b). Notice
that the temperature of the oil circulating is almost constant
between the different acquisitions, so we are certain that the
only variations detected through vibrations are caused by load
and speed changing.

In Figure 4 Root Mean Square values for the 10 acquisitions
in each condition are evaluated. This plot shows how this pa-
rameter is influenced by the speed both for healthy and dam-
aged case and it increases with higher speeds. Moreover, it
can be noticed that in low speed cases this parameter value
for damaged bearing is almost near to the healthy one when
it reaches the highest speed. For example, RMS value for a
damaged bearing at 9000 RPM for the three loads is around
30. If we consider the healthy case at the highest speed eval-
uated (12000 RPM) RMS is around 34, so it can be noticed
that the undamaged bearing at higher speed has a parameter
value greater than the faulty one at lower speed. It means that
if we consider the RMS parameter taking into account all nine
conditions together, the difference between healty and faulty
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Figure 5. Error percentage for linear kernel.
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Figure 8. 2-dimension feature vector F” representation.

bearings may be strongly biased. This observation leads to
the need of a parameter that could avoid such kind of prob-
lems.

According to the methodology presented in Section 4, we ob-
tain a normalised feature vector F”'. We decide to take into ac-
count the first 8 IMFs which include the most dominant fault
information, so this vector is in a 8-dimensions space. The
analysis through OCSVM is done starting from the first two
dimensions of the feature vector. Then we add a new dimen-
sion each time until the whole feature vector F” is used. We
choose to include the feature from the beginning according to
the fact that EMD operates in form of collection of filters or-
ganised in a filter bank structure. In particular, the first mode
could be considered similar to a highpass filter while the other
modes are characterised by a set of overlapping bandpass fil-
ters (Flandrin & Rilling, 2004). In such way, taking the fea-
ture starting from the beginning of the vector, we move from
higher frequency contents to lower ones.

As stated in Section 4, the 75% of healthy data are used to
train the classifier, while the 25% of them are added to dam-
aged data as testing instances. Since the exact belonging is
known, it is interesting to evaluate the errors in labelling made
by the OCSVM classifier. In this way, an evaluation of the re-
lation between the number of dimensions and a proper iden-
tification procedure could be done. Moreover, three different
SVM kernels are compared through the application to the ac-
quired data:

e linear: K(;, z;) = (] x;)?

(] z; +1)
e Gaussian: K (z;, z;) = exp(—||x; — z;]]?)

e polynomial: K (z;, z;) =

For each kernel, parameters d and -y take values going from 1
to 4 and labelling mistakes are evaluated in percentage. Fig-
ures 5, 6 and 7 present the different behaviours of the three
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Figure 9. 2-dimension feature vector F’ representation after
OCSVM.
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Figure 10. 2-dimension feature vector F” representation with
different conditions: the first number is the speed expressed
in RPM, the second is the load expressed in kN.

kernels when the number of feature and the parameters val-
ues increase. The error percentage for the linear kernel tends
to decrease when the dimensions go from 1 to 8. Hence, in
order to provide a good detection ability a greater number of
features should be considered. The same behaviour is ob-
served for polynomial kernel when d = 1, while for the other
values of the parameter less errors are present for 2, 6, 7 and
8 dimensions. The error trend in the case of a gaussian ker-
nel does not seem to be conditioned by parameter v, while
the minimum number of labelling errors are found when the
feature vector has 2 and 7 dimensions. On the whole, a gaus-
sian kernel or a polynomial one with parameter d > 1 give
successful results in detecting the damage regardless of speed
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Figure 11. Normalised feature vector F’ values for three
speeds for both undamaged and damaged case.

and load influence.

To emphasise this fact, we can concentrate on the 2-
dimensions feature vector F” thanks to the fact that it gives
interesting results and because it is easier to visualise. If
we consider the totality of 180 values computed using our
methodology for both healthy and damaged bearing, we ob-
tain the plot in Figure 8. In this picture, it is clear how data
divide into two groups according to their state rather then de-
pending on their condition of load and speed. This explains
the great efficiency of the classifier in damage identification,
due to the perfect distinction between the two classes of data.
It could be seen in Figure 9 how OCSVM with Gaussian ker-
nel and v = 1 works. The testing data are well classified
(green triangles) and only one belonging to the faulty class is
labelled as healthy producing an error (red cross).
Furthermore, any dependence on different loads and speeds
seems to be removed as pointed out in Figure 10. The nine
symbols represent the various conditions for the undamaged
and damaged bearing and, on the whole, no particular divi-
sion based on the rotational speed or on the load applied is
noticed.

Figure 11 could help to explain the ability of the method in
the speed and load influence removal. Values of one acquis-
tion feature vector F” are plotted for each of the speeds con-
sidered, both for the healthy and for the damaged bearing.
Firstly, the vector normalisation presented at step 5 and 6 in
the Methodology Section helps to remove the contribution of
highest energies and, so, to mitigate the various conditions
influence on the features. Moreover, as it could be noticed
in the Figure, this aspect is particular observable for the ’fre-
quency content’ represented by cs. The normalised values of
the energies here, in fact, tends to be very similar indepen-
dently of the speed considered, giving a great contribution in

the removal of this parameter influence.

6. CONCLUSION

In this paper we proposed a method for the detection of dam-
ages in roller bearings with the removal of speed and load
dependence. This methodology combines Empirical Mode
Decomposition, used to produce a proper feature vector, with
the One-Class Support Vector Machine technique, exploited
to classify the data. Since the original class belonging was
known, different SVM-kernels have been tested in order to
find those with lower error rate. Encouraging results have
been obtained related to the ability of this feature in removing
speed and load dependence in order to avoid any bias in data
interpretation and identification. Further applications could
deal with various damage entity comparisons and with other
damage type, such as sandblasted inner ring. Moreover, other
factors influence removal, such as temperature, and the com-
parison of this method with other techniques used to obtain
the feature vector, such as wavelet decomposition, could be
developed.
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