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ABSTRACT 

During the last decade Condition Based Maintenance [CBM] 
became an important area of interest to reduce maintenance 
and logistic delays related down times and improve system 
effectiveness. Reliable diagnostic and prognostic capabilities 
that can identify and predict incipient failures are required to 
enable such a maintenance concept. For a successful 
integration of CBM into a system, the challenge beyond the 
development of suitable algorithms and monitoring concepts is 
also to validate and verify the appropriate design requirements. 
To justify additional investments into such a design approach 
it is also important to understand the benefits of the CBM 
solution. Throughout this paper we will define a framework 
that can be used to support the Validation & Verification 
[V&V] process for a CBM system in a virtual environment. 
The proposed framework can be tailored to any type of system 
design. It will be shown that an implementation of failure 
prediction capabilities can significantly improve the desired 
system performance outcomes and reduce the risk for resource 
management; on the other hand an enhanced online 
monitoring system without prognostics has only a limited 
potential to ensure the return on investment for developing and 
integrating such technologies. A case study for a hydraulic 
pump module will be carried out to illustrate the concept. 

1. INTRODUCTION 

A maintenance strategy cannot change the reliability figures 
of a system design but an optimized concept can improve 
availability and reduce operation and support costs 
(Reimann, Kacprzynski, Cabral, and Marini, 2009). Three 
maintenance strategies and measures to overcome the issues 
associated with operating a system with non-infinite 
reliability can be distinguished. 

     Strategy 
 
 
Measure 

Run To 
Failure 

Mainten.  
[RTFM] 

On Condition 
Maintenance 

[OCM] 

Condition Based 
Maintenance 

[CBM] 

Corrective 
Maintenance 

[CM] 

General 
concept for 
RTFM 

Failures which 
can cause 
neither a safety 
nor an 
economical 
critical event 

Failures which can 
cause neither a 
safety nor an eco-
nomical critical 
event. Requires 
online monitoring 
for fault isolation. 

Preventive 
Maintenance 

[PvM] 

Not 
included 

Failures which 
are safety or 
economical 
critical. Fixed 
intervals to 
decide if a PvM 
is required. 

Failures which are 
safety or eco-
nomical critical 
w/o prognostics. 
Requires online 
monitoring to 
enable dynamic 
intervals for  PvM. 

Predictive 
Maintenance 

[PdM] 

Not 
included 

Not included 

Failures which are 
safety or eco-
nomical critical 
with monitoring 
and prognostics. 
Enables dynamic 
intervals to plan 
and perform PdM 
when required. 

Table 1. Maintenance strategies and measures 

A definition for the different concepts that will be used in 
the proposed framework is given in Table 1. 

Standardized methods like Failure Mode Effects and 
Criticality Analysis (FMECA) or Common Mode Analysis 
are used to allocate probabilities and criticalities to each 
single failure mode in a system. The results are used to decide 
which failures are acceptable during operation and which 
ones have to be avoided through the introduction of a PvM or 
in case of a CBM concept, for which components it is 
expedient to develop capabilities to enable PdM. Monitoring 
or prediction methods to support the decision whether a PvM 
or PdM is required will always be imperfect. This will cause 
erroneous replacements of healthy components (known as No 
Fault Found [NFF]) and a waste of useful life by too early 
replacements of degrading components. 

_____________________ 
H. Mikat et al. This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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Figure 1. Enhanced Health Monitoring concept 

Especially in the case of PdM, where a potential failure or 
degradation should be announced while the component still 
operates within the specified performance limits, the 
avoidance of NFFs and simultaneous realization of a high 
sensitivity to incipient failures is a challenge. For the 
realization of a dynamic scheduling of maintenance 
intervals, it is necessary to realize online condition 
monitoring to receive and process all information to decide 
when a PvM or PdM action is required. If the different 
components and the system itself are not designed to 
provide and process all required information, it is not 
possible to realize an optimized CBM concept (Dunsdon & 
Harrington, 2009). For this reason it is mandatory to 
establish all relevant requirements from the beginning of the 
system design phase. These requirements cannot be treated 
like general design requirements related to Maintainability 
or Testability aspects. Whereas a Build-In Test [BIT] can be 
specified through a fault isolation and NFF rate, a CBM 
system would also need the specification and verification of 
detecting failures before they occur and predicting future 
trends with a verifiable accuracy. The difference between 
BIT and an Enhanced Health Monitoring [EnHM] concept 
is illustrated in Figure 1. 

Especially if the CBM system shall not only support the 
optimization of spares and personnel management but also 
be designed to shift scheduled intervals - which are 
important to ensure system safety aspects - into dynamic 
condition-based intervals, it is of high relevance to ensure 
traceability of how the CBM capabilities needs to be 
incorporated into the system design. Selected Key 
Performance Indicators [KPIs] can be defined to represent 
customer requirements or industrial interests. An 
understanding of how CBM affects these KPIs is needed to 
justify increased development and procurement costs plus a 
more complex system design. 

 

Figure 2. Hierarchical structure of the framework 

The general hierarchical structure of how a Service 
Capability Rate [SCR] can be derived from the design and 
support elements of a system is shown in Figure 2. This 
architecture is used for the definition of the framework that 
will be described throughout this paper. 

A SCR can vary from a success rate for performing 
reconnaissance missions in the field of the military aviation 
over transporting passengers or material for the civil sector 
to producing any type of goods in the industrial sector. The 
baseline parameters are Reliability, Maintainability and 
Testability [RMT], specifying how many and when any 
failure events are expected, how counter measures can be 
realized and which fault isolation capabilities are provided. 
The logistic concept [LOG] provides information on how 
resources like personnel, spares and consumables are 
supported. The maintenance strategy [MNT] specifies how 
the scheduled and unscheduled events are managed. The 
concept for Enhanced Health Management [EHM] has been 
introduced to specify the potential for the realization of 
CBM through EnHM and prognostics. 

These baseline elements are considered as design and 
support elements of the system. The next level, as an 
outcome of the design and support level, is considered as 
Life Cycle Costs [LCC] related. The Mean Waiting Time 
[MWT] denotes how much time is lost due to waiting for 
missing resources; therefore it is related to periods during 
which the system cannot generate profit. The Maintenance 
Index [MID] indicates how much maintenance effort is 
required in Maintenance Man Hours [MMH] per 
Operational Hour [OH]. The Inverse Logistics Maintenance 
Ratio [ILMR] is used to quantify the amount of unscheduled 
events per OH, hence indicating the required capacity for 
spares to ensure the operational availability of the system. 
Based on these parameters and the system specific 
operational scenario, various KPIs can be derived. Important 
parameters are the operational availability of the material 
required to support the system for fulfilling its service aims 
[A0MAT] and the operational availability of the system itself 
[A0SYS]; these two parameters can be used to trace customer 
requirements and derive the SCR parameter. The required 
material can again be anything that is needed to support the 
system specific service task, like payload equipment for 
aircraft missions or industrial goods for production 
purposes. 

The following sections will give an overview of a generic 
framework, addressing all above mentioned aspects by 
describing the conceptual design and purpose of the 
framework as well as basic assumptions and definitions. 

The framework described on the following pages can be 
understood as a multifunctional environment, providing the 
capability to validate design and conceptual requirements as 
well as a tool for an integrated simulation concept of various 
modules composed to a complex system architecture for 
verification purposes. The general idea is shown in Figure 3. 
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Figure 3. V-Model for framework applications 

The modus as "Virtual Validation Environment" enables the 
derivation and validation of dedicated requirements for a 
system layout and EHM integration. Furthermore the 
"Integrated Simulation" modus supports model-based 
verification of KPIs and EHM requirements through the 
integration of validated simulation modules for diagnostics 
and prognostics on component or subsystem level. 

To demonstrate the concept we will describe the simulation 
framework and conduct a case study. The case study will be 
carried out by showing how a simulation module for 
monitoring the status of a hydraulic pump could be 
integrated into the simulation environment and support the 
verification of RMT and EHM requirements. 

2. DESCRIPTION OF THE SIMULATION CONCEPT 

The main aim of the work presented in this paper is to 
develop a simulation environment that can be used to perform 
trade-off studies for system design and maintenance concept 
aspects emphasizing the capability to include the evaluation 
of a CBM potential. As described in the introduction, we will 
distinguish between three different maintenance strategies 
and measures. As the framework has originally been 
developed to support aircraft design decisions, where - due to 
safety and economic reasons - RTFM shall be avoided, the 
RTFM strategy has been excluded. This assumption would 
also be valid for other complex or cost intensive applications 
like passenger transportation or industrial facilities. The 
decision tree which has been defined as basis for the 
framework is shown below. 

 

Figure 4. RMT, MNT and EHM Flowchart 

2.1. Maintenance Parameters 

According to the online monitoring capabilities, subsets of 
the primary failures specified by RMT will belong to the 
OCM or the CBM branch. A further partitioning into the 
different measures depends on the monitoring capabilities 
and definition of fixed maintenance intervals for inspection 
and overhaul. The probability that a failure belongs to one 
class is defined by the probability allocation parameter: 

 

∑

∑
=Ρ

i
i

j
j

j λ

λ
 

(1) 

In the case of PPREDC (Predictive - CBM) the index j would 
denote all failure modes belonging to the class "Predictive 
Measures", while the index i would describe the sum of all 
failure modes belonging to the class "CBM Measures". It has 
been assumed that in excess of the primary failures classified 
by CM, PvM or PdM, each system also generates a number of 
false alarms (FA). As PvM and PdM would avoid the 
occurrence of a failure during service, the "Corrective 
Measures" are the only classes which generate additional 
secondary faults (SFLT) with the probability PSFLT. For the 
overall simulation it should be considered that each 
maintenance action will also cause a secondary maintenance 
(SMNT) induced failure (defined by the probability PSMNT). 
These maintenance induced failures can be mishandling, wrong 
installation or other secondary damages during overhaul and 
replacement or repair activities on the system (Byer, Hess, and 
Fila 2001). As each PvM and PdM should avoid the occurrence 
of a failure, it has to be performed before the failure happens. 
That means the introduction of such a measure would reduce 
the useful life of the system or component. This aspect has 
been introduced as additional probability for erroneous early 
replacements of the respective part. Due to the online 
monitoring of the CBM concept, this error will be lower for the 
PvM measures in the CBM branch than for those in the OCM 
part. Also it can be assumed that the evaluation of the 
information for PdM enables a much higher accuracy and 
confidence on estimating the optimum time to replace the 
monitored component than the monitoring without prognostics. 
Hence the waste of useful life for PdM can be considered to be 
lower than for PvM measures (Spare, 2001). 

2.2. Reliability, Maintainability and Testability 

The top level failure rate distribution is given by the RMT 
requirements as composition of all individual primary 
failure modes of the system. The probability for additional 
false alarms has been introduced as percentage false alarm 
rate for the respective class of events. It should be noted that 
- for maintainability aspects - each failure mode has been 
treated as individual event requiring a maintenance action. 
The maintainability aspect is described by the Mean Time 
To Repair for each individual failure mode MTTRi. 
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Knowing the individual failure rates, a joint value on system 
level can be derived: 

 

∑

∑ ⋅
=

i
i

i
ii

SYS

MTTR

MTTR
λ

λ
 

(2) 

A common approach for complex applications like aircrafts 
is to define a BIT failure isolation rate, specified through the 
capability to isolate single point failures to one or multiple 
root causes. It is assumed that CBM monitored components 
will have an ideal fault isolation capability, reducing the 
number of potential candidates for a single point failure to 
one single source. Considering this assumption and the fact 
that fault isolation for BIT monitored equipment has only to 
be performed once and the subsequent troubleshooting 
process for identifying the correct failure source would only 
include multiples of the replacement and checkout time for 
individual components, a formula for the resulting MTTR 
considering imperfect fault isolation can be derived (fdi: 
fault detection and isolation): 

)1()ˆ( fdiCBMOCMPREVOCORRO pMTTR δ−⋅Ρ+Ρ⋅Ρ+⋅Ρ=∆
 

 

SYSRES MTTRMTTRMTTR ⋅∆=  

(3) 

with: 

)1()()1(ˆ
:2

)1(1 nkk fdi
nk

fdifdifdifdi pkpppp −+⋅−⋅−⋅+= ∑
=

−
δ  

where pfdik indicates the probability to isolate a single point 
failure to k = 2, … n sources as testability requirement and 
δfdi as fraction of the replacement time required to perform 
the fault isolation. The imperfect BIT fault isolation will not 
only affect the repair time but also the resulting maintenance 
effort. Hence, calculation of the increased probability for 
maintenance induced failures in the corrective class of the 
OCM branch is implemented accordingly (δfdi = 0): 

pOCM SMNTCORRSMNT ˆ)( ⋅Ρ=Ρ  (4) 

2.3. Logistic Parameters 

The main parameter within the scope of a logistic concept 
for estimation of system availability is the mean delay time 
for unscheduled events. This value is composed of an 
administrative and a logistic delay [Mean Logistics Delay 
Time: MLDT] fraction giving an average parameter for the 
MWT. The MLDT parameter can be derived from the 
probability density estimate for the resulting failure rate of 
unscheduled events. Using these assumptions an estimate of 
the MLDT can be derived: 

 

0

:1

:

max

max

)(

5,0)()(

T
pdf

Tpdf

MLDT

i
usiusi

i
Leadsusiusi

s +
⋅

⋅⋅−⋅
=

∑

∑

=

=

λ

λλ

λλ

λλλ
 

(5) 

with (excluding secondary effects, which are added to 
receive the resulting unscheduled failure rate): 

)]()1([ PREVCCORRCFACCBMFAOOCMSysus Ρ+Ρ+Ρ⋅Ρ+Ρ+⋅Ρ⋅=λλ

 
maxmax     ),1)(( λλλλλ ⋅=== pfrcdf sus

 

and λSys as overall system failure rate, λus as resulting failure 
rate for all unscheduled events, pdf(λus) / cdf(λus) as 
probability density / cumulative distribution function of λus, 
pfr as fill rate factor of spares in the operational scenario 
with pfr = 1 for nSpares(λmax), TLead as the maintenance related 
lead time (time between two spares deliveries or mean 
waiting time on maintenance specialists) and T0 as the 
administrative delay time. Each element belonging to class 
other than PdM is treated as unscheduled event, while it is 
assumed that the capability to predict the occurrence of an 
event shifts it from being unscheduled to a scheduled 
maintenance. An arbitrary MLDT variation as a function of 
the spares fill rate is shown in Figure 5. 

 

Figure 5. Mean Logistic Delay Time variation 

The resulting MWT is the weighted average for scheduled 
and unscheduled events: 

Sys

ususSys MLDTT
MWT

λ
λλλ ⋅+⋅−

= 0)(  (6) 

If PdM enables an accurate prediction of the time to failure, 
it can be assumed that the uncertainties for this class are 
reduced. This idea should reflect system operation without 
the need to consider a conservative assumption about the 
number of spares needed to maintain the system operational. 

2.4. Enhanced Health Management Parameters 

The EHM parameter set can be described through the values 
of PCBM, PPREDC and PFAC. It should be noted that the 
framework implies that only an EHM monitored failure can 
also be predicted. It is also assumed that false alarms caused 
by other means of monitoring are ignored if the EHM 
algorithm for the respective failure mode does not confirm 
the failure. As EHM requires a deeper knowledge of the 
system it cannot be assumed that this approach works also 
in the opposite direction, ignoring a false alarm of an EHM 
monitored component if other monitoring features are not 
confirming the failure. 
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The accuracy of prediction has been identified as one key 
design parameter for the development of prognostic 
algorithms and concepts (Saxena, Roychoudhury, Celaya, 
Saha, Saha, and Goebel, 2010). The following assumptions 
have been made for the derivation of accuracy and 
precision; these will result in a probability for too early or 
missed replacements and can be used as requirements for 
the development of suitable algorithms: 

- The prediction horizon has to ensure failures do not appear 
during the lead time. The lead time can be a time of 
continuous operation, the time interval between two spare 
deliveries or until maintenance specialists will be available. 

- The prediction error ε is always a function of the 
prediction accuracy θ and the expected lead time TLead: 

 
LeadT⋅−=

2

21

θ
θε  (7) 

- The minimum required prediction horizon Ph is defined 
accordingly: 
 

Leadh T⋅=Ρ 2

1
θ

 (8) 

Assuming a fixed accuracy θ, it can be concluded that a 
replacement of the degrading component at tRep = θ·tPred 

would avoid the failure with the probability specified by θ. 
Considering the mean and minima/maxima prediction 
regimes with an accuracy θ, the following relations for the 
respective waste of useful life EWULi can be derived: 

Conservative ε=ΕWULMax
 

(9) Optimal 21

1

θ
θε

−
−⋅=ΕWULMean  

Opportunistic 21

)2(1

θ
θθε

−
⋅−−⋅=ΕWULMin  

Figure 6 depicts these regimes for θ = 90%. Assuming the 
conservative situation that all regimes can occur with the 
same probability, it can be concluded that the average waste 
of useful life is equal to ΕWUL = ΕWULMean. 

- The resulting waste of useful life due to predictive 
maintenance is a function of the respective failure rate: 

 
iWULii λλ ⋅Ε=∆  (10) 

 

Figure 6. Prediction error regimes 

2.5. Derivation of Performance Parameters 

The system performance parameters can be derived 
according to Eq. (11), (12) (excluding scheduled overhauls): 

 
)(1

1
0

iii
i MWTMTTR

A
+⋅+

=
λ  (11) 

 SYSMAT AASCR 00 ⋅=
 

(12) 

with λi as overall failure rate. 

2.6. Uncertainty Representation 

As the aim of this work was to develop a framework that 
has not to rely on pseudo-empirical simulation results, it 
was required to find closed form solutions for all stochastic 
processes that are used in the model. Therefore all 
distribution parameters like mean and variances have been 
propagated through the model by assuming stochastic 
independence for all single failure modes and a stochastic 
correlation of all failure modes that are interdependent. 

Assuming weibull distributed time to failures with unitary 
shape parameter and therefore a constant failure rate (design 
and manufacturing processes should ensure constant failure 
rates but due to varying conditions and tolerances the results 
are usually distributed), we can derive the expression for the 
propagation of the uncorrelated parameters PUC from class j 
belonging to branch i: 

 

∑

∑
=Ρ

i
i

j
j

UCj 2

2

λ

λ
 

(13) 

The equivalent parameter for correlated events PC can be 
derived as: 

 2
jUCiCj Ρ⋅Ρ=Ρ  (14) 

with Pj as the probability allocation parameter of event j 
caused by event i.  

All primary failure rates can be treated as independent 
events with a covariance of cov(zi,zj) ≈ 0. Only for merging 
the resulting primary with the secondary and maintenance 
induced failures, the respective covariances have to be taken 
into account. The secondary failures will only occur due to a 
primary failure belonging to the class “Corrective 
Measures”; a maintenance induced failure will only occur 
due to a previous event belonging to any class of the OCM 
or CBM branch. Moreover the relative increase in the 
failure rate of primary events will cause the same relative 
increase in the rate of secondary events. These relations 
motivated to imply a perfect linear correlation for these two 
scenarios to derive the respective covariance: 

 )(),cov( ijji zVarzz ⋅Ρ=  (15) 
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with Pj as probability allocation parameter of event j caused 
by event i. 

Well known laws for the calculation with stochastic 
variables have been used to propagate all mean and variance 
parameters through the system model (Elandt-Johnson & 
Johnson, 1980; Stuart & Ord, 1998; Blumenfeld, 2001). 

By applying these rules, we obtain the resulting distribution 
functions that will be used to estimate the distributions for 
the parameters MWT, ILMR and MID. As the maintenance 
effort is independent from logistic delays, they are again 
treated as independent variables, providing the basis to 
calculate the resulting distributions of A0i. 

The specific distributions for the various parameters that 
have been used in the framework are listed in Table 2. Near 
real-time capable maximum likelihood estimators have been 
implemented into the simulation to estimate the distribution 
parameters by using the propagated expectation and 
variance of each stochastic variable as input. 

Arbitrary simulations with random number distributions 
instead of the closed form solution for an OCM and CBM 
concept have been carried out to validate the concept. It can 
be seen that the results are sufficient accurate to assume the 
environment can be used to simulate processes with 
stochastic variables in a closed form solution (see Figure 7). 

Failure rates: Two-parametric weibull distribution 
with constant failure rate 

False alarms: Lognormal distribution 
Prediction Error: Lognormal distribution 
MWT: Lognormal distribution 
MTTR: Lognormal distribution 
ILMR: Two-parametric weibull distribution 
MID: Lognormal distribution 
A0: Two-parametric weibull distribution 

Table 2. Parameter distribution type 

 

Figure 7. Monte-Carlo validation 

3. APPLICATION AS VIRTUAL VALIDATION ENVIRONMENT 

The validation process is mainly based on a bottom-up and 
top-down justification and traceability analysis of all system 
design requirements. The idea for supporting this concept by 
utilizing the proposed framework is shown in Figure 8. The 
validation is performed by tracing all failure mode specific 
EHM requirements to the top level system requirements. 
The parameter CBMR comprises all EHM features. It is 
composed of the diagnostic [HMC] and the prognostic 
[FPC] part. Prognostic accuracy [PA], and prognostic 
coverage [PC] are used to describe the resulting FPC.  The 
HMC is defined by the detection rate [DR] and false alarm 
rate [FAR]. The traceability to component level design 
requirements for hardware and software development is 
realized according to Eq. (2) by using the respective failure 
rates as weighting factors. 

The following sections will give an overview of how a 
trade-off study could look like. A simplified cost-benefit 
approach will be discussed. More complex applications to 
find the optimum solution involving multiple cost functions 
will be the scope of future activities. Two arbitrary 
simulation runs have been conducted to illustrate and 
discuss the application as virtual validation environment. 
The first scenario simulates different design solutions for 
CBM without any PdM, only improving the fault isolation 
capabilities and conditional awareness of the system. The 
second scenario uses the same system design as baseline and 
evaluates a CBM concept with an integrated PdM 
capability, enabling the full potential of CBM. 

This comparison should help to understand the impact of 
diagnostic and prognostic approaches on the three selected 
parameters SCR, MID and ILMR and if any saving 
potentials can be identified. It has to be noted that the results 
will vary if the logistic or maintainability parameters are 
modified; nevertheless the shown cases will provide 
sufficient information to discuss the main aspects. In the 
following discussion, the variance of each parameter can be 
understood as a factor describing the individual risk while 
the expectation value represents the potential to fulfil 
operational objectives. 

 

Figure 8. EHM validation 
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3.1. EHM without Prediction Capabilities 

For this study, the parameter "CBM Capability" quantifies 
the online monitoring features without predicting any future 
trends. From the results presented in Figure 9 it can be seen 
that the implementation of EnHM without simultaneous 
development of prediction capabilities can mainly improve 
the MID, hence reducing the maintenance effort per OH. 
This observation can be explained with the improved fault 
isolation and optimized preventive maintenance due to the 
online monitoring capabilities of EHM. The reduction of 
MMH/OH will also ensure an improvement in the resulting 
SCR of the system; however since all failure events are still 
unscheduled, this improvement will not be the same as for a 
fully integrated CBM system with PdM. This effect can also 
be seen in the almost unaffected trend of ILMR. The minor 
improvement in ILMR is due to the reduced number of false 
alarms for a redundant monitoring concept using a fusion of 
BIT and EHM for status assessments and the optimized 
preventive maintenance methods. 

As a result it can be concluded that enhanced diagnostics 
without prognostics will mainly reduce the maintenance 
effort expectation and variance. While the reduced 
expectation value corresponds to less maintenance activities 
per OH, indicates the reduced variance a potential for a 
better scheduling of resources and manpower. The increase 
in the SCR expectation is a side effect of the improvement 
seen in the MID. 

 

Figure 9. Sensitivity study EHM without PdM 

3.2. EHM with Prediction Capabilities 

By performing the same simulation as before with a CBM 
system including prediction capabilities for all monitored 
failure modes (now "CBM Capability" represents the 
quantity of failures that are monitored and can be predicted), 
the PdM concept reveals itself with its full potential. The 
implementation of prognostics has a significant impact on 
all three parameters by optimizing the expectation value and 
reducing the respective variance (see Figure 10). 

 

Figure 10. Sensitivity study EHM with PdM 

The potential to move unscheduled events into a scheduled 
scenario, without the need to incorporate all uncertainties 
associated with a system that enters service, reduces the risk 
for all parameters. 

The improved SCR expectation trend is mainly related to 
the avoidance of secondary failures, the reduced waste of 
useful life for PdM in comparison to PvM, the improvement 
for fault isolation of the predicted failures and the planning 
for a PdM measure before the failure occurs. The prediction 
of all events belonging to the class PdM has reduced the 
MWT to the fraction of the administrative delay time that is 
not allocated to the provision of spare parts and 
consumables. Simultaneously, the number of unscheduled 
events per OH is reduced, providing the potential to save 
costs for producing and storing spare parts before they are 
needed. The further improvement in the characteristics of 
the MID compared to the previous simulation without PdM 
can be explained with the reduction of the overall variance 
in the primary failure events and the avoidance of secondary 
failures by replacing the monitored item before a failure 
occurs. 

3.3. Discussion of Results 

By comparing the results for EHM with and without PdM it 
can be conducted that the enhanced health monitoring 
without prognosis may not compensate the investment 
needed for the development, production and operation of the 
health monitoring system. The minor improvement in the 
SCR due to the optimized trouble shooting process through 
online monitoring without reducing the risk, does not 
provide sufficient potential to reduce operational costs (e.g. 
less spares provisioning) without compromising customer 
requirements. Also the reduced MID cannot be seen as a 
savings potential, as the total number of people needed per 
operational site is defined through the number of people per 
maintenance action and the number of specialists per 
operating system. These people have to be paid, even if they 
have less work to do. The reduced variance is only an 
indicator that the risk for incorrect planning of maintenance 
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resources is reduced. The more accurate PvM measures are 
expected to enable further improvement potential. 

In contrast to the results for EHM without PdM it can be 
seen that the implementation of prognostics can help to 
reduce the overall risk for fulfilling service objectives. 
Simultaneously a reduction of the unscheduled events 
enables operation with less spares and the potential for a 
further simplification in the logistic concept with a reduced 
risk to compromise customer requirements. Therefore it can 
be concluded that the integration of an EHM system should 
aim for enhanced health monitoring and predictive 
capabilities, otherwise the return on investment for the 
integration of EHM cannot be guaranteed. 

However, also for the EHM without prognosis it is possible 
to show the improvement potential and to use the proposed 
framework to derive requirements for the development of 
EHM functions. All resulting EHM requirements for 
diagnosis and prognosis are mainly quantified through the 
failure modes that can be monitored or predicted plus the 
accuracy and robustness of the respective algorithms. 

3.4. Cost Benefit Analysis 

This section should give an introduction of how a Cost-
Benefit-Analysis can be carried out by utilizing the 
proposed framework. We will focus on a Performance-
Based-Contract [PBC] scenario, where the system provider 
has to pay penalties if the operator cannot obtain the service 
aims (e.g. availability). A full blown Cost-Benefit-Analysis 
approach should be to find the global minimum of a 
function that takes the following cost elements into account: 

i)  CBM design and procurement costs; 
ii) PBC penalties and rewards; 
iii)  Logistic cost elements; 
iv)  Spares and resources management cost elements. 

By utilizing the framework a distribution function for each 
performance indicator can be derived. The parameter of 
interest for availability contracting would be A0. By 
assuming reasonable cost functions for contractual penalties 
and operation and support cost (OSC) savings due to 
reduced spares provisioning by varying the fill rate, a 
minimum of the resulting cost function can be found. 

An example plot for this scenario, assuming a contracted 
availability of 80% and deriving the delta costs by means of 
cost indexing, is shown in Figure 11. The allocation of the 
minimum resulting costs is determined by all design and 
support parameters. The risk to achieve this cost value can 
be quantified through the variance of each single parameter. 
By adding more cost functions to estimate the resulting 
operation and support costs, it is possible to find the 
optimum solution for an EHM design concept. The LCC 
simulation can either be used to identify an optimal EHM 
concept or to derive acceptable design cost values to satisfy 
a business case for a given operational scenario. 

 

Figure 11. Cost functions for availability contracting 

4. USE CASE FOR INTEGRATED SIMULATION CONCEPT 

In this section a case-study related to a generic hydraulic 
pump module will be presented: the aim is to further 
understand the concepts so far explained and to 
quantitatively show the improvements in the design phase 
that can result by utilizing the approach here illustrated. 

After a brief introduction regarding the pump system and its 
main sub-components, the interest will be focused on the 
bearings, as sub-component of the pump system. In fact, 
care has been spent on properly simulate meaningful 
bearings' conditions, namely the behaviour of a bearing in 
presence of a defect and the degradation of the bearing 
behaviour following a growth in defect's severity. Both 
nominal and faulty behaviours have been validated by 
means of experimental tests. The model has been therefore 
used to test new diagnostic and prognostic algorithms; in 
fact, faults can be implemented under different operating 
conditions rather than waiting for these to occur. A generic 
approach has been followed to verify and validate the model 
creation and to properly assess effectiveness and efficiency 
of algorithms for diagnosis and prognosis: this approach is 
illustrated, as a flow chart, in Figure 12.  

 

Figure 12. Flow chart of the EHM designing phases 
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The bearing dynamic model has been thereafter integrated 
in a general simulation pump framework that has been 
designed on purpose. The framework allows one to simulate 
the behaviour of a generic pump - within its sub-
components – together with different monitoring 
capabilities on the various components: this way the use of 
the framework as a valuable tool for requirements' 
verification will be demonstrated, as well as the capabilities 
of the framework itself of assessing variation in system's 
performances when varying monitoring concepts. 

4.1. Hydraulic Pump System 

The hydraulic pump object of our interest is a variable 
displacement, axial piston pump. The most important 
groups are the Drive Group, the Displacement Group and 
the Control Valve Group. The Drive Group is the functional 
hearth of the system since it contains the axial pistons in the 
cylinder block and the control plate. The basis of the pump 
is an assembly of precision machined, high strength steel 
parts for the rotational functional parts, mounted in an alloy 
case. The main shaft is supported in rolling elements 
bearings. Pump sealing is achieved using either O-Rings or 
a mechanical seal. In Figure 13, a scheme is shown 
displaying the main actors of the system under 
investigation: in particular, one can recognize the 
metrological solutions that will characterize the enhanced 
monitoring capabilities of the system, namely a system of 
bi-axial accelerometers (to measure two orthogonal 
accelerations along the plane on which every roller bearing 
lies) and an electric chip detector to evaluate the level of 
contaminant in the hydraulic circuit. 

There is a large number of items within the pump that will 
result on a system failure. Some of the pump's failures are 
direct consequence of the part failures (for example shear of 
the shaft); some others are indirect, e.g. debris in the 
hydraulic circuit. In the final simulation that will be 
performed, the failure of four pump sub-components will be 
considered, namely: bearings, sealing, shaft and pistons. 

 

Figure 13. Hydraulic Pump scheme – The sub-components 
that will be the actors of the simulation are highlighted 

The dynamic model of the first sub-component (the roller 
bearings) will be briefly presented in the next section. 

4.2. Dynamic Model of Roller Bearings 

In a bearings system, the time-variant characteristics are the 
result of the orbital motion of the rolling elements, whilst the 
non-linearity arises from effects due to the Hertzian force-
deformation relationship. The model here presented and 
utilized is based on the work carried out by Sawalhi and 
Randall (2008). The main fundamental components of a 
rolling bearing are: the inner race, the outer race, the cage and 
the rolling elements. Moreover, important geometrical 
parameters are: the number of rolling elements nb, the 
element diameter Db, the pitch diameter Dp and the contact 
angle α (see Figure 14). The non-linear forces between the 
different elements, the time-varying stiffness, the clearance 
between rolling elements and races have been implemented 
into the model. The bearing has been modeled as a five 
Degrees of Freedom (DoF) system: two orthogonal DoF 
belong to the inner race/rotor component (xi and yi), two DoF 
are related to the pedestal/outer race (xo and yo) and the last 
one (yr) has been added to match the usually high frequency 
bearing response (16 kHz with 5% damping). Mass and 
stiffness of the outer race/pedestal on the other hand have 
been adjusted to match a low natural frequency of the system. 
Finally, mass and inertia of rolling elements are ignored. 

The non-linear and time-variant model has been further 
detailed regarding its capabilities in reproducing health and 
faulty behaviours. These refinements are related to: a) 
random fluctuation of inner and outer race profiles; b) forces 
generated as a consequence of the roller element impact 
with the resulting profiles roughness; c) Elasto-
hydrodynamic lubrication; d) slippage; e) mass unbalances 
and f) presence of spalling in the outer and inner race-way. 

 

Figure 14. Roller bearing geometry and physics modeling 
scheme 
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As illustrated in the flow-chart of Figure 12, the verification 
and validation approach follows a circular and continuous 
path among the conceptual model validation, the 
computerized model verification and the operational 
validation. The conceptual model validation refers to the 
problem of determining that concepts, theories and 
assumptions underlying the conceptual model are correct; 
whilst the model verification is defined as assuring that the 
computer programming and implementation of the 
conceptual model is correct. On the other hand, the 
operational validation is defined as determining that the 
model’s output behaviour has sufficient accuracy for the 
model’s intended purpose. In the case under investigation, 
the domain of the model’s intended applicability is wide, 
since both nominal and faulty behaviours have to be 
properly simulated. Moreover, the same approach has been 
followed to verify and validate algorithms for diagnostics 
and prognostics. In the end, if suitable diagnostic and 
prognostic concepts could be defined and successfully 
tested, it is possible to integrate the validated simulation 
modules into a general simulation framework in order to 
assess, evaluate and validate the performances of the system 
resulting from the integration of modules with EHM 
capabilities. 

 

Figure 15. Envelope of the two signals used to detect the 
frequency-value of encoded impulsive transients 

Several experimental tests have been conducted in order to 
validate the system. The iterative analysis of the 
experimental findings related to both nominal and faulty 
behaviors has allowed the continuous and better matching of 
the computerized model to reality (model validation). A 
challenge was the correct simulation of a defective bearing, 
the developing of tools to diagnose a defective behavior and 
the implementation of concepts for Remaining Useful Life 
[RUL] prediction. 

Various kinds of defect have been simulated in real 
bearings, as – for example - spalls of different length and 
depth both in the inner and outer race. Common tools in the 
frequency domain can be used for the validation behaviour 
of baseline conditions; this is not generally true for faulty 
conditions.  As a matter of fact, together with a simple 
monitoring of the quadratic mean of the acceleration, a data 
driven diagnostic approach has been implemented for the 
present study; experimental data have been used to train a 
neural network for defect detection and classification. The 
diagnostic approach has moreover been made more robust 
by the integration of a mathematical tool named Spectral 
Kurtosis (Antoni, 2004): this instrument gives the 
possibility to have an estimation of the band to be 
demodulated without the need of historical data. In  Figure 
15, a comparison is shown between the signals processing 
of the vertical acceleration measured on the pedestal of a 
faulty bearing and the analogous results gained by running a 
simulation of its computerized model: the Fourier transform 
magnitude of the squared filtered signals clearly shows the 
typical faulty frequencies of the bearing (given the bearing 
characteristics, a theoretical Ball Pass Frequency Outer race 
of 382.3 Hz was calculated) as spacing between harmonics 
both in the real (upper trend) and simulated (lower trend) 
results. In the end of the designing phase, a verified and 
validated dynamic model has been released. It has been 
therefore widely used to test new diagnostic and prognostic 
algorithms since the required diagnostic features can 
directly be derived from simulated signal pattern.  

However, the development of suitable prognostic algorithms 
needs also to focus on the evaluation and prediction of 
trends or degradation paths. Hence it is necessary to further 
develop degradation models that can be used to simulate 
growing faults. The derivation of such models is not always 
straightforward, as the process of degradation is stochastic 
and does not always follow known parametric laws 
(Bechhoefer, 2008).  Several model-based approaches have 
been adopted so far for failure prognosis (Orchard, 2007); 
among the various methodologies implemented, the most 
promising mathematical framework is the one based on 
Particle-Filtering. This approach allows handling nonlinear, 
non-Gaussian systems; it assumes: a) the definition of a set 
of fault indicators, for monitoring purposes, b) the 
availability of real-time process measurements and c) the 
existence of empirical knowledge to characterize both 
nominal and abnormal operating conditions.  
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Figure 16. Model-based development of prognostic 
algorithms 

Therefore, by means of this approach the current state 
estimates are in real-time updated and the algorithm predicts 
the evolution in time of the fault-indicators, providing the 
pdf of the RUL. Following the same verification and 
validation approach, the prediction algorithm has been 
designed. In Figure 16, one can see (upper graph) the 
process of validating the algorithm by running different 
simulations assuming representative degradation paths; in 
the lower graph, an example plot for a model-based RUL 
estimation is displayed. 

The verified and validated model (regarding both its 
physical behaviour and the diagnostics and prognostics 
algorithms) has been therefore integrated into a simulation 
module, which will mimic the behaviour of a complex 
system. The model will be presented in the next section. 

4.3. Hydraulic Pump Simulation 

The simulation will regard four sub-components of the 
hydraulic pump, namely the sealing system (SEAL), the 
shaft (SHAF), the roller bearings (BEAR) and the piston-
group (PIST). FMECA documents have been looked up in 
order to set realistic ratios between the values for the failure 
rates. Aim of the current simulation is to show and 
demonstrate how the developed framework can be usefully 
and effectively utilized in order to verify the fulfilments of 
the top-levels requirements.  

Bearings models characterized by the enhanced diagnostic 
and prognostic capabilities just discussed have been 
integrated into the simulation framework; the system has 
been virtually equipped with accelerometers (see Figure 13) 
so that the health-state of the bearings system can be 
continuously checked. Then, as soon as a deviation from the 
baseline state is detected by the diagnostic algorithms, 
prognostic tools will process the acquired data and 
communicate the central processing and control unit 
estimated RULs and confidence levels. This will then affect 
the performances of the overall system and the framework 

so far discussed will be therefore utilized to quantitatively 
assess the performances' variations by using the indexes 
already discussed in the previous sections. In other words, 
the primary results of the current simulation will be the 
failure rate distributions of the system; these will be fed to 
the virtual framework to derive the performance indexes and 
hence values directly related to customer satisfaction. 

To handle a more realistic and complex scenario, the 
hydraulic system has been further virtually instrumented 
with an Electric Chip Detector (ECD – see Figure 13). This 
sensor measures in real time the amount of debris and 
contamination of the hydraulic liquid; this way, a preventive 
maintenance approach can be implemented for the piston 
group and the bearing system in the CBM branch. The 
bearing diagnostic algorithm can in fact be also used as fault 
confirmation for preventive actions on the pistons group. 

Finally, the other components are considered to be 
classically monitored by means of an "On Condition 
Maintenance" approach, which results in corrective and 
preventive maintenance. 

Hence, according to the on-line monitoring capabilities just 
introduced, the simplified simulation scheme in Figure 17 
can be shown: it defines the primary failures that will 
belong to the OCM branch and the ones that will belong to 
the CBM branch. 

In the following Figure 18, a diagram explaining the flow of 
the information in the verification procedure just presented 
is displayed. At the bottom of the graph lies the hydraulic 
pump model with its integrated enhanced monitoring 
concepts related to the bearing system. By assuming failure 
rate distributions for the different components, the 
simulation will randomly generate events; these will be 
treated accordingly to the system specifications and so the 
probability classes already shown in Figure 17 will be 
populated. 

 

Figure 17. Maintenance approach hydraulic pump system 
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Figure 18. Verification process of a hydraulic pump module 

Therefore, the statistical parameters (mean and variance) of 
each failure mode can be calculated and, by using the virtual 
framework, they can also be easily propagated in order to 
get the distributions of the performance indexes: 
availability, maintenance index and inverse logistics 
maintenance ratio. 

Verification of the EHM design requirements can be carried 
out by comparing the results of the validation phase with the 
distributions from the verification phase. The resulting error 
in the system performance parameters can be used to assess 
whether the design goals are met or not. Based on this 
assessment it can be decided whether the EHM concept 
needs to be revised or can be implemented. The results for 
the selected use case are shown in Figure 19. 

The shown use case simplifies the system architecture to a 
single component. The same approach can be applied if the 
integration would cover multiple components and 
subsystems with individual failure modes. 

 

Figure 19. Performance indexes simulation case study 

5. CONCLUSIONS 

The proposed framework can support the development of a 
CBM system by validating diagnostic and prognostic design 
requirements w.r.t. selected KPIs or customer requirements. 
Sensitivity studies revealed that a CBM system should aim 
for the integration of predictive capabilities, as the 
improvement potential for an online monitoring system 
without prognostics is limited to a reduced maintenance 
effort and minor improvements in availability or other 
performance parameters of the system. 

The concept provides a simple but robust approach for 
trade-off studies during an early design stage. Further 
improvements of the framework will focus on the evaluation 
and integration of a generalized weibull correlation 
coefficient (Yacoub et al., 2005) to replace the assumption 
for linearity between primary and secondary effects. The 
next step for maturation will be to validate the concept with 
established simulation tools (e.g. Simlox) for spares and 
resource management. 

The idea for an integration of cost estimations and 
optimizations has been discussed. Follow-up studies to 
derive cost functions with established LCC estimation tools 
(e.g. PRICE) will be carried out. The integration of 
authoritative cost functions to obtain a framework for a 
multidimensional optimization of costs related to EHM 
design parameters, PBC aspects as well as resources and 
logistics management will be the main scope for future 
activities. 

The concept for model-based verification of top-level 
system requirements has been illustrated. This approach 
shall enable the evaluation and assessment of diagnostic and 
prognostic capabilities before the system enters service. The 
authors are convinced that the cost-efficient validation and 
verification of multiple monitoring and prediction functions 
composed to a complex system design can only be realized 
in a virtual environment. The proposed framework provides 
such an environment and will be further maturated to 
support the V&V process for the development of a CBM 
system. 
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NOMENCLATURE 

Symbols 

ε Prediction Error 
θ Prediction Accuracy 
λ Failure Rate 
σ Standard Deviation 

Abbreviations 

A0 Availability 
BIT Build-In Test 
cdf Cumulative Distribution Function 
CBM Condition Based Maintenance 
CM Corrective Maintenance 
DoF Degrees of Freedom 
DR Detection Rate 
ECD  Electric Chip Detector 
EHM Enhanced Health Management 
EnHM Enhanced Health Monitoring 
FA False Alarm 
FAR False Alarm Rate 
FPC Failure Prognosis Capability 
FMECA Failure Mode Effects and Criticality Analysis 
HMC Health Monitoring Capability 
ILMR Inverse Logistics Maintenance Ratio 
KPI Key Performance Indicator 
LCC Life Cycle Costs 
LOG Logistics 
MMH Maintenance Man Hours 
MNT Maintenance 
MTTR Mean Time To Repair 
MID Maintenance Index 
MWT Mean Waiting Time 
MLDT Mean Logistics Delay Time 
NFF No Fault Found 
OCM On Condition Maintenance 
OH Operational Hours 
OSC Operation and Support Cost 
PA Prognostic Accuracy 
PBC Performance Based Contract 
PC Prognostic Coverage 
pdf Probability Density Function 
PdM Predictive Maintenance 
pfr Spares Fill Rate 
PvM Preventive Maintenance 
RTFM Run To Failure Maintenance 
RMT Reliability, Maintainability and Testability 
RUL Remaining Useful Life 
SCR Service Capability Rate 
SFLT Secondary Faults 
SMNT Secondary Maintenance 
V&V Validation & Verification 
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